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Spectral functions are introduced describing the oscillations of separate atoms in an arbitrary 
macroscopically uniform system of harmonically interacting particles (an amorphous body, solid 
solution, ideal polyatomic crystal), and their properties are discussed. Several general results 
are obtained characterizing the probability of the Mossbauer effect, and the shift and shape of the 
phononless line in such a system. 

1. INTRODUCTOIN 

THE purpose of the present paper is to consider a 
number of general results pertaining to the vibration 
spectrum of individual atoms, the Debye factor, and 
the temperature shift of the Mossbauer line in solid 
solutions and in ideal multicomponent crystals; these 
quantities do not depend essentially on either the con
centration of the components or the details of the 
microstructure, and they can be expressed in terms of 
other independently defined quantities (e.g., the mass 
of the active atom and the Debye frequency of the sys
tem). In this connection, we discuss the question of ef
fective Debye frequencies for an individual atom and 
the Mossbauer effect on this atom. 

2. VIBRATION SPECTRUM OF INDIVIDUAL ATOMS 

A. General Formulas 

Let us consider the problem of natural vibrations of 
an arbitrary macroscopic multicomponent system of 
harmonically-interacting particles: 

Mnffi~'¢~i(Xn)= ~ Aik(xn, Xn•)'¢~k(Xn•), 
n' 

~ '¢~;· (xn)'¢~i'(xw) = ~ 611' 6nn• 
~ n 

and introduce the quantities 
gik(ffi2, Xn) = Mn ~ '¢~;· (xn)'¢~k(xn)6(ffi2- (1)~2), 

~ 

g(ffi2,xn) = 1/agii(ffi2,xn); 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

which describe the distribution, with respect to the 
frequencies, of the squares of the reduced amplitudes 
of the vibrations of the n-th atom; If!~ ( Xn) and w {3 de
note respectively the eigenfunction and frequency of 
the normal vibration of the species {31). The normalized 

l) Since. the rna trix of the force constants Aik(xn, Xn ·) is real, the 
function g Ik( w 2 , Xn) is real and is symmetrical with respect to per
mutation of the indices. For the same reason, the functions 1/Jb (xn) 
can also be chosen to be real. 

conditions (2.4) follow directly from the second relation 
of (2.2) at n = n' ( Wm = maximum vibration frequency). 

As to the particle system itself, we shall only as
sume that it is macroscopically homogeneous, in 
equilibrium, and free of internal stresses, and we 
shall regard xn as the fixed equilibrium positions of 
the particles. This means that the matrix of the force 
constants satisfies the necessary invariance condi
tions [IJ and admits of a transition from Eqs. (2.1) to 
the usual theory of elasticity at low frequencies. We 
shall deal concretely either with a solid solution (sub
stitution of interstitial, disordered or partially 
ordered) with the indicated equilibrium properties, or 
an ideal polyatomic crystal. However, all the general 
results pertain also to an amorphous body, provided 
the latter can be regarded microscopically as a har
monic system and macroscopically as an internally 
unstressed elastic continuum. In the case of a solid 
solution, the quantities Mn in (2.1) are regarded as 
random, assuming t values Ma, a = 1, 2, ... , t, corre
sponding to the masses of atoms of t species (the in
dex a denotes the species of the particle). In the case 
of an ideal r-atomic t-component crystal, Eq. (2.1) has 
known solutions in the form of plane waves; in this case 
Mn = Mj and {3 = (f, a), where j = 1, 2, ... , r is the 
number of the atom in the unit cell, f is the wave vec
tor, and a= 1, 2, ... , 3r is the number of the branch. 
Expressions (2.3) now define the functions gik( w2 , j) 
and g ( w 2 , j), which are the same for all atoms of the 
same sublattice. 

B. Low Frequencies 

For concreteness we shall speak of a solid solution. 
With respect to low frequencies, i.e., long waves, such 
a solution is a homogeneous continuous body. There
fore, setting aside the important question of the connec
tion of its elastic constants Ciklm with the matrix of 
the force constants (which generally speaking is ran
dom), we can nonetheless state quite rigorously that 
the solutions of (2.1) should be determined in the low
frequency region by the usual Cristoffel equation of 
elasticity theory: 

495 

pc2(q, s)ei(q, s) = CiRZmqkqme'(q, s), 

3 

ei(q, s)ei(q, s') = {),.., ~ ei (q, s) ei' (q, s) = ()ii', 
s=i 

(2.5) 



,. 
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and are of the form ( j3 = ( f, s )) 

'IJ~, (xn) = (lfl\T'''e' (q, s) e"xn, w2 (f, s) = c2 (q, s) /'. (2.6) 

To this end, the wavelength .\ should be large com
pared with the average distance between atoms of one 
species, i.e., 

'}. ':;> fl;;';, if. or w < 2nf1,;'ciJ.-' ~ Wmfl'!' (2. 7) 

for all a = 1, 2, ... , t. In (2.5) and (2.6) we use the 
following notation: c ( q, s), e ( q, s), and q = f/f are 
respectively the phase velocity, the polarization vector, 
and the unit vector in the propagation direction of the 
sound wave (the index s = 1, 2, 3 corresponds to three 
polarizations); c is a certain average sound speed; d 
is the average interatomic distance; p = M/vo is the 
density of the medium, M and v0 is the average mass 
and the average volume per atom, 

- 1 f v 
M = ~ L;Mn = ~llaMa, Vo= N, 

n a=l 

N is the total number of particles in the system, and 
1b is the relative concentration of the a-th component, 

so that b = 1. The normalization factor ( MN) -I/ a in 
a=1 

(2.6) is chosen such as to satisfy the first relation in 
(2.2) (to satisfy the second relation in (2.2) it is neces
sary to know all the solutions of the dynamic problem 
(2.1), and not only those corresponding to the acoustic 
waves of elasticity theory). The boundary conditions 
for the problem (2.1), owing to the macroscopic dimen
sions of the system in question, can be arbitrary and, 
in partic_ular, periodic. Then, as usual, fi = 27Tni/Li, 
where n1 are integers and Li are the linear dimen
sions of the periodicity volume V = L1LaL3. 

We substitute (2.6) in (2.3) and go over from sum
mation over f to integration. Introducing then the 
spherical coordinates (f, q) of the vector f, we 
finally obtain after integration with respect to f 

3Mn - -
g'"(w2,xn)= 2- (Q-3)i"1w', 

M 
where, by definition, 

3Mn -
g( wz x ) = -=-- ,rwz 

' n 2MQ' r , 
(2.8) 

(-Q-') 1"==~-~ 1 e1(q,s)e"(q,s)dSq, 1 - ( ) 
3(2n)'::,,.l c3 (q,s) Q-'==s(Q-')ii 2 •9 

(the integration is over the total solid angle). 
The constant symmetric tensor (Q- 3)ik has a cer

tain fixed system of principal axes in a macroscopically 
homogeneous medium of any symmetry: 

so that ja and n(a)- 3 are the eigenvectors and the 
eigenvalues of this tensor. At the same time, the func
tions gik(w 2, xn) (2.8) are also diagonalized in the 
coordinate system with unit vectors ja. In crystals 
with symmetry not lower than rhombic, the vectors j a 
are directed along the principal crystallographic axes. 
In particular, if the system has cubic symmetry, then 

(Q-3)ik = Q-31)ik. (2.11) 

Expressions (2.8) give the true values (accurate to 
quantities of higher order of smallness in w;nta)) of 
the spectral functions in the region of low frequencies. 
In their derivation we have, obviously, neglected the 

relative displacement of the atoms situated at a dis
tance smaller than 7)1~~ p with respect to one another, 
compared with their absolute displacement during the 
vibration process. If we average the quantity g ( W 2 , Xn) 
(2.3) over all the atoms of the system, we obtain the 
complete spectrum in its usual definition. Accordingly, 
n in (2.9) is the usual Debye frequency, which deter
mines the low-temperature specific heat. In the general 
case, the low-frequency oscillations of an anisotropic 
crystal are described by the inverse tensor of the cubes 
of the "Debye frequencies" (n-3)ik (2.9) or by the 
three "Debye frequencies" n(a) (2.10). As seen from 
(2 .8), the initial section of the spectrum for an atom of 
a given species a depends only on its mass Mn = Ma, 
and not on the lattice site at which it is situated, and 
can be described in terms of the reciprocal tensor of 
the cube of the effective "Debye frequencies": 

(Q,-') '" = (M, 1 J1) (12-') '" 

or effeetive "Debye frequencies" 

(2.12) 

Qda)=(i'\1'/Ma)'hQ<a), Qa=(.M'/Ma)'i•Q. (2.13) 

In conclusion we note that the tensor ( Q- 3 )ik de
termines the density of the phonon states near the lower 
boundary of the acoustic vibrations, and this sense it is 
analogous to the effective-mass tensor for "inertial" 
elementary excitations in a solid (e.g., carriers). 

C. Impurity atom 

The results obtained above apply in particular, also 
to impurity atoms, the possible change in the force 
constants being included in the "Debye frequencies" 
n(a), which are characteristics of the entire crystal. 
As a consequence we find that in the case of asymp
totically small concentration, the spectrum of the im
purity-atom vibrations at the lowest frequencies is de
termined only by their mass and by the "Debye frequen
cies" of the matrix (which in general has many com
ponents). Indeed, let the atoms of species 1 (a = 1) be 
the impurity atoms,_ with TJ1 « 1. Then, obviously, 
n(a) = n(a) + ~Q(O!J ( 7)1 ) and M = M0 + ~M( 7)1), where 

0 

n~a) and M0 are the "Debye frequencies" and the av
erage mass of the matrix atoms, and ~n(a)( TJ1) and 
~M( 7JI) tend to zero when TJ1- 0. Consequently, in ac
cordance with (2.8), the spectrum of the vibrations of 
the isolated impurity atoms is of the form 

3M1 - - 3M, -
g,'"(w2) = ~ (Qo-')'"1wz, g,(w2)= -_-~-y(t)z. (2.14) 

2.1110 2MoQo3 

These formulas were obtained here for frequencies 
satisfying the condition (2.7) at a = 1. However, the 
region of their applicability is much broader: in the 
limit as TJ1 - 0 they should remain valid independently 
of the value of 7)1, provided 

w<7;;, i.}i>d,, (2.15) 
where w 1 is a certain characteristic frequency of 
oscillations of the impurity atom (near this frequency 
the functions (2.3) reach a maximum for a = 1), and 
d1 is a characteristic linear dimension of the region 
around the impurity, in which the force constants 
greatly differ from the initial ones. Obviously, w1 
~ -../ydM1, where Y1 is the characteristic magnitude 
of the force constants corresponding to the impurity 
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atom. The foregoing is connected with the fact that the 
elastic waves with frequencies satisfying (2.15) are 
practically not scattered by the impurity. We note also 
that the last condition of (2.15) does not differ essen
tially from the general condition for the applicability of 
elasticity theory, inasmuch as dl ~ a. 

The result (2.14) does not depend on whether the 
stiffness of the "springs" coupling the impurity with 
its neighbors changes or noe>. Physically this is 
caused by the fact that these "springs" strongly change 
the picture of the vibrations of the impurity atom only 
if they "operate" effectively during the vibration 
process, and consequently the phases of the vibrations 
of the impurity atom and of its neighbors differ greatly 
from one another. But a strong phase shift in the dis
placement of neighboring atoms corresponds to normal 
vibrations with sufficiently short wavelengths, and, 
consequently, with sufficiently high frequencies (on the 
order of w 1). It is precisely such a de phasing which 
causes, in particular, the resonant form of the spec
trum for relatively heavy and relatively light atoms 
(quasilocal and local vibrations) with a maximum at the 
frequency (see [2 - 4J) 

;;,t•>~ Q:""(Mo/M,)'1•. (2.16) 
We note also that the exact analytic expressions ob

tained in [ 2 -<~ J within the framework of the simple force 
model of the type (2.20) (see below), for the spectrum 
of the impurity atom (see, e.g., (2.16) in[4J) at low 
frequencies agree fully with the general result (2.14). 

D. Ideal Polyatomic Crystal 

All the relations of Sec. C remain in force also in 
the case of an ideal polyatomic crystal, apart from the 
need for substituting xu - j in (2.8). This case is of 
special interest, since the connection between the dy
namic lattice theory and elasticity theory can be traced 
here in detail by well tried methods [lJ, In particular, 
the relative displacement of the sublattices in the 
acoustic vibrations at small values of f turns out to be 
smaller by a factor fdm ( dm - length of the largest 
period) than the amplitudes of the absolute displace
ment of the atoms, as should be the case. The main and 
perfectly natural result is now that the low-frequency 
spectrum of the vibrations of atoms of a given species 
depends only on its mass, but not on the sublattice to 
which it belongs. 

E. Moments 

One more result can be obtained quite simply, 
namely, the moments of the functions (2.3), which we 
shall express in terms of the matrix of the force con
stants. We define, as usual, the l-th even moment of 
the function gik(w 2, xu) by the relation 

(w2l)n''= ~ cu21 g''(w2,xn)dcu2, l=-1,0,1,2,.. (2.17) 
0 

and analogously the moments of the function g ( w 2, Xn). 

2)formulas (2.14) give the low-frequency spectrum of the vibrations 
of the impurity atoms proper in the zeroth approximation in their con
centration. In calculating the values of ,n(a) or the spectral functions 
(2.8) at a =F I (Mn =Mal in the approximation linear in 11 1 , of course, it 
is necessary to take into account both the change of the mass and the 
stiffness of the "springs" connected with the impurity atoms. 

Replacing in (2.1) n by nz and i by iz, and then multi
plying it by 

(Mn,Mn, ... Mn 1 )-1.p~i' (xn)A i'i•(xn, XnJA ;,;,(Xn,. Xn,) ... A 'z-1'1(Xn1_ 1 , Xn 1), 

we obtain after summation over nz, n3, ... , nt, b, 
i3, ... , iz and, with allowance for (2 .2), 

(cu21)~i' ==< Mn ~ .p~i* (xn).p~i' (xn) w~21 

(2 .18) 

Multiplication of (2.1) by w~zp~*(xn) [ A.-1(xn, xu,)Ji'i1 
after making the substitutions n - n1 and i ~ ii, with 
subsequent summation over n1, L, and {3, yields 

(w-2),;'' = Mn[A-1 (xn,Xn)Jii' (2.19) 

(all the tensor moments are symmetrical with respect 
to permutation of the indices, see footnote 1>). 

F. Simple Force Model 

Particular interest attaches to the case when the 
matrix 

(2.20) 

depends only on the difference between the radius 
vectors of the atoms in the system, and the Xn them
selves form a regular fixed lattice (the dynamics of 
ideal two-component superstructures ABr-1 with a 
force interaction of the type (2.20) was considered 
in[5 ' 6 J). Such an assumption is quite satisfactory for 
many substitutional solutions, particularly for solu
tions of metals belonging to the same group of the 
periodic system and having identical structure (the 
elastic constants and the interatomic distances of such 
metals differ as a rule much less than the masses of 
the atoms). Let us introduce the concept of a 
"standard" crystal Xst. which is constructed on the 
basis of the force matrix (2.20) by filling all the sites 
with identical atoms with a certain "standard" mass 
Mst· By way of Mst it is convenient to choose here 
M or Ma. Then, by virtue of the equation 

lVlaT CU0 T2 (f, s) e' (f, s) = (~A'"(xn)e-ilxn) e• (f, s), (2 .21) 

the oscillation frequenci¥ w ( f, s) and wa ( f, s) cor
responding to the "standard" crystals X and Xa are 
connected by the relation 

Mw2 (f, s) = Mawa2 (f, s) (2.22) 

(the system of orthonormal eigenvectors e ( f, s) for 
such crystals is the same), whence 

a ( M )''' t (a)-2 Q.f,,l = - Q(a) or Q(a)-2 = ~ !']a Qoa • 
Ma 4=1 

(2 .23) 

~ ~) . where Q and Q 0 a are the "Debye frequencies" 
corresponding to these crystals. The last relation in 
(2.23) expresses the "Debye frequencies" of a solid 
solution in terms of the "Debye frequencies" of the 
pure components (see [?J). 

Comparing expressions (2.18) and (2.19), in which 
(2.20) is taken into account, with the analogous expres
sions for the "standard" crystal, we obtain directly 
that for the atom of species a in the solution, regard-



498 Ya. A. IOSILEVSKII 

less of the number of the site n at which it is situated, 
the following relations hold: 

(w')ni"= XI({;;')'" =<wa')ik, (w-2)0ik = ~"({;l-z)ik =(w.-2)ik,(2.24) 
Ma M 

where, by definition, 

l = -1, 0, 1, 2, ... , 

3 

QJ;·((•J') == ___!:'<>_ ~ \ d3fe'(f,s)e'(f,s)6(w 2 - w2 (f, s)), (2 25) 
' (2n)',~ 1 • • 

and the "standard" crystal is chosen to be, in succes
sion, X and Xa ( wm.st is the maximum frequency of 
the vibrations of the "standard" crystal; the integra
tion in (2.25) with respect to f is within the limits of 
the Brillouin zone). 

Particular interest attaches to the final results in 
Eqs. (2.24), pertaining to. the crystal Xa. They mean 
that the moments ( w±2 ) ~k for atoms of species a, 
located in the solid solution with force interaction (2.20), 
coincide exactly with the corresponding moments in an 
ideal crystal consisting only of atoms a. The depend
ence of the masses of the atoms of the other com
ponents, on their concentration, or on their distribution 
over the sites becomes manifest only in moments of 
higher order, starting with l = 2. Calculating the eigen
values ( w,;T2 )(0!) of the indicated moments (the latter 
are diagonalized in the crystallographic system of co
ordinates if the crystal symmetry is not lower than 
rhombic, see (2.10)) and ( wa2 ) in the Debye approxi-
mation, 

3 (n)m ( ) 3 
( (I) m>(n)=-----Qo • (I) m =~~Qoa 

a' 3+m a . a 3+m ' 

we see that ( w±2 ) ~a) and ( w±2 ) n can be interpreted 
in terms of the "Debye frequencies" 0 0 a and n~~) 
( 0 0 a = (%) La=1 n(a)) of the pure "standard" crystal oa 
Xa. At the same time, the low-frequency vibration 
spectra of the individual atoms in the solution is de
scribed as before by the effective "De bye frequenctes" 
(2.13) which, as can be seen, greatly differ from 00~) 
(2.23) and 0 0 a in their dependence on Ma. 

3. THE MOSSBAUER EFFECT 

We now use our results to consider the Mossbauer 
effect. The normalized intensity of the phononless 
emission (absorption) P£0 l ( K, E) of a Y quantum with 
energy E in a direction of the unit vector K by the 
nucleus of species a in a complex system can be 
written, with allowance for the definitions (2.3), in the 
form 

Pd0'('11.,E) = --~~ <a(xn) W(x,xn)6(E- Eo± bEn'± bEn"), (3.1) 
'la n 

where 
W(x, Xn) = exp{-Zn(x)}, (3.2) 

"'=' 

r ftw 
Z,(x) = xixkRn ). dw2 gik (w2, Xn) (ltw)-1 cth nT 

0 ~ (3.3) 

is the probability of recoilless emission (absorp-
tion) [3,4,aJ, 

"'' 3E0 ~ ltw (3 .4) 
bEn' = 4M 2 J dw 2g ( w2, Xn) liw cth ZT 

nC 0 

is the temperature shift [9J, and 

6En"N(pn'-pn)J'l'n(O)J 2 (3,5) 

is the temperature-independent isomeric shiftC 10J of 
the phononless line for the n-th atom. Accordingly 

f A i ~ ( Wa(x)= J Pa (x,E)dE = NL..J <a(Xu)W(x,xn) 3.6) 
0 ~a n 

is the total (integral) probability of the Mossbauer ef
fect for atoms of species a. 

In (3.1) -(3.6) we use the following notation: 
Rn = EU2Mnc2 is the recoil energy of the free nucleus, 
E 0 is the energy of the excited nuclear level, I 'lin ( 0) 1 2 

is the density of the electrons in the region of the n-th 
nucleus. p~ and Pn are the average radii of the distri
bution of the electric charge of the n-th nucleus in the 
excited and in the ground states. The quantity T a ( Xn) 
is equal to unity if the site n is occupied by an atom of 
species a, and to zero in all other cases. In (3.1), 
obviously, no account was taken of the finite width of 
the photonless line, and it is assumed that there are 
magnetic or quadrupole interactions. The upper sign 
in the argument of the 6-function corresponds to emis
sion and the lower to absorption of a Y quantum. In 
the case of an ideal polyatomic crystal, it is sufficient 
to replace in all these formulas Xn by j and T a ( Xn) 
by the quantity Ta ( j), which equals unity if the j -th 
sub lattice is populated by atoms of species a, and 
zero in all other cases. Here 77a = ra / r, where ra is 
the number of sublattices made up of atoms of species 
a. 

Let us analyze expressions (3.1)-(3.6). 
Low temperatures. In the case T « li min { n(a)}, 

expression (3.1) is transformed into 

with 

Pd0) (x E)= exp {-Zr(x)} ~ ~ 'ta(xn)exp {-Zon(x)} · 
' ~~ n 

wm2 

Zon (x) = xix'Rn ~ dw2 gik (w2, Xn) (ltw)-1, 

0 

3 

Zr(x) = n2T'R ~ (xiu) 2 (hQ<•))-3; 

a:c-""1 

•. ' 

(3.7) 

(3.8) 

(3.9) 

6Eon' = ·-3Eo ( dw2 g(w2, Xn)hw, 
4M,.c2 ~ 

3n'T'Eo 
bEr' = i(Jii'Q'Mc'' (3.10} 

where Zon ( K) and 6E 0n determine the probability of 
the effect and the measured shift at T = 0, and R 
= E~/2Mc2• This result can be obtained directly by 
substituting coth x = 1 + 2( e2 x- 1)-1 (x = liw/2T) in 
(3.3) and (3.4), and by using in the calculation of the 
temperature-dependent terms the expressions (2.8) 
and (2.10), extending the integration with respect to W 2 

to infinity (as is done in calculating the low-tempera
ture specific heat). If the anisotropy of the effect is 
immaterial, then 

wm2 

Zon=Rn)dw2 g(w2,xn)(hw)-t, Zr=tt2T2R(ItQ)-3• (3.9') 
0 

The relations obtained allow us to draw certain con
clusions concerning the form of the phononless line and 
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its temperature dependence at small values of T in 
different complicated systems. 

1. In the case of disordered solid solutions, expres
sion (3. 7) signifies that the "concentration" broadening 
of the phononless line does not depend on the tempera
ture. (Many aspects connected with "concentration" 
broadening are considered in [uJ .) This becomes obvi
ous if one chooses as the null of the energy scale the 
quantity Eo ± oET, which does not depend on n. It 
should be noted that when retaining the 6-function in 
(3.7) we presuppose that the "concentration" broaden
ing greatly exceeds the natural line width. 

2. In the case when the Mossbauer atoms of one 
species occupy a finite discrete series of non-equiva
lent positions in the system, the Mossbauer line splits 
into as many components as there are such non-equiva
lent positions [ 12]. Considering for simplicity an ideal 
polyatomic crystal, let us replace Xn in (3. 7) by j. The 
result is that at low temperatures the splitting of the 
phononless line is determined by the quantity oE~j 

+ 6Ej' for different j, and does not depend on T. When 
T increases from zero, the "comb" of lines corre
sponding to T = 0 shifts as a whole (this shift is de
termined by the quantity oET) and the decrease of 
their intensity is determined by the same factor 
exp{-ZT(K)}. 

3. The quantity 
rli:JE.,' 6n4T3Eo Eo 

rlT = 51t'Q3JI7~2 = CL2Mc' (3.10') 

is proportional to the low-temperature lattice specific 
heat of the system cL, but unlike the ideal monatomic 
crystal [13 J, the proportionality coefficient contains the 
average mass and not the true mass of the active atom. 

4. In the case when the anisotropy of the effect is 
insignificant and Zn is determined by formulas (3.8) 
and (3.9'), the ratio 

di:JEn' I dZn 6n2T2 

-artar= 5Eo' (3.11) 

which connects the temperature variations of 6Efi and 
Zn, depends neither on n nor on the properties of the 
system in general. 

5. The quantities ZT(K) (3.9) and oET (3.10) can 
be described in terms of the effective "Debye frequen
cies" (2.13), if we introduce in them in place of R and 
M the quantities Ra = E~/2Mac2 and Ma, correspond
ing to the actual recoil energy and mass of the active 
atom. 

6. Measurements of the temperature dependence of 
Wa(K) (3.6) at K = ja, a= 1, 2, 3 (or in general for 
any three non-complanar values of K) makes it possi
ble to find the "Debye frequencies" n(a). As a conse
quence, we can determine from this directly also n 
(see (2.9)). The quantities Zan ( K) and 6E~n should be 
regarded as experimentally determined parameters, 
which in the general case cannot be interpreted with the 
aid of the "De bye frequencies." 

High temperatures. In the case of sufficiently high 
temperatures 

when 

h 
T;2;-max {Q<«l}, 

2n 

we have 

, 3E0T ( 112 \ 
bEn = 2Mnc' 1 + 12T' (ro').,- 0. 0} (3.13) 

in lieu of the general expressions (3.3) and (3.4). All 
the moments are defined in Sec. 2E. 

From (5.18), in the zeroth approximation in 1/T, 
we obtain for the atom of species a 

di:JEa' Eo2 

~= CJ. 2M.c2 ' 

(3.14) 

where CL = 3 is the high-temperature lattice specific 
heat (in units of the Boltzmann constant k). This for
mula differs from the corresponding low-temperature 
expression (3.10) only in a numerical coefficient, 
namely, it contains not M but the actual mass Ma of 
the active atom. 

Within the framework of approximation (2.20), 
formulas (3.12) and (3.13) take the form 

Z.,(x) = Zu(x) + O(T-•), oE,' = oEa' + O(T-3), (3.15) 

3 

Z.(x) = 2R.rn-z ~ (xj,.)' (w.-')<«J 
IX=i 

R R h' a + a a """' ( • ) 2 ( 2)(a) 
6T - 360T3 .LJ XJa Wa ' 

a=i (3.16) 

I:JE , _ 3EoT I 1 ___!!!__ 2 ) 
a - 2Mac2 \ + 12T2 (roa ) 0 (3.17) 

These expressions depend neither on n nor on the con
crete structure of the system (such a dependence is 
observed only in the next higher terms of the expan
sion, which are not written out explicitly in (3.15)), and 
coincide with the corresponding expressions in the pure 
"standard" crystal Xa (in the Debye approximation 
they can be interpreted in terms of "Debye frequen
cies" n~~) (2.23)). In this approximation, as can be 
seen from (3.17), there is no pure temperature line 
splitting. The obtained relations are analogous in a 
considerable defree to those considered earlier for 
impurity atoms 14' 15 ' 3 ] and for the case of superstruc
tures [16, 17J. 

4. CONCLUSION 

1. All the results, with the exception of the results 
of Sec. 2F and formulas (3.15)-(3.17), which are based 
on the simple force model (2.20), are perfectly general 
and are not connected with additional model assump
tions. 

2. In the case of a single-component (but not neces
sarily a monoatomic) crystal, one can hope that the 
modified interpolation formulas 

3 .,<«) 
(xj,.) 2 (' hw 

Z (x) = 3R ~ hQ<•I' J w cth2T dw, 
et=i 0 

(«) 

3Eoh 3 1 " hro bE'=--~--.(' ro3 cth-dro 
4M c2 [/.(«13 J 2T ' 

a=i 0 

which are obtained from (3.3) and (3.4) by substituting 
(2.8) in lieu of gik(w 2 , xn) and g(w 2 , xn), satisfac-
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torily describe the effect and, in particular, its aniso
tropy (we exclude "anomalous" cases similar to that 
considered in [l8J). In cubic crystals they coincide with 
those customarily used (see [l9 J). 

3. In connection with the results obtained in Sec. 3, 
we call attention to the following circumstance. In the 
case of two-component superstructures ABr-1, and 
particularly in the case of impurity atoms ( r » 1), 
when the atoms A and B differ greatly in mass, the 
vibration spectrum of the atoms A, as shown in [ 2 , s] 

(see also [3' 4 ' 6J) has a resonant c~ar~ct~r with a maxi
mum at the frequencies w 2 ~ ( w A2 ) ~a) 1 when MA 
» MB, and w 2 ~ ( wA) (a) when 114A « MB (a =A, B). 
The approximate formulas obtained in this case for the 
Mossbauer effect (see, e.g., (26), (27), and (37) in[ 16J) 
are frequently interpreted entirely in terms of the ef
fective "Debye frequencies" &1~~) = n~~) -1 MB/MA 

(see (2.23) and also [2oJ). Such an interpretation is 
quite arbitrary, however, even regardless of model 
assumptions (of the type (2 .20)). The indicated formulas 
have an "Einstein" form and describe correctly the 
temperature variation of the effect only at sufficiently 
high temperatures ( T ;(; :li&1aA). At low temperatures 
they give the magnitude of the effect only accurate to 
temperature-dependent terms (which fortunately are 
small). The dependence of the effect on the tempera
ture is described correctly by the general formulas 
(3.8) -(3.10) (i.e., in terms of the effective "De bye 
frequencies" n~a) = (MB/MA) 113 ni~), see (2.13)), 

where now ZoA and oE~A ( n is replaced by A) can 
be estimated with allowance for the resonant character 
of the spectrum, as was done in [2- 4 , 16, 17 J. 

The author is grateful to E. G. Brovman for useful 
remarks. 
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