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The operator is found for the interaction of a classically described sound wave with the quantized 
field of thermal oscillations (phonons). An expression is obtained for the complex elastic modulus 
tensor with account of the space-time dispersion brought about by the thermal oscillations. A de
tailed analysis is given of the interaction of elastic waves (first sound) and temperature waves 
(second sound) in solids. The resulting renormalization of the velocities of first and second sound 
and their attenuation are calculated. The temperature dependence of these characteristics is ana
lyzed. The parameters of the suggested theory are the harmonic and anharmonic constants of the 
continuous medium. 

1. INTRODUCTION 

ALL problems associated with the propagation and 
absorption of electromagnetic waves in matter are 
usually solved by means of Maxwell's equations. As the 
fundamental characteristic of the electromagnetic 
properties of the medium we have the complex dielec
tric tensor Eaj3(S1, q) (n is the frequency of the wave 
and q its wave vector). 

In complete analogy with this, the problems of the 
propagation and absorption of sufficiently longwave 
sound waves ( q << a-\ a being the lattice constant) in 
unbounded solids should be solved by means of the 
equations of elasticity theory. Here the fundamental 
characteristic of all the elastic properties of the 
medium is the complex elastic modulus tensor 
Aaj3yo(S1, q). Precisely this problem was posed in the 
research of Silin,[IJ which was devoted to the study of 
the absorption of ultrasound by the electrons of a metal 
at high frequencies, when their collisions can be 
neglected. Silin found, the complex contribution to the 
elastic modulus tensor. This contribution determines 
both the absorption and the dispersion of the sound. In 
the work of Kontorovich,C2J the scattering of conduction 
electrons was taken into account in the relaxation time 
approximation, and also the difference of the properties 
of the quasimomentum of the conduction electrons from 
the momentum of free electrons. The ideas underlying 
these researches can be used in the solution of other 
problems. InC 1• 2J the sound was absorbed by a gas of 
quasiparticles-electrons. In order to take into account 
the ultrasonic absorption in a dielectric brought about, 
for example, by the anharmonism or by magnetostric
tion, by analogy with C1 • 2 J, it suffices to take into ac
count the interaction of the sound with the quasi-parti
cles-the thermal Debye phonons or magnons. 

In our previous work, C3 J the method of Silin [1J was 
used for the study of the absorption in dielectric of 
high-frequency sound with frequency n >> TN, 
TV (TN and Tu are relaxation frequencies correspond
ing to the normal collisions of thermal phonons and 
collisions with momentum loss, for example, in 
Umklapp processes or in scattering from impurities). 
In the present work, the results ofC 1- 3 J are used for 
the study of the absorption and dispersion of sound in 
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its interaction with thermal phonons both in the region 
of low frequencies and in the region of high frequencies. 
The formulas found by us in the relaxation time ap
proximation are formally valid for any values of S1T. 
It can be shown that they are asymptotically exact only 
in two limiting cases: a) S1TN » 1, S1TU » 1 (see C3 J) 
and b) S1TN << 1 (see the work of Gurzhi[ 4J), i.e., as 
T - oo and T - 0. In these two limiting cases, our 
formulas take into exact account the symmetry of the 
elastic properties of the medium. In all intermediate 
cases introduced into consideration, the variational 
parameters J. ( r, t) and v ( r, t) (see Eq. (3.10)), which 
permit us to satisfy the laws of conservation of energy 
and momentum, and also the approximation of the 
collision integrals by relaxation times, make it possible 
to obtain only interpolation formulas, which can give 
only qualitatively correct results. 

The region of oscillation frequencies Tu << n 
<< TN is of interest. Under these conditions, a new 
branch of oscillations arises-temperature waves or 
second sound. Actually, for n < TN, it is possible to 
establish a local equilibrium in the field of the propa
gating wave in a system of quasiparticles with a tem
perature dependent on the coordinates and on the time. 
Here, if we can neglect the loss of the collective 
macroscopic momentum of the quasiparticles over the 
period of oscillation 1/s-2 (n >> Tl]), then collective 
oscillations appear in the gas of quasiparticles (second 
sound). Such oscillations in dielectrics differ from 
elastic waves, since they are accompanied by weakly 
damped oscillations of the local macroscopic velocity 
of the quasiparticles. 

A detailed study of the conditions for the appearance 
of such temperature waves in a system of quasiparti
cles, and also the damping brought about by the colli
sions of the quasiparticles, have been set forth in the 
paper of Gurzhi.C4 J 

In the present work, the interaction is considered 
between ordinary sound and the temperature waves, 
leading to coupled elasto-temperature waves. In con
trast with the work of Kwok and Martin [sJ, where only 
longitudinal elasto-temperature waves were considered, 
we have obtained an expression for the complex elastic 
modulus tensor with account of space-time dispersion, 
which is asymptotically exact for S1Tu » 1, S1TN » 1 
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and Tu « n « TN. The case of the propagation in an 
isotropic medium of both longitudinal and transverse 
waves is studied in detail; a specific dependence of the 
characteristics of these waves on all the elastic and 
anharmonic constants and the temperature has been 
found. 1 > 

2. ENERGY OF INTERACTION OF SOUND WITH 
THERMAL PHONONS AND THE EQUATION OF 
MOTION OF THE LATTICE 

The interaction of sound propagating in a medium 
with thermal phonons is brought about by the anhar
monism of the oscillations. In the study of dispersion 
and absorption of sound waves whose wavelength is long 
in comparison with the lattice constant, one can re
strict oneself to the approximation of a continuous 
medium. Starting out from the specific properties of 
the symmetry of a continuous medium, one can write 
down an expression for the energy with account of the 
anharmonism of third order. In this approximation, 
there arise both sound absorption and a dependence of 
the sound velocity on the temperature. The amplitude 
of the displacement of the lattice can be represented 
as the sum of the displacement brought about by the 
propagating sound and the displacement brought about 
by the thermal motion. Substituting such an expansion 
in the expression for the energy, with account of an
harmonism of third order, one can separate out the 
part that is linear in the sound amplitude and quadratic 
in the amplitude of temperature oscillations. If the 
amplitude of thermal oscillations is quantized accord
ing to the correspondence principle, then, in accord 
with [3 J for the case of an isotropic medium, we find 
the following formula which describes the interaction 
of sound with phonons: 

vv' 

- Uo:~(- k + k') b,,+b.+- u,.~(k + k') b,b.,}, (2 .1) 

where ua {3 = ilua / ox{3; u ( r, t) is the displacement 
vector, due to the sound wave; 

Ua~(k) = V-1 ~ dr Ua~eikr; 

b~ and b11 are the creation and annihilation operators 
of thermal phonons; v = k, ,\ is the set of quantum 
numbers characterizing the state of the phonon; k is 
the propagation vector, ,\ the index of polarization. 

The form of the tensor Ma[3(V, v') is determined 
by the symmetry of the medium. For the special case 
of an isotropic medium, the method of construction of 
such a tensor is given in detail in [2J. It is obvious that 
this method also remains in force for a medium with 
arbitrary symmetry. 

By taking into account the given formula, we repre
sent that part of the energy operator which depends on 
u in the following form: 

1 l After this paper had been written and gone to press, the re
searches [6 - 8 ] were published, which also were devoted to the con
sideration of elasto-temperature waves. The results of these researches 
only partially overlap our own. 

(2.2) 

.L\~~yo is the elastic modulus tensor in the absence of 
thermal motion, the mass density of the lattice. Averag
ing (2.2) over the Gibbs canonical ensemble with the 
energy operator of free phonons 

(2.3) 

and then applying the variational principle of Hamilton, 
we find 

where 

.. (0! o•u~ 
pu"-(Aa~vo)-0 0 =F,., 

X~ X~ 

Nvv• = (bv+b,,), L:V, = (bv+b,,+), Lvv• = (bvbv,), 

( ... ) = Sp ( ... ' e-HP•!T)!Sp (e-HP•rr). 

(2.4) 

(2.5) 

(2.6) 

We note here that the equation of motion of the 
lattice (2 .4) is not exact if there exist processes of 
scattering of the thermal phonons with loss of momen
tum (scattering from impurities and defects, Umklapp 
processes). In this case, the total momentum of the 
phonons and the lattice is conserved. Therefore, on the 
right hand side of (2.4), along with Fa there should be 
a force ( Fstla, brought about by the loss of momen
tum of the thermal phonons in collisions. In order of 
magnitude, this force will be small and it need not be 
considered if UTu » 1 ( Tu is the characteristic fre
quency of relaxation of thermal phonons with loss of 
momentum). It is assumed everywhere below that this 
inequality is satisfied. 

3. DENSITY MATRIX OF THERMAL PHONONS 

We shall describe the thermal phonons by the 
Hamiltonian 

Hp=Hp•+ilint+iln.+H,mp, (3.1) 

where ft:P and Hint are determined in (2.3) and (2.1), 
Hpp describes the interaction between the thermal 
phonons, Himp is the scattering of phonons by impuri
ties and defects. 

Using the equation of motion of the operators, we 
find with the aid of (3.1), and after averaging over the 
canonical ensemble, the following equation for N1111 ': 

(ili~+ev•-e.)Nvv·- ~ ~llMa~(x,x')[ua~(kx-kw) 
xx' 

(3.2) 

In this equation, terms containing ( b~ b~) and ( bK bK') 
are neglected. Such terms in (3.2) are quantities of 
second order in uaj3· 

On the right side of (3.2) are the averages of the 
product of three operators, i.e., Eq. (3.2) is not closed. 
For these averages of the product of three operators 
one can write their own equation of motion, and so on. 
We proceed as is usually done in the method of 
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Bogolyubov, i.e., we form an infinite chain and express 
the right side in (3.2) in terms of the matrix Nvv'· 
Completion of such a program leads to the following 
kinetic equation for Nvv': 

(. i) \ ' 1 I 
\,!fiat+ Ev'- Bv) 1\vv,- 2 ~ liMa~(x,x )[ua~(kx- kw) 

Y..i<' 

where IN [N] is an integral describing the normal col
lisions between phonons (with conservation of energy 
and momentum), while Iu [ N] is an integral describing 
the collisions with loss of momentum (scattering from 
impurities and defects and from boundaries, and Um
klapp processes). We shall not write out here the ex
plicit form of the collision integrals, inasmuch as in 
what follows we shall approximate them by a relaxation 
time. 

We note that the nondiagonal matrices Nvv' describe 
the spatially inhomogeneous distributions. It is not dif
ficult to establish this fact if we transform to a dis
placed representation of the density matrix (the Wigner 
representation) according to the formula 

(3.4) 
k' 

We shall seek a solution of Eq. (3.3) in the form 

Nvv, = JV".,., + /vv'· (3 • 5) 

In the simultaneous account of spatial inhomogeneities 
of the phonon distribution it is not possible to choose 
Nvv' in (3.5) in the form of a thermodynamic-equili
brium Planck function i.e., N~v' =No( Ev/T) 
(No ( Ev /T) is the Planck function). Such a choice of 
N~v' in (3.5) leads to the result that the solution will 
not satisfy the local laws of energy and momentum 
conservation, and for systems with a constant number 
of particles-the equation of continuity. In order to 
satisfy the local conservation laws, it is necessary to 
put N~v' in a more general form, i.e., to find the more 
general solution of the equation 

IN [1\',~.] + lu[N.,?,.] = 0. 

Two limiting cases are possible, namely: a) 

IN[N] >Iu[N], 

lu[N] >IN(N]. 

In the first of these cases, we can find N° vv' 
imately from the equation 

IN[N°] ~ 0. 

(3.6) 

(3.7) 
(3.8) 

approx-

(3.9) 

Inasmuch as for normal collisions, momentum and 
energy of the phonons are conserved, the most general 
solution of Eq. (3.9) is the operator N° which corre
sponds to local equilibrium with local temperature 
T(r, t) = T( 1 + J(r, t)) and the local macroscopic 
velocity of phonons v ( r, t). This operator (assuming 
J ( r, t) and v( r, t) to be small) can be represented 
in the form 

Z) A separate communication will be devoted to consideration of 
the case (3 .8). 

N° = N°(W IT), (3.10) 

where N° ( x) is the Planck function and the operator 

(3.11) 

can be assumed to be the effective Hamiltonian of the 
phonon, defining local equilibrium; p is the momentum 
operator and {A, B }+ = (AB + BA)/2. 

We note that the parameters v and J have the direct 
physical meaning of the local velocity and temperature 
only in the case in which the characteristic frequency 
of the macroscopic process a « TN. In the case of 
intermediate frequencies (a ~ TN) v and J are 
auxiliary variational parameters, which allow us to 
satisfy the local conservation laws for energy and 
momentum; finally, in the case of high frequencies, 
a >>TN, these parameters fall out of the solution, 
together with TN- 0. The values of the parameters 
v ( r, t) and J ( r, t) are determined from the equations 
of conservation of momentum and energy. To obtain 
such equations, we multiply (3.3) successively by the 
matrix elements of the momentum density operator 
Pvv' and the energy density operator Hvv', and then 
take the trace. This gives 

"' {(. i) ) 1 "' I L.i \ 1fi at+ Ev•- Ev !Vvv'- 2 L; fiMa~(x, X )[ua~ (kx- kw) 
vv' ' xx' 

+ Ua~ (- kx + kw)](llxvNx'v' -llwv•!Vvx)- fu[Nvv•]) Pv•v == 0, 

~{ (iii{)~ + Ev•- Ev )Nvv'-+ ~ fiMa~(x, X1)[Ua~(kx- kx-) 

v.v' + Ua~(-kx + kw)](llxvN::, + llx•v•Nvx)}Hvv' = 0. (3.12) 

To obtain these equations, it is taken into account that 

\'V' 

(3.13) 
w' 

In (3.11), (3.12), it is necessary to substitute the 
solution of Eq. (3.3), which is linear in Uaj3, v and J; 
we then get a set of equations with the help of which we 
express v and 8 in terms of uaj3. Equations (3.12) are 
the condition of solvability of the kinetic equation (3.3) 
for the nonequilibrium contribution to the density 
matrix fv 11 1 • These equations, upon substitution in them 
of Nvv' = N~v' from (3.14), are identical with th~ 
corresponding equations of the work of GurzhiPJ if we 
neglect the interaction between the first and second 
sound, which is described by the tensor Maj3 which 
was not considered inC4 J. 

We now write down the matrix element of the opera
tor N° entering into (3.5). From (3.10) we find in the 
linear approximation in J, Uaj3, and v 

0 N.,o- N.• A A • 

Nvv, = Nv01lw' + [(H¥«)vv•- ( {p, v}+)vv•- ( {Hp0, tl}+)vv'], 
Cv•- 8v 

(3.14) 

where N~ = No ( Ev /T). We further approximate the 
collision integrals by relaxation times. For normal 
collisions, in accord with (3.9), (3.14) and (3.5), we set 

(3.15) 

The collision integral with momentum losses in the 
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matrixes N~v' from (3.14) does not vanish for v f 0 
(see, for example, [9]); therefore we get 

In the case of a steady-state wave process, one can 
set u01 f3 ~ v ~ J- ~ e-int•iq · r. Taking this into ac
count and Eqs. (3.5), (3.14)-(3.16) from (3.3) in the 
linear approximation in u 01 f3, J-, and v 

' • o N •. o- N.o { .(t) 
,, vv• = Nv livv• + ---- VI vv• ( q)-

Ev•- Cv 

QW!!(q)+ i(Pw.v)/(,;N)vv• + iH~v·fihw• ·} . 

Wv•- Wv + Q + h:;;:. 
(3 .17) 

Here 

w:.~!•(Q) = liMaB(vv') UaB(q)lik'-k+q, 

- n 
Pvv• = (vI {eiqr, P}+lv') = 2 (k + k') 1\k'-k+q, 

H.~.= (vI {eW,H'}+I v') = '/z(ev• + ev)l\k'-k+q, 

8v -1 1 1 
Wv=-, 'tvv'=---+---. n ('tN)vv· (Tu)vv• 

(3.18) 

The matrices L~11 " and L1111 , are found in similar 
fashion. Omitting the calculations, we write out only 
the result here: 

+ ( liQ ) 1 + N • .o + N," L,,.= -1+ 
Bv• + cv- fl~~ - ifl/Tw• Bv + Ev• 

·nMaB(vv')uaB(q)li(k+ k'- q), 

L ... = (-t- nQ ) 1 +N.P+N,0 

Bv• + 8v + nQ + ifl/'tvv• Bv• + Bv 

·nMaB(vv')uadq)l\(k+ k' + q), 

Substituting (3.17) in (3.11) and (3.12), we find 

AapUp + Baft + CaBVB = 0, DBuB + Qfj + BBvB = 0, 

where 

vv' 

vv' 

(3.19) 

. (3.20) 

(3.21) 

CaB= nQq, .2; <pvv•(Ew- Bv + liQ +in/ (-ru)vv•) (PB)vv•(Pa'),•v, 
vv' 

w' 

vv' 

N.!J- N.0 -in/ ('tN )vv· 
<pvv• = ----• . 

"'' - ev Ev' - ev + nQ + inf,; .. , 
(3.22) 

Equations (3.21) agrees in accuracy with the corre
sponding equations from the work of Gurzhi C4 J, if we 
set M01 13 = 0 here (not taking into account the interac
tion between first and second sound), which also means 
A01 f3 = Df3 = 0, and setting T = 0 (not taking into account 
departures from local equilibrium i.e., fvv' = 0. 

Using (3.17), (3.19), and (3.20), we can find an ex
pression for the forces (2.5) exerted by the phonons on 
the lattice. If we substitute this force in (2.4), then we 
get for the Fourier component ua of the lattice vibra
tions the equation 

(-pQ21lap + A~~opQyQo + A~toBQvQo)up = iQ-'(Dafj + Aapvp), (3 .23) 

where 

Aa~~B = n•] Mav(vv')Mop(vv'){( 1- nQ ) 
vv' Bv'- Ev + nQ + in~;. 

Nv'"- Nv0 1 ( nQ 
X llk'-kH -- 2 - -----,..,---,--

ev• - ev 2 ev' + e, + liQ + in,;;;.:, 
nQ ) 1 +N.,0 +Nv0 } +--:-- ___) __ ' ·--llk'+k q 

"•' + Ev - liQ - inr;~. ev' + ev -
(3.24) 

are contributions to the elastic modulus tensor, due to 
interaction of the sound with the thermal phonons. 

We eliminate J- and v from (3.23). With the help of 
(3.21) we find 

(3.25) 

where 

A~oBQvQo = iQ '(G- BBBB·)-1 

X{(Da- AapBp/) (DB- BwA~·B) + AaB·A~·B(G- Bp·BB/)}, (3.26) 

Ba' = CaB-1Bp, Aap1 = Cav-'AvB, Cav-'CvB = llaB· (3.27) 

Additional renormalization of the elastic modulus 
tensor is connected with the interaction of sound 
oscillations with the ordered motion of the phonons. 

The equation for the eigenfrequencies follows from 
(3.25): 

(3.28) 

and the formula for the damping decrement is 
1 

f =- (TmAavoBQvQouauB), (3.29) 
2pQ 

where u01 and Uf3 are unit polarization vectors of the 
propagating sound wave. In the next section, we apply 
these formulas to the case of an isotropic medium. 

4. RENORMALIZATION OF THE VELOCITY AND THE 
SOUND DAMPING DECREMENT IN AN ISOTROPIC 
MEDIUM 

We now turn to the solution of the dispersion equa
tion (3.28) and the calculation of the damping decre
ment (3.29) in the case of the sound propagation in an 
isotropic medium. The form of the tensor M01 j3 ( vv') 
for such a medium is given in [a] • As a final result, we 
express all the quantities in terms of the elastic 
moduli K, JJ., three anharmonic constants A, B, c,CwJ 
and the characteristics of thermal phonons. In what 
follows, we shall assume the relaxation time of thermal 
phonons to be independent of the wave numbers, but 
different for different polarizations. We also recall 
the range of frequencies T{h_ < n < T~h_ is considered. 

Longitudinal waves. We direct the x3 axis along the 
direction of propagation of the wave ( q II x3 ). Using 
the explicit form of the tensor M 01 f3( vv'), we can show 
that, of all the coefficients that differ from zero, only 
A33 , B3 , C33 , Ds and G remain. The dispersion equa
tion here is materially simplified: 

0 (I) jfl2Q-1 
-pQ2 + A33aaQ2 + AasssQ2 - C G B 2 (2AaaBaDa- A332G- Ds2C33) = 0. 

33 - 3 

(4.1) 



462 P. S. ZYRYANOV and G. G. TALUTS 

First of all, we turn our attention to the fact that the 
last term in (4.1) has a singularity for C33G - B~ = 0. 
This pole, in the case considered by us, TU.\. < n 

< TN.\ gives a new branch of oscillations-second 
sound. In the case n < TN < Tl], the pole is shifted 
along the imaginary axis and the additional solutions 
are associated with the ordinary thermal conductivity. 

We rewrite Eq. (4.1) in a different form: 

(Q2 - s12q2 + 2il',l2) (Q2 - s22q2 - 2il',Q) - s,2q2 (Q2 + 2ifD) = 0. 

(4.2) 
Here s1, r1 and s2, r2 are the velocity and damping 
decrements of waves of first and second sound, re
spectively, equal to 

Cv 
s12 = (K +'/a f"- As')/p, r, = A,"q2/2p, sl = ----

3~Cnfs,2 

(4.3) 

(4.4) 

where S,\ is the phase velocity of thermal phonons with 
polarizations .\.; Cy,\ is the specific heat of the phonom;: 

T' 611' 

Cv = '5', Cv1., Cv1. = --- \ e'z'(e' -1)-2dz 
'7 2n2n's•' ~ ' 

and A:l and nA3' are the real and imaginary contribu
tions to the elastic modulus tensor AJU3• Equations 
for s2 and r2 are identical with the well-known ex
pressions for the velocity and damping decrement of 
second sound.c4 ,sJ 

The complex contribution to the elastic modulus 
tensor can be expanded in a series in TN,\ n << 1. 
Terms of zeroth order make a contribution only to the 
real part of the tensor. In this approximation, which 
does not take into account the dispersion of the tensor, 
both the scattering processes (l + .\.- .\.') and the de
cay processes ( l - .\. + .\.') play an identical role. In 
the next approximation (linear in TN.\ n), in addition 
to the contribution to the real part, there appears an 
imaginary contribution which corresponds to dissipa
tion processes. In this approximation, the dispersion 
of the tensor is taken into account, and the role of the 
processes of scattering and decay is seen to be differ
ent. The most important processes for TNn < 1 are 
the scattering processes, since for Tn > 1 and 
nn >> T, the principal contribution to the scattering of 
the longitudinal wave are made by the decay pro
cesses.CuJ 

It follows from what has been set forth that the dis
persion of the elastic modulus tensor is more sensitive 
to the various processes of interaction of the sound 
with the thermal phonons. Therefore, for the explana
tion of the role of these or other interactions, it is 
necessary to study the dispersion of the elastic modu
lus tensor. Here, only the dispersion of the imaginary 
part is considered. The study of the dispersion of the 
real part, i.e., the dispersion of the sound velocity, is 
also of undoubted interest. 

By carrying out the expansion in TN.\ n we gee> 

3 lWe note that account of anharmonism of fourth order leads to 
a change in the numerical values of the coefficient of ETA only, and 
does not affect the imaginary part of the elastic modulus tensor in the 
approximation considered. 

Here ET,\ is the energy of the thermal phonons: 

T' 6f 
Br>.=? 'n'a} dzz3(e'-1), Br=~ en. 

-1t S'}. 0 A 

The separate terms in (4.5) define the contribution 
to the renormalized elastic modulus tensor as the re
sult of processes of scattering or decay, Qz,.\..\.'· Here, 

Oz~,t = (K + B) 2 + 32/.sfJ,2 + 1/w42 + 16/10sC2 + •j,,AC 

+ (K +B) (2/a!l +A I 2 +'! .. C) + f1(1f,,A + 88/atsC), 

Oz~' = 47/15(K + 2B) 2 + 416/.osfJ-2 + 4/sA2 + '/oC2 

+ 2/ 5 (K + 2B) (103/o!l + 22/aA + 34/1C) + '/"fJ-( 32/aA + 8C) + 8/1AC, 

Qu~z = 4/"(K + 2B + 7/a!l + A) 2 + 8/as(K + 2B + 7/af" + A)C + 16/ 6,G', 

Oz1., '' = Oz1.•, • = Qz, w = Qz, •·•; Qu, t' = 0. ( 4. 7) 

Substituting ( 4. 5) in ( 4 .3), we get an expression for the 
renormalized velocity of longitudinal sound: 

l)t' i),' 
s12 = sr+-CvT--Br, (4.8) 

p3s' p3s4 

which gives, as it ought, a decrease in the elasticity 
with rise in temperature. Equations (4.5) and (4.7) de
termine the value of the coefficients QU s\ Q~/ s4 in 
terms of the elastic and anharmonic constants. For the 
damping decrement r1, we obtain a formula which was 
first discovered by A. I. Akhiezer:C 12J 

(4.9) 

It follows from (4.8) and (4.9) that equal contributions 
are made to the renormalization of the sound velocity 
(neglecting dispersion) by the processes of scattering 
and decay, while the damping of the sound is determined 
only by the scattering processes (in linear approxima
tion in Tn ). 

We now turn to the dispersion equation (4.2) and con
sider the second component in it. The values of sf2 and 
rD appearing in it are equal to 

(4.10) 

where 
Dt = K + B + 2/a!l + 1/sA + 2/ .. C, 

D, = 5/a(K + 2B) + 8/o!l + 2/aA +"/,C. 
(4.11) 

The term considered in the dispersion equation de
scribes the interaction of first and second sounds. In 
other words, in a definite frequency range, the exist
ence of coupled elasto-temperature waves is possible. 
Assuming the corresponding coupling coefficient to be 
small, 4 > we obtain the following expression for the fre
quencies of the coupled elasto-temperature waves: 

4 lWe note that the ratio s12 2 /s2 ~ ET/ps2 ~(q'f'X3 ) T/Ms2 

serves as the small parameter in our case, where a is the lattice con
stant, M the atomic mass and qT = T/hs is the mean momentum of 
the thermal phonon. For T = I 0° K, this ratio is of the order of I o-•. 
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(4.12) 

These relations were obtained in [sJ in a somewhat dif
ferent form. In contrast with that research, where the 
anharmonicity was taken into account by the introduc
tion of a single averaged constant, here the specific 
dependence of the value of s12 on the elastic and an
harmonic constants is determined. This makes it pos
sible to estimate the value of the contributions made to 
the longitudinal sound velocity from the various mecha
nisms of interaction of sound with thermal vibrations. 

Using the expressions for s1, s2, and S12, we find 
the approximate formulas for the renormalized veloci
ties: 

sz2 = Sz2 - 1/z(J521 p's')CvT. 
( 4.13) 

It is seen from (4.13) that while the contribution to the 
velocity of longitudinal sound from processes of scatter
ing and decay enters with a minus sign, the contribution 
arising from interaction with temperature waves is 
positive. Thus, on the one hand, the presence of an
harmonism leads to a decrease in the elasticity with 
increase in T; on the other hand, the number of thermal 
phonons increases with T, i.e., the pressure of the 
phonon gas increases, and so does its elasticity. If, by 
making use of (4.5) and (4.10), we calculate the total 
effect of these two contributions, we then always obtain 
a decrease in the sound velocity for solids ( K ~ J.L) 
with increase in the temperature ~T4 for T < ®. 

We write down the expression for the damping decre
ment associated with elasto-temperature waves. It fol
lows from (4.1) that 

(4.14) 

Substituting the expression for the frequencies il1 and 
il2 and expanding in a series in si2/ s2, we get 

Both terms in I\ are of the same order and conse
quently, near the lower boundary of the existence of 
elasto-temperature waves n ~ Tu, the damping decre
ment of first sound is less than that of second sound. 
Here, there are terms in I\, just as in I\, that do not 
depend on the frequency. 

The temperature and frequency dependence of the 
damping decrements of first and second sound have the 
form 

(4.16) 

Transverse Waves. Let q II X3 and u II x1; then Eq. 
(3.28) takes the form 

(4.17) 

By estimating the last term in (4.17), we can show that 
it will make a contribution to the frequency and damp
ing decrement of higher order in ilT. Omitting it, we 
get 

QZ _ s12q2 + 2iQ[1 = 0, (4.18) 

where 

s,2 = 11 I p- A{ lp, r, = A{'q2 I 2p. (4.19) 

The quantities A{ and A{' are determined by Eqs. 
(4.5) and (4.6) and by replacement of l by t, we have 

Q11, z = '!ts(K + 2B + 7lal-' + A) 2, 

Qtt. t = 11115(1-' +'/.A)', 
Qtt.t = "lao(K + B + 'Ia!-' + 'izA) (21-' + 'lzA +B). (4.20) 

The difference of the dispersion equation (4.18) from 
the corresponding equation for longitudinal waves (4.1) 
is significant. First, as should be expected, additional 
branches of oscillations do not appear for transverse 
waves. Second, the specific dependence of st and rt 
on the constants K, J.L, A, B, C differs appreciably 
from such a dependence for longitudinal waves. There 
is also a difference in the frequency and temperature 
dependence. All this can be used for the experimental 
determination of elastic and anharmonic constants. 
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