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The general qualitative features of various self-similar motions of a quasineutral plasma are dis­
cussed. A detailed investigation is made of the expansion of a dense plasma into a less dense plasma 
and the expansion of a nonisothermal plasma into a vacuum. 

1. CLASSIFICATION OF POSSIBLE CASES 

IN an earlier work [lJ we have investigated the self­
similar motion of a quasineutral low-density plasma­
the flow of a plasma into a vacuum. In the present work 
we consider the question from a more general point of 
view, treating the qualitative features of various cases 
of self-similar motion. 

The general formulation of the self-similar motion 
we consider is as follows. At an initial time t = 0 the 
plasma consists of two regions. For x < 0 (region 1) 
the distribution functions for the ions and the electrons 
are respectively 

/li(v), J,e(v), ( 1a) 

and for x > 0 (region 2) 

/2i(v), /2e(v). (1b} 

At time t = 0 both regions start to intermix and the 
interface between them is smeared out. In the absence 
of collisions the equations for fi and fe become 

of; of, e aCJl ofi 
at+va;;;- M axav=O, 

at. + vat. + _!1__ aCJl at. _ 0 (2), 
{Jt ax m ax av - ' 

where M is the ion mass, m is the electron mass and 
cp satisfies the Poisson equation 

~CJl = - 4ne ( S f;dv- ~ j.dv). (3) 

In the course of time the effective dimensions of the 
interface between the two regions of plasma becomes 
larger than the Debye radius. The plasma then may be 
regarded as quasineutral so that Eq. (3) is replaced by 
the condition 

5 fidv = 5 fedv. (4) 

After this point the charge e disappears from the 
equations, as is evident from the possibility of the sub­
stitution 

~=ljJ. (5) 

This means that we have eliminated from the problem 
the single parameter with the dimensions of length-the 
Debye radius; hence the subsequent motion becomes 
self-similar, that is to say, fi and fe are functions 
only of the ratio y = x/t: 

/1=/;(y,v), fe=/.(y,v), 'i'=ljJ(y). (6) 

As a result we obtain the following system of equations 
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for fi, fe and lj;: 

aJ; 1 a'!' aJ; 
ay-(v-y)- May a;;=O, at. (v- y) + _1:_ 8'!' !!.!..:_ = 0, 

{Jy m {Jy av (7) 

~ f;dv = 5 fedu. 

The boundary conditions assume the form: 

(8) 
/;-+- /2i, fe--+ !2e as y-+ +=. 

We note that the equations in (7) are only a particu­
lar case of self-similar kinetic equations. A more 
general relation can be obtained by writing 

/i = t~hi (y, v), 

(where Ql is a parameter), and similarly for fe. As a 
result we obtain 

ahi 1 a'!' ahi 
-(v-y)----+ahi=O. (9) oy M oy ov 

These equations describe self-similar motion that 
arises as a result of propagation of some initial per­
turbation which is concentrated in an infinitesimally 
thin layer close to the plane x = 0; the power Ql de­
pends on the nature of the initial perturbation. Similar 
equations can be obtained for the two-dimensional and 
three-dimensional cases. Such equations would de­
scribe the propagation of perturbations which are 
initially concentrated close to a line (2 -dimensional 
case) or a point (3-dimensional case). 

One of the difficulties in the use of the general equa­
tions (9) lies in the formulation of the boundary condi­
tions. It is evident that the layer can only be assumed 
to be infinitesimally thin at distances that are large 
compared with the thickness. Strictly speaking, the 
boundary conditions are determined by the motion in 
regions comparable with the thickness of the layer. 
However, it is evident that the motion is not self­
similar in such regions. This difficulty does not arise 
inEq. (7). 

The most convenient choice for the boundary condi­
tions (8) is to take Li and hi as Maxwellian distribu­
tion functions with some characteristic density, tem­
perature and velocity. The plasma in region 1 can be 
assumed to be at rest: 

/H=ll't(~)'"exl'(- Mv2 
), 

2nT;, 2Til (10) 
1 M )''' [ M(v-V0 )2l 

f2i=N2\-2 T exp --2T-- . 
Jli2 1 i2-

For values such that y << .J Ti/m, in considering 
the electrons in Eq. (7) we can neglect y compared 
with v. Under these conditions the electron distribu-
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tion is stationary. In particular, with the appropriate 
boundary conditions it can be a Boltzmann distribution. 
In any case it is necessary that the electrons at 
x > 0 and x < 0 have the same temperature: 

( m )'/, ( mv') 
he= N, 2nTe exp - 2T. ' ( m )'/, ( mv') 

f2e = N, 2nT.1 exp - 2Te • 

(11) 
Then the potential 1/J is given by the explicit expres­

sion 

1jl = T,ln 5 j;dv. ( 12) 

Introducing the variables 

f M )';, ( 2nT. )';, ( M )';, 
T=\2r. y, g= -M- fi, u=v 2T. ' 

we obtain an equation that has been obtained earlier:CI,aJ 

ag 1 ag a ( r ) (u-,;)----- In J gdu =0, 
{),; 2 iJu d,; -oo 

(13) 

with the boundary conditions 

( r. )';, 1 r. ) 
g-+N1 - exp 1 - u'-r , 

Tit ' i1 

't~-oo, 

g-+Nz(!!..)';,exp(-u'rT•_), T-++oo. (14) 
Ti2 i2 

Dividing (13) by u - T and integrating with respect to 
du from - oo to + oo we obtain an interesting identity 
which can be imposed on the solution of (13): 

I gdu = _!.. I iJg ~. 
J 2 J iJu u-,; 

In solutions of actual cases with boundary conditions 
(14), importance attaches to the general nature of the 
function N ( T) = f gdu, in particular the existence of 
maxima and minima. 

In order to obtain qualitative conclusions as to the 
nature of the function N ( y) we first consider the 
problem of self-similar motion of a neutral gas with 
mass M. In this case one easily finds 

v 00 

N(y)= ~ j,(v)dv+ Siz(v)dv. (15) 
y 

The extrema of the function N ( y) are determined by 
the equation 

dN I dy = j.(y)- iz(y) = 0. 

We now consider some particular cases. 
A. First assume T1 > T2 (Fig. 1-a). Then, when 

y ~ ±00 
j.(y) ~ e-'u'/2T,';;3>f,(y) ~ e-Y'f2T,, 

dN I dy > 0, y-+ ±co. 

(16) 

(17) 

This means that the curve N ( y) is either monotonic 
or that it has a maximum. It is easy to determine the 
conditions under which one or the other cases obtain. 
If N2 and Vo are small, then for fa(y) < fl(y) for all 
y and N(y) is monotonic. If, however, N2 and Vo are 
large then f2 ( y) intersects the curve f1 ( y) and the 
curve N ( y) will exhibit a maximum and a minimum. 

B. Now let T1 = T2 = T (Fig. 1-b). Then when 
Y- ±oa 

Assume to be definite that Vo > 0; then for y - - oo 

(18) 

dN ldy > 0. 

For y - + oo on the other hand, 

f, <:, t., dN I dy < 0. 

In this case the curve N ( y) must exhibit an extremum 
-a maximum when V o < 0 and a minimum when V o 
> 0. 

C. Now let T1 = T2 = T, Vo = 0 and N1 > Na (Fig. 
1-c). In this case, for all y, 

dN{dy > 0. 

The curve N ( y) is monotonic. 
We have carried out an analysis for the motion of 

neutral particles. It can be asserted, however, that 
the qualitative conclusions as to the nature of N ( y) 
also hold in the general motion of ions. The point is 
that for asymptotic behavior of the function dN/ dy for 
y - ± oo only the particles with high velocities v ~ y 
are important. In all cases aside from that considered 
in,C 1J the special case of expansion of a plasma into 
vacuum, the jump in the electric potential q;x-oo 
- (/Jx-+ oo is found to be finite. The distribution of 
these fast particles will not make a small modification 
of the electric field. Hence, the asymptotic expressions 
(17) and ( 18) also hold for ions. Consequently the quali­
tative characteristics of N ( y) hold for the various 
cases. A somewhat special situation arises in the 
case denoted by C. Here, the electric field can change 
the coefficient of e-Y2/2T in the asymptote. Physically, 
however, it is evident that there is no cause for a 
deviation from monotonic behavior of N ( y) in this 
case. 

The relation in (15) also has general value for 
another reason. The results of the numerical calcula­
tions show that if Te $ Ti the effect of the electric 
field on the ion motion is generally not important. 
Hence, Eq. (15) can give a good picture of the process 
if high accuracy is not required. 

In a nonisothermal plasma with Te » Ti the effect 
of the field on the ion motion increases in proportion 
to the temperature ratio and can become decisive for 
large values of Te/Ti· This will be seen below in 
Sec. 3, where we consider the flow of a nonisothermal 
plasma into a vacuum. The effect of the field is also 

FIG, L 
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important in the case in which there is a nonmonotonic 
variation of potential. It has been shown above that the 
density distribution, and consequently the field poten­
tial for self-similar motion, can exhibit a nonmonotonic 
character. If the potential exhibits a maximum there 
arises a region of trapped electron motion in the elec­
tric field. The boundary conditions (1) and ( 11) deter­
mine the stationary electron distribution function only 
in the region of trapped motion. In the absence of 
collisions the distribution of electrons trapped by the 
field is sensitive to transient processess. 

The distribution function for the trapped particles 
is not a Maxwellian distribution. This leads to a 
change in Eq. (12) for the field potential. The potential 
is increased. Consequently, the electric field is mag­
nified by a large factor in Eq. (13). This question has 
been treated in [JJ in which a kinetic equation has been 
used for self-similar motion taking account of trapped 
electrons. 

We wish to comment on several qualitative features 
of the behavior of the distribution function as effected 
by the electric field in the plasma. First of all, the ion 
distribution function vanishes for some finite value of 
the velocity at the separatrix. This is associated with 
the energy effect of the field on the ions in the initial 
period of motion. Furthermore, close to the separatrix 
there also arise narrow peaks in the distribution func­
tion which actually represent plasma flux in the plasma .. 

The electric field can also give rise to discontinui­
ties in the self-similar motion in the plasma. The 
structure of a weak discontinuity will be analyzed in 
Sec. 4. 

2. EXPANSION OF A PLASMA INTO A PLASMA 

As an example we now consider the expansion of a 
plasma into a plasma. Let Na = aN1. In order to be 
definite we assume that a < 1. In the course of time 
the plasma must flow from the left half-space into the 
plasma in the right half-space. This process is self­
similar and is described by Eq. (13). If the electron 
and ion temperatures are the same, the boundary con­
ditions for this equation assume the form Tii = Tai 
= Te = T 

g / Nt-+ ae~u', 

't~-oo, (19a) 

(19b) 

We shall first investigate the behavior of the charac ·­
teristics of Eq. (18), that is to say, the curves in the 
u, T plane in which the function g has a constant value. 
The equation for the characteristics is 

du 1 F(-c) 
d-r: =2-;=-~· 

(20) 

where F is a dimensionless force that acts on the ions: 

d ( ~~ ) dlnN F(-r:)= -- In gdu = ---
d-r: ~oo d-r; ' 

while N ( T) is the ion density (or electron density). 
When T-- <XJ, the function N( T)- N1 and when 

(21) 

T- + oo we have; N ( T)- aN1, a< 1, i.e., aN1 < N1. 
In accordance with the results of Sec. 1 we assume 

that N ( T) falls of monotonically as T changes from 
- oo to + oo. This assumption is verified by the further 
calculations. In this case the force F ( T) is always 
positive F ( T) ?: 0. 

It has been shown in LIJ that for this condition the 
characteristics in the u, T plane that lie above the line 
u = T do not intersect this line. Starting with T -- <XJ 

in the region of finite values of u they extend to infin­
ity. When T - 00 the characteristics crowd toward the 
line u = T (by virtue of the fact that dN/ dT and, con­
sequently F ( T), approach zero when T - oo). This 
behavior is evident, in particular, in Fig. 2 in which we 
show the characteristics for the solution of Eq. (13) for 
the case a = Yz. 

The behavior of the characteristics that lie below 
the line u = T is entirely different. In this region, as 
is evident from Eq. (20), u ( T) increases as T dimin­
ishes. At the point at which u ( T) is comparable with 
T, i.e., on the line u = T, the derivative du/ dT be­
comes infinite and undergoes a discontinuity, changing 
from - oo at u = T - 0 to + oo at u = T + 0. This means 
that all the characteristics that come from the right 
below the line u = T intersect this line; they are re­
versed in direction, go to infinity, and crowd close to 
the line u = T, as shown in Fig. 2. 

It should be noted that the characteristics do not 
intersect. This means, in particular, that the charac­
teristics from the right and from the left occupy their 
own regions of the u, T plane. These regions are 
separated by a curve, the separatrix. It is evident that 
close to the separatrix the characteristics crowd to­
gether. The separatrix itself lies above the line u = T 

and approaches this line as T - ± 00 • The distribution 
function vanishes on the separatrix. The presence of 
a separatrix is a basic feature of the topology of the 
characteristics in the u, T plane. 

These properties of the characteristics of Eq. (13) 
have been used 'in numerical integration on an elec­
tronic computer. As an example we consider the case 
a = l'a, that is to say, we assume that a plasma with 
density N1 flows into a plasma with density N1/2. The 
solution is found by integration of the equati;;ns for 
600 characteristics. For 300 characteristics the initial 
conditions are specified for T = - 3 for values uu 
= - 2.98, u12 = -2.96 ... U13oo = + 3.00. For the 300 
other characteristics the initial conditions are given 
T = + 3 for values of u from 2.98 to - 3.00. In accord­
ance with the boundary conditions (19a) the function g 
on the characteristics which come from the left is 
given by 

while, in accordance with Eq. (19b), those coming from 
the ri!~ht are given by 

g, = 1/2e~u'. 

These initial values of g are conserved on each char­
acteristic. 

The solution of Eq. (20) for the characteristics is 
found by steps in T. The behavior of the characteristics 
is shown in Fig. 2. The value of the particle density is 
determined from the expression 

(22) 

Here, N1 ( T) is the density of particles coming from 
the left 

Correspondingly, Na ( T) is the density of particles 
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FIG. 2. Characteristics in • 
the u, r plane. The quantity 

-+---~~~~-=:c-=:P~-+-.~ u0 is the value of u and 
r~±~ J 

coming from the right and lying below the line u = T 

(that is to say, particles whose trajectories does not 
undergo reversal, Fig. 2): 

300 g ( Uzk) + g ( Uzn+i) 
Nz(-r)= 2; 2 [uzh+t(-r)-uz,(-r)]. (24) 

k=ko 

(here k0 = k0 ( T) is the number of trajectories which 
do not reach the turning point u = T). Finally, D.N2 is 
the density of particles coming from the right that lie 
below the line u = T: 

(25) 

The function F ( T) that appears in the equation for 
the characteristics (20) is related to N( T) by (21). 

The solution is obtained by an iteration method. We 
start with some initial function Fo ( T) and move in T 

from left to right from the point T = - 3, thus finding 
the characteristics that come from the left, and the 
density N11 (r) [from Eq. (7)]. Then, moving in T from 
the right to the left from the point T = + 3 we find the 
characteristics coming from the right and compute 
N21 ( T). The turning point of the trajectory is retained. 
Finally, again moving from left to right we determine 
the trajectory after the turning point and compute the 
density D.N21· Summing Nu, N21, and D.N21 we deter­
mine the first iteration N1 ( T) and F1 ( T) = d ln N1/ dT. 
Then the entire procedure repeated, allowing us to de­
termine the higher iterations and so on. 

It is natural to take the zeroth iteration to be the 
solution for the collisionless flow of a neutral gas with 
density N1 into a gas with density Nt/2: 

Nl ( 2 'iT ' ) N(-r)=- 3-~.l e-xdx . 
4 l'n 0 

(26) 

It turns out, however, that the iteration does not 
converge in this case: the deviation of the zeroth itera­
tion (26) from the final solution is found to be extremely 
significant. Hence it is necessary to choose a zeroth 
approximation that is closer to the final solution. More 
precisely, we take the zeroth approximation by trying 
a number of functions from which we choose those for 
which the successive iterations converge most rapidly. 
The answer obviously does not depend on the exact 
form of the zeroth approximation. 

The final result of the calculation of N ( T) (with an 
accuracy of 0.5%) is shown in Fig. 3 (curve 1). It is 
evident that the function N ( T) falls off monotonically 
as T increases, in accordance with the assumption 

-on 
FIG. 3. The density distribution N(r)N1 (curve I), the pontential 

e<{J{T)/Te (curve 3) and the dimensionless force F(r) (curve 2). The 
dashed curves are the same quantities for the neutral gas (26). 

made above. The dotted curve in the figure shows the 
distribution of neutral gas (26). It is evident that under 
the effect of the electric field the region of transition 
from the density N1 to the density N1/2 is extended 
to some extent, that is to say, the flow of plasma into 
plasma is accelerated. In addition we note that the 
deviation of the dotted curve from the solid curve is 
generally small: The difference in densities is never 
greater than 10-15%. The neutral gas approximation 
is thus a good approximation for the description of the 
variation in plasma density. This result is in agree­
ment with the results of the solution of the problem of 
plasma expansion into a vacuum for Te = Ti.C1J In Fig. 
3 we show the potential eq;/Te (curve 3) and the force 
F ( T) (curve 2). The dashed curves are the same 
quantities for the distribution (26). 

In Fig. 4 we show the ion velocity distribution in u 
for various values of To The deviation of this function 
from the distribution functions for the neutral particles 
is most pronounced in the vicinity of the separatrix 
(Fig. 2). On the separatrix the distribution function 
vanishes so that its form is highly distorted near the 
separatrix. This feature is especially pronounced for 
positive values of T i.e., in the region in which the 
initial plasma density was smaller; near the separatrix 
two narrow peaks appear in the distribution function. 
The origin of these features is the effect of the electric 
field on the plasma. The most pronounced effect of the 
field appears in the initial phase of the motion, when 
the field strength is large E ~ 1/t. In this time period, 
however, the field is concentrated in a narrow region 
close to the initial discontinuity. The distribution of 
particles that enter this region is highly distorted by 
the effect of the field. For any values of x, and t this 
distortion is retained in the form of features near the 
separatrix. The separatrix itself corresponds to parti­
cles that lie on the discontinuity at the initial time. 
Here, the field intensity is infinite for t = 0. Hence, all 
of the particles acquire an infinite velocity; for finite 
values of T these particles do not appear whether T is 
positive or negative. For this reason the distribution 
function vanishes on the separatrix. 

Since the field only accelerates particles in the 
direction of positive x or T, for negative values of T 

there is a dip in the distribution function near the 
separatrix; for positive values of T there are two 
peaks, one above the separatrix and one below it. The 
peak for the faster particles corresponds to particles 
that are accelerated by the field from the region close 
to the initial discontinuity into the dense plasma N1 
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while the slow peak corresponds to those accelerated 
from the less dense plasma N1/21>. 

If the plasma exhibits streams it is possible for a 
two-stream electrostatic instability to arise. The in­
stability criterion is always satisfied for sufficiently 
large values of T. Ion waves are excited, these waves 
moving with the beam velocity. The wavelength is of 
the order of the Debye radius; the growth rates are not 
large. 

In addition to these waves, taking account of the 
possibility of magnetic-field oscillations can lead to 
non-electrostatic instabilities with wavelengths of 
order A.o ~ cD/ve (Dis the Debye radius).C 4 J Under 
actual experimental conditions these instabilities can 
be neglected if the system length is restricted to a 
value L that satisfies the easily achieved condition 
A.o » L »D. 

3. EXPANSION OF A NONISOTHERMAL PLASMA IN 
A VACUUM 

The expansion into vacuum of a plasma with identi­
cal initial temperatures for the ions and electrons has 
been studied in [1J. In the present case we wish to in­
vestigate unequal temperatures. As before, the process 
is described by Eq. (13). The boundary conditions (14) 
now assume the form 

VT. ( T.) g-+N1 -exp - u2 - as 
T, T, 

"['--)-- oo, 

g-+0 as 't-+ + oo. (27) 

As in the single-temperature plasmaC4 J all the charac-· 

!)This can be shown easily by integrating the equation of motion 
of the particles. Knowing the equation for the characteristics u = 
u(r,u0 ) and assuming that u =vi dx/dt, T = x/tvT we find 

xitvr 
\ d~ 

lnt= .l u(t,uo)-~· 

It is evident that even a small smearing of the initial discontinuity 
will have an important effect on the form of the distribution function 
in the region close to the separatrix. 

Region N, 

RegionN2 0.2 

as 1,0 IS _ ft 10 I,S 
Region AN~ 

2.0 -1,0 -Q5 

'i.=l 2 

Region N2 

a. 

FIG. 4. The ion velocity distn­
bution function in u for various 
values ofT indicated on the figure. 

teristics go above the separatrix. As before they are 
determined by Eq. (20). A numerical integration of this 
equation has been carried out for 300 characteristics. 
The behavior of the quantity N ( T) obtained by numeri­
cal calculation for various values of the temperature 
ratio is shown in Fig. 5. It is evident from this figure 
that the difference in the behavior of the N ( T) curves 
as a function of Te/Ti is in general small when 
Te /Ti .? 1. This means that the effect of the initial 
thermal spread of the ion velocities is not very impor­
tant and that their motion is determined primarily by 
the electric field. As in C1J it is found that the ion 
veloeity distribution function is sharply compressed 
with increasing T. In this region it is permissible to 
use the hydrodynamic equations, which apply to a 
plasma in which Te >> Ti· When the self-similar fea­
tures are introduced these equations assume the form 

dN dV dV 1 dN (28) 
(V-,;)dt +NdT=O, (V-,;)d;+ 2N a:r=O, 

where V is the dimensionless hydrodynamic ion 

2 J 

' 
FIG. 5. The density distribution N(r)/N1 for various values of 

Te/Ti indicated in the figure. The dashed line shows the solution of the 
hydrodynamic equations. 
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velocity. The solution 

N = Cexp (-12 <), (29) 

describes the asymptotic behavior of the density for 
T » 1. The constant C is determined by joining the 
numerical solution with the asymptotic solution (29). 
When T e = Ti the constant C ~ 0. 70 N1. This quantity 
diminishes as the ratio Te/Ti increases. 

When the temperature ratio Te/Ti- oo the hydro­
dynamic equations (28) and their solution (29) hold for 
any T. 

In this case, taking account of the boundary condition 
N = N 1, V = 0 when T - - oo we have 

v- { o, 
- •+ 1/YZ, 

·~-1/{2 
';;. -1/¥2' 

N = { N1, _ < ~ - 1/Y~ 
N1 exp(-l'2<-1), ,;;.-1/l'2' 

(30) 

The density distribution obtained from (30) is shown 
by the dashed line in Fig. 5. The behavior of the deriva­
tive dN/ dT for various values of the ratio Te /Ti is 
shown in Fig. 6. It is evident from this figure that as 
the ratio Te/Ti increases the gradient of the function 
dN/ dT increases near the point T = - 1/12. The 
dashed curve in Figure 6 shows the behavior of dN/ dT 
for the hydrodynamic solution (30). At the point 
T = - 1/ J2 this solution exhibits a discontinuity in the 
derivative (weak discontinuity). For finite values of the 
ratio Te /Ti the discontinuity is smeared out because 
of the thermal motion of the ions. 

4. WEAK JUMPS 

An important property of self-similar motion in 
conventional hydrodynamics is the fact that this motion 
allows discontinuous solutions --weak and strong and 
strong jumps (shock waves). 

In particular, the decay of the initial discontinuities 
in hydrodynamics is always accompanied by the ap­
pearance of discontinuities in the appropriate self­
similar solutions ( [sJ Sec. 93). We have seen this in 
the example given in Sec. 3. In collisionless kinetics 

-2 

~ 
II 
I I 
I I 00 
I I 
I I 
I I 
I I 
I 
I 
I 
I 
I 

!,0 

0 

of a neutral gas, on the other hand, the dec;J.y of an 
arbitrary initial discontinuity only leads to a smooth 
self-similar solution (cf. Sec. 1). This same situation 
has been found in [1J and in the present work in the con­
sideration of examples of decay of initial discontinuities 
in a collisionless plasma. 

However, as in the case of hydrodynamics, the 
solutions of the self-similar kinetic equations in a 
plasma (13) allow discontinuities. This can be easily 
seen if one analyzes the solution of Eq. (13) concerning 
the problem of plasma expansion into a vacuum. 

Let us consider an arbitrary point To. We assume 
that the solution undergoes a weak jump at this point. 
In other words, we assume that the density N ( T) is 
continuous at T 0 and that the derivative exhibits the 
discontinuities: 

(31) 

The force F ( T) also exhibits a discontinuity (21). It 
is clear from (20) that all the characteristics u ( T) 
exhibit a break at the point To. The solution of Eq. (13) 
exists in the presence of discontinuity since the solu­
tion of the equation for the characteristics exists (20). 
The magnitude of the weak discontinuity is arbitrary. 
The single limitation is that the derivative (from the 
right beyond the discontinuity) must be negative: 

dN I d•i•o+O < 0. (32) 
Thus, Eq. (13) with the boundary conditions in (27) 

allows an arbitrary weak discontinuity (subject only to 
the condition in (32))) in an arbitrary point T 0• These 
jumps obviously have an effect on the solution of Eq. 
(13). For this reason the solution of Eq. (13) with the 
boundary conditions in (27) is not determined uniquely. 
It is only unique to within a class of continuous func­
tions g ( u, T) with continous derivatives ag/BT. 

Physically the possibility of jumps indicates that 
there can be charge sheets that move with a constant 
velocity ToVT· We now show that such charge sheets 
can actually be described by means of the self-similar 
solution. For this purpose it is necessary to consider 
dimensions of the order of the Debye radius. We as­
sume that the electron density obeys a Boltzmann dis-

2 

FIG. 6. The quantity (dN/dr)/N1 as a function ofT for various 
values of Te/Ti; the dashed line corresponds to the hydrodynamic 
equations. 
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tribution. Poisson's equation for the electric field 
equation potential is then 

fll<p / dx2 = -4e[N;('t)- N1 e'~IT,]. (33) 

Let To be the point of the weak discontinuity in 
Ni(To) while 

is the value of the ion density and the field potential at 
the point To = x/tvT. In treating the region around the 
point To we can linearize Eq. (33) in terms of 
cp - cp (To) and T - To. We also introduce the dimen­
sionless variables 

, e(<p-<p('to)) 
£= 

x- tuT'to 
<p = 

D 

£<0 
£>0' 

where (D is the Debye radius at the point T0 ) 

[ T• ]'I• 1 (dN;) 
D = 4:rte2N;('to) ' a_= N;('to) ~ <o-o' 

<I+ __ 1_ ( dN, ) 
- N;('to) ~ rc+O 

(34) 

The solution of Eq. (34) with the boundary conditions 

<p;:_,., =a-~[;, <p;:-roc =avE_£ (35) 
tuT tuT 

is 

Converting to the usual variables we now rewrite 
(36) in the form 

<p = !'..!_ In N, ('t) __ 1_ [ (dN1) _ (dN;) J. 
e Nl 2N;('to) dt <.-<l dt <o+O 

D 1 exp - D , x>'t0tvr r ( x- 'totvr J l 
l exp ( D J, x<'t0tvr 

X-
tvr x-'t0tvr · 

(36) 

Thus, in addition to the usual expression for the 
potential cp = e -I Te ln ( Ni/Nl) there is in a charge 
sheet with a charge distribution 

N; _ N. = _!_ [ (dN;) _ ( dN1) J _!}___ 
2 dt ·~• \ dt <o+o tvr 

[ x-t0tvr J exp - D , x>t0tur 
X 

[ x-'totvr J exp D , 

This charge sheet moves with a velocity T 0 vT. It 
provides the jump in the self-similar solution. It is 
important to note that the difference in the electron 
and ion densities and the field potential produced by the 
sheet is reduced within the course of time (going as 
1/t). 
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