SOVIET PHYSICS JETP

ELASTO-TEMPERATURE WAVES IN SOLIDS

P, S. ZYRYANOYV and G. G. TALUTS

VOLUME 27,

NUMBER 3 SEPTEMBER, 1968

Institute of the Physics of Metals, Academy of Sciences, USSR
Submitted July 23, 1966; resubmitted November 4, 1967

Zh. Eksp. Teor. Fiz. 54, 855-866 (March, 1968)

The operator is found for the interaction of a classically described sound wave with the quantized
field of thermal oscillations (phonons). An expression is obtained for the complex elastic modulus
tensor with account of the space-time dispersion brought about by the thermal oscillations. A de-
tailed analysis is given of the interaction of elastic waves (first sound) and temperature waves

(second sound) in solids. The resulting renormalization of the velocities of first and second sound
and their attenuation are calculated. The temperature dependence of these characteristics is ana-
lyzed. The parameters of the suggested theory are the harmonic and anharmonic constants of the

continuous medium.
1. INTRODUCTION

A.LL problems associated with the propagation and
absorption of electromagnetic waves in matter are
usually solved by means of Maxwell’s equations. As the
fundamental characteristic of the electromagnetic
properties of the medium we have the complex dielec-
tric tensor €ag(RQ, q) (R is the frequency of the wave
and q its wave vector).

In complete analogy with this, the problems of the
propagation and absorption of sufficiently longwave
sound waves (g < a™', a being the lattice constant) in
unbounded solids should be solved by means of the
equations of elasticity theory. Here the fundamental
characteristic of all the elastic properties of the
medium is the complex elastic modulus tensor
Aaﬁya( , q). Precisely this problem was posed in the
research of Silin,'*) which was devoted to the study of
the absorption of ultrasound by the electrons of a metal
at high frequencies, when their collisions can be
neglected. Silin found, the complex contribution to the
elastic modulus tensor. This contribution determines
both the absorption and the dispersion of the sound. In
the work of Kontorovich,'? the scattering of conduction
electrons was taken into account in the relaxation time
approximation, and also the difference of the properties
of the quasimomentum of the conduction electrons from
the momentum of free electrons. The ideas underlying
these researches can be used in the solution of other
problems. InL%2] the sound was absorbed by a gas of
quasiparticles—electrons. In order to take into account
the ultrasonic absorption in a dielectric brought about,
for example, by the anharmonism or by magnetostric-
tion, by analogy withfl’ﬂ, it suffices to take into ac-
count the interaction of the sound with the quasi-parti-
cles--the thermal Debye phonons or magnons.

In our previous work, (3J the method of Silin[) was
used for the study of the absorption in d1e1ectr1c of
h1gh frequency sound with frequency £ > T

and T are relaxation frequencies correspond-
1ng to I&le normal collisions of thermal phonons and
collisions with momentum loss, for example, in
Umklapp processes or in scattering from impurities).
In the present work, the results of‘!"3J are used for
the study of the absorption and dispersion of sound in
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its interaction with thermal phonons both in the region
of low frequencies and in the region of high frequencies.
The formulas found by us in the relaxation time ap-
proximation are formally valid for any values of Q7.

It can be shown that they are asymptotically exact only
in two limiting cases: a) Q7N > 1, Q7y > 1 (see[?])
and b) Q7 < 1 (see the work of Gurzhit*)), i.e., as

7 — and 7 — 0. In these two limiting cases, our
formulas take into exact account the symmetry of the
elastic properties of the medium. In all intermediate
cases introduced into consideration, the variational
parameters ¢(r, t) and v(r, t) (see Eq. (3.10)), which
permit us to satisfy the laws of conservation of energy
and momentum, and also the approximation of the
collision integrals by relaxation times, make it possible
to obtain only interpolation formulas, which can give
only qualitatively correct results.

The region of oscillation frequencies TU < Q
< TN is of interest. Under these conditions, a new
branch of oscillations arises—temperature waves or
second sound. Actually, for © < Tﬁ, it is possible to
establish a local equilibrium in the field of the propa-
gating wave in a system of quasiparticles with a tem-
perature dependent on the coordinates and on the time.
Here, if we can neglect the loss of the collective
macroscopic momentum of the quasiparticles over the
period of oscillation 1/Q (9 > TG)’ then collective
oscillations appear in the gas of quasiparticles (second
sound). Such oscillations in dielectrics differ from
elastic waves, since they are accompanied by weakly
damped oscillations of the local macroscopic velocity
of the quasiparticles.

A detailed study of the conditions for the appearance
of such temperature waves in a system of quasiparti-
cles, and also the damping brought about by the colli-
sions of the quasiparticles, have been set forth in the
paper of Gurzhi.t*

In the present work, the interaction is considered
between ordinary sound and the temperature waves,
leading to coupled elasto-temperature waves. In con-
trast with the work of Kwok and Martint®}, where only
longitudinal elasto-temperature waves were considered,
we have obtained an expression for the complex elastic
modulus tensor with account of space-time dispersion,
which is asymptotically exact for Q7y > 1, Qry > 1
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and T3 <2 <K TN- The case of the propagation in an
isotropic medium of both longitudinal and transverse
waves is studied in detail; a specific dependence of the
characteristics of these waves on all the elastic and
anharmonic constants and the temperature has been
found."’

2. ENERGY OF INTERACTION OF SOUND WITH
THERMAL PHONONS AND THE EQUATION OF
MOTION OF THE LATTICE

The interaction of sound propagating in a medium
with thermal phonons is brought about by the anhar-
monism of the oscillations. In the study of dispersion
and absorption of sound waves whose wavelength is long
in comparison with the lattice constant, one can re-
strict oneself to the approximation of a continuous
medium. Starting out from the specific properties of
the symmetry of a continuous medium, one can write
down an expression for the energy with account of the
anharmonism of third order. In this approximation,
there arise both sound absorption and a dependence of
the sound velocity on the temperature. The amplitude
of the displacement of the lattice can be represented
as the sum of the displacement brought about by the
propagating sound and the displacement brought about
by the thermal motion. Substituting such an expansion
in the expression for the energy, with account of an-
harmonism of third order, one can separate out the
part that is linear in the sound amplitude and quadratic
in the amplitude of temperature oscillations. If the
amplitude of thermal oscillations is quantized accord-
ing to the correspondence principle, then, in accord
with 37 for the case of an isotropic medium, we find
the following formula which describes the interaction
of sound with phonons:

Hiny= /2 D} Map(v, V') {ttap (k — K') bytby 4 tap(— k + K') bybyst

— uap(— k + k') byrtbyt — ag (k + k) buby}, (2.1)
where ugg = 8ug /oxg; u(r, t) is the displacement
vector, due to the sound wave;

uap(k) = V-1 S dr uggeir;

by and by are the creation and annihilation operators
of thermal phonons; v =k, A is the set of quantum
numbers characterizing the state of the phonon; k is
the propagation vector, A the index of polarization.

The form of the tensor Maﬁ(u, v’) is determined
by the symmetry of the medium. For the special case
of an isotropic medium, the method of construction of
such a tensor is given in detail in (2], 1t is obvious that
this method also remains in force for a medium with
arbitrary symmetry.

By taking into account the given formula, we repre-
sent that part of the energy operator which depends on
u in the following form:

1) After this paper had been written and gone to press, the re-
searches [7®] were published, which also were devoted to the con-
sideration of elasto-temperature waves. The results of these researches
only partially overlap our own.

Hoo= fiy+ Hint;
. . (2.2)
Hy=1/» S dr {Aa(glvbuaﬁuva + pu?},
Agz’byé is the elastic modulus tensor in the absence of
thermal motion, the mass density of the lattice. Averag-
ing (2.2) over the Gibbs canonical ensemble with the
energy operator of free phonons

Il}po = Z evbyvtby,

v

(2.3

and then applying the variational principle of Hamilton,
we find
02116

pite — (AShys) Tma, = (2.4)
where
Fo= "%v% hMeag(v, ') { €K Ny, 4 e~ (N, - Sou)
— emiGHKOLE,  pitkHONL, A (2.5)
Nyw = Cbytbe), Lo = (bytbot), Loy = (bybys),
Coiy = Sp (oo, €57y Sp (757 T, (2.6)

We note here that the equation of motion of the
lattice (2.4) is not exact if there exist processes of
scattering of the thermal phonons with loss of momen-
tum (scattering from impurities and defects, Umklapp
processes). In this case, the total momentum of the
phonons and the lattice is conserved. Therefore, on the
right hand side of (2.4), along with F there should be
a force (Fgt)q, brought about by the loss of momen-
tum of the thermal phonons in collisions. In order of
magnitude, this force will be small and it need not be
considered if Q7 > 1 (7 is the characteristic fre-
quency of relaxation of thermal phonons with loss of
momentum). It is assumed everywhere below that this
inequality is satisfied.

3. DENSITY MATRIX OF THERMAL PHONONS

We shall describe the thermal phonons by the
Hamiltonian

ﬁp:ﬁpu"‘ﬁim'*“ﬁmw'*‘i{imp: (3.1)

where ﬁ% and Hijpt are determined in (2.3) and (2.1),
Hpp describes the interaction between the thermal
phonons, Himp is the scattering of phonons by impuri-
ties and defects.

Using the equation of motion of the operators, we
find with the aid of (3.1), and after averaging over the
canonical ensemble, the following equation for Ny,

( ih Z_t + ey — ev>1\'vw — % Z AMag (%, %) [Uap (kx — ku)

wn
+ uaﬂ(—kx + kx') }[6van'w - 6vlevu]

=<[(pr +Himp), bv+bvr]—>- (3.2)

In this equation, terms containing (byby) and {bybg’)
are neglected. Such terms in (3.2) are quantities of
second order in ugg.

On the right side of (3.2) are the averages of the
product of three operators, i.e., Eq. (3.2) is not closed.
For these averages of the product of three operators
one can write their own equation of motion, and so on.
We proceed as is usually done in the method of
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Bogolyubov, i.e., we form an infinite chain and express
the right side in (3.2) in terms of the matrix Npy’.
Completion of such a program leads to the following
kinetic equation for Ny,

L0 . 1
(lﬁm‘*‘ &y — Sv) Nyyr — 7 Z ﬁMaﬁ(K, %/)[uaﬂ (hx— k)

v

—Uap ( _kx + kx') ] {vaNx’v' - Gv'wan] = IN [va/] + IU [Nwr], (3 .3)

where IN[N] is an integral describing the normal col-
lisions between phonons (with conservation of energy
and momentum), while Iu[N] is an integral describing
the collisions with loss of momentum (scattering from
impurities and defects and from boundaries, and Um-
klapp processes). We shall not write out here the ex-
plicit form of the collision integrals, inasmuch as in
what follows we shall approximate them by a relaxation
time.

We note that the nondiagonal matrices Nyy’ describe
the spatially inhomogeneous distributions. It is not dif-
ficult to establish this fact if we transform to a dis-
placed representation of the density matrix (the Wigner
representation) according to the formula

NA,A,’ (k, l‘) = E e—i(k—k’)rNW,_ (3 . 4)
K’

We shall seek a solution of Eq. (3.3) in the form
(3.5)

In the simultaneous account of spatial inhomogeneities
of the phonon distribution it is not possible to choose
Nyy’ in (3.5) in the form of a thermodynamic-equili-
brium Planck function i.e., Ny, = No(€,/T)
(No(€,/T) is the Planck function). Such a choice of
N}, in (3.5) leads to the result that the solution will
not satisfy the local laws of energy and momentum
conservation, and for systems with a constant number
of particles—the equation of continuity. In order to
satisfy the local conservation laws, it is necessary to
put Nf,,/ in a more general form, i.e., to find the more
general solution of the equation

va = Now' + fw'-

In N3]+ Iy [N = 0. (3.6)

Two limiting cases are possible, namely:?"
Iy[N] > Iy[N], (3.7)
(3.8)

Iy[N] > Ix[N]. )
In the first of these cases, we can find Nevv approx-
imately from the equation

Iy[N] =~ 0. (3.9)

Inasmuch as for normal collisions, momentum and
energy of the phonons are conserved, the most general
solution of Eq. (3.9) is the operator N° which corre-
sponds to local equilibrium with local temperature
T(r,t) =T(1+s(r,t)) and the local macroscopic
velocity of phonons v (r, t). This operator (assuming
8(r,t) and v(r, t) to be small) can be represented
in the form

2) A separate communication will be devoted to consideration of
the case (3.8).
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(3.10)
where N°(x) is the Planck function and the operator
H* = Hp + Hine— {p, v(r, t) }+ — {H)", 9} (3.11)

can be assumed to be the effective Hamiltonian of the
phonon, defining local equilibrium; ﬁ is the momentum
operator and {A, B} = (AB + BA)/2.

We note that the parameters v and ¢ have the direct
physical meaning of the local velocity and temperature
only in the case in which the characteristic frequency
of the macroscopic process € < Tﬁ. In the case of
intermediate frequencies (@ ~ 7)v and ¢ are
auxiliary variational parameters, which allow us to
satisfy the local conservation laws for energy and
momentum; finally, in the case of high frequencies,
Q> Tl'\f, these parameters fall out of the solution,
together with 733 — 0. The values of the parameters
v(r,t) and #(r, t) are determined from the equations
of conservation of momentum and energy. To obtain
such equations, we multiply (3.3) successively by the
matrix elements of the momentum density operator
Pyy’ and the energy density operator Hyy’, and then
take the trace. This gives

No = No(H* [ T),

0 1 <
% {(ih E + ey — &y ) Nyyr — —2* %“ hMag (%, x"){uap (ko — kewr)
-+ Uap(— kv 4+ kw)](éxvlvu'w — SuevlVvx) — Iy [va']} Pyv == 0,

a 1
o ) Now — 5 D hMa (ot (e — )

+ uaﬂ(_kn + kw)](bquwv' + éx'v'Nvu)}va' =0. (3-12)

To obtain these equations, it is taken into account that

D) UInINw] + Iy [Nyw]} How =0,

W

> {In[Nw]} P = 0. (3.13)

In (3.11), (3.12), it is necessary to substitute the
solution of Eq. (3.3), which is linear in ugg, v and §;
we then get a set of equations with the help of which we
express v and ¢ in terms of ugg. Equations (3.12) are
the condition of solvability of the kinetic equation (3.3)
for the nonequilibrium contribution to the density
matrix fyy,’. These equations, upon substitution in them
of Nyy’ = Nj,,» from (3.14), are identical with the
corresponding equations of the work of Gurzhi,[* if we
neglect the interaction between the first and second
sound, which is described by the tensor Mag which
was not considered in[%.

We now write down the matrix element of the opera-
tor N° entering into (3.5). From (3.10) we find in the
linear approximation in ¢, ugg, and v

Nyd—NY - .
Ny = N0+ = () e — ({9, V4 e = ({5, 9} )],
(3.14)

where Nj, = No(€,/T). We further approximate the
collision integrals by relaxation times. For normal
collisions, in accord with (3.9), (3.14) and (3.5), we set

Iy [Ny + fow] = — ihifwr/ (t3) vor (3.15)

The collision integral with momentum losses in the
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matrixes Nj,, from (3.14) does not vanish for v # 0
(see, for example, [%7); therefore we get

Ny — NSO~
= (W) — b || () (3.16)
— &

&y’

Iy [Nev + fl = m[

In the case of a stgady.—state wave process, one can
set ugg~ v~ ¢ ~ e-i*iq I Taking this into ac-
count and Eqgs. (3.5), (3.14) —(3.16) from (3.3) in the
linear approximation in ugg, 4, and v

0 — N0
Nyyr = N8 + %__;__iVL{ I/I"(v?r (q) —

&y

(3.17)

QW)+ i (Pw)/ (T )wr + iHa B/ T }
ov— oy + Q it ’

Here
W (q) = AMap (vV') tap (a) S xsa,

A h
Py = (v | {ei, p}4|v) = > (k4 k') Sk —k+q,

Hy = (v] {ei®, B | v) = Ya(ew + &) 0k xia,
— 1 i

T = (TN)W' (TU)W' ’

o=, (3.18)
The matrices L;Uu and Ly, are found in similar
fashion. Omitting the calculations, we write out only
the result here:

+ hQ 14 N4 Ny . (3.19)
LW/ - ( ! + Evr + &v — le - ih/Tvv' ) Ev -f— Evr
AMop (Vv ) uap(q) (k + K — q),
Loy = (—1— "9 )1+NV'O+N”° . (3.20)
ev + ev -+ AQ + il /T gv - &y
“hMeag(vv')uap(q)d (k + k' + q),
Substituting (3.17) in (3.11) and (3.12), we find
Agpup -+ Boa® + Copvg = 0, Dgug+ G894+ Bgvg = 0, (3.2 1)

where

Aap = hQqy Z P Mop(vV') (Pa’ ),

Vv’

Ba = it z cpwr(svr — &v + hQ)wa (Pa‘)v'v,
"

Ca[i = ﬁquz \'va’(sw — v+ hQ + iﬁ/(TU)‘W’) (PE)W’(PG‘)V'V’

Dy = ﬁqu Z@vv'((TN)W'/TW')Mva('VV/)HV':M

'

G = il D) ((tw)w/Twv) (8v — ey + hQ) HywHov,

Ny® — N0

Ev — Ev

—ih/ (TN ) v

ey — gy + AQ + A/t (3.22)

Qv —

Equations (3.21) agrees in accuracy with the corre-
sponding equations from the work of Gurzhil®), if we
set Mgg = 0 here (not taking into account the interac-
tion between first and second sound), which also means
Agg=Dp =0, and setting 7=10 (not taking into account
departures from local equilibrium i.e., fy,’ = 0.

Using (3.17), (3.19), and (3.20), we can find an ex-
pression for the forces (2.5) exerted by the phonons on
the lattice. If we substitute this force in (2.4), then we
get for the Fourier component uy of the lattice vibra-
tions the equation

(—pQ28ap + Aropavds -+ Avepasas)up = iQ~4(Dad + Aagvs), (3.23)

where
hQ
Al =12 S May(wv') M. '{(1— . )
mop == 2 Mas (') Man (o) ow— evt AQ Rt
><1Vv’0"_]v'vo(.5 1 (2 hQ
e — £y TEHIT o g+ ey 4+ AQ + ifi'r;:,
"Q 1+ Nud+ N,
P d .
+ evs - ev——ﬁQ—ih-r::, ) ey -+ &y 8x '“‘—q} (3'24)

are contributions to the elastic modulus tensor, due to
interaction of the sound with the thermal phonons.

We eliminate ¢ and v from (3.23). With the help of
(3.21) we find

(— Q280 + Aayopgvae)us = 0, (3.25)

where

© ) @
Aaﬂvb = Aal&)vb + Aaﬁvb + Aaﬁvé,

ADopgyas = iQ1(G — Byp.Bf)
X {(Da— AapBp/) (Dp — ByrAgp) -+ Aup-Abs (G — ByBy/)}, (3.26)
B, = C';‘riBﬁ, A“B/ — CavﬂAvﬁy Cav_lcvﬁ = Bap. (3.27)

Additional renormalization of the elastic modulus
tensor is connected with the interaction of sound
oscillations with the ordered motion of the phonons.

( The equation for the eigenfrequencies follows from
3.25):

det (—pQ28ap + Re Aavopgvgs) =0, (3.28)
and the formula for the damping decrement is
1
I' = ;— (Im AayspqssTails), (3.29)

2pQ
where Uy and TlB are unit polarization vectors of the
propagating sound wave. In the next section, we apply
these formulas to the case of an isotropic medium.

4. RENORMALIZATION OF THE VELOCITY AND THE
SOUND DAMPING DECREMENT IN AN ISOTROPIC
MEDIUM

We now turn to the solution of the dispersion equa-
tion (3.28) and the calculation of the damping decre-
ment (3.29) in the case of the sound propagation in an
isotropic medium. The form of the tensor MaB(VV,)
for such a medium is given in L2l As a final result, we
express all the quantities in terms of the elastic
moduli K, i, three anharmonic constants A, B, C,t1)
and the characteristics of thermal phonons. In what
follows, we shall assume the relaxation time of thermal
phonons to be independent of the wave numbers, but
different for different polarizations. We also recall
the range of frequencies Tﬁ)\ <@ < TI‘\}A is considered.

Longitudinal waves. We direct the x; axis along the
direction of propagation of the wave (q !l x3). Using
the explicit form of the tensor Maﬁ( vv'), we can show
that, of all the coefficients that differ from zero, only
Assz, Bz, Css, D3 and G remain. The dispersion equa-
tion here is materially simplified:

Q-

—pQ? - Asisg® + Aing? — s (24598l — AxG — D#Cis) = 0.
3l — O3

(4.1)
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First of all, we turn our attention to the fact that the
last term in (4.1) has a singularity for Cs3sG — B5 = 0.
This pole, in the case considered by us, TGK <Q

< Tl_\ih gives a new branch of oscillations—second

sound. In the case € < 72 < 77}, the pole is shifted

along the imaginary axis and the additional solutions

are associated with the ordinary thermal conductivity.
We rewrite Eq. (4.1) in a different form:

(92 — s.2g2 + 2i4Q) (QF — s22q% — 2i15Q) — s1°g2(Q2 + 2iTD) = 0,

(4.2)
Here s, I'y and s, I'; are the velocity and damping
decrements of waves of first and second sound, re-
spectively, equal to

C
S‘Z=(K+‘/3P'—A3,)/p, Ty = As"q%/2p, szz=__L__’
32 Cv;_/S;,2
’ (4.3)
3 22 82 52 9
D C e (A P R O
Ty 47" U e 95,2 + s 5 ) @ } (4.4)

where s) is the phase velocity of thermal phonons with
polarizations A; Cy) is the specific heat of the phonons:

s T

- K ezt (er — 1) ~2dz,

;= NC Cyr=——
Cyv=2Cv, Cna pETENC

and Aj and QA7 are the real and imaginary contribu-
tions to the elastic modulus tensor Ails. Equations
for s, and I'; are identical with the well-known ex-
pressions for the velocity and damping decrement of
second sound.t*®]

The complex contribution to the elastic modulus
tensor can be expanded in a series in T £ < 1.
Terms of zeroth order make a contribution only to the
real part of the tensor. In this approximation, which
does not take into account the dispersion of the tensor,
both the scattering processes (I + A —X’) and the de-
cay processes (I — X +X’) play an identical role. In
the next approximation (linear in TNAS), in addition
to the contribution to the real part, there appears an
imaginary contribution which corresponds to dissipa-
tion processes. In this approximation, the dispersion
of the tensor is taken into account, and the role of the
processes of scattering and decay is seen to be differ-
ent. The most important processes for TN < 1 are
the scattering processes, since for 7Q > 1 and
1Q > T, the principal contribution to the scattering of
the longitudinal wave are made by the decay pro-
cesses.[!1]

It follows from what has been set forth that the dis-
persion of the elastic modulus tensor is more sensitive
to the various processes of interaction of the sound
with the thermal phonons. Therefore, for the explana-
tion of the role of these or other interactions, it is
necessary to study the dispersion of the elastic modu-
lus tensor. Here, only the dispersion of the imaginary
part is considered. The study of the dispersion of the
real part, i.e., the dispersion of the sound velocity, is
also of undoubted interest.

By carrying out the expansion in TN\ we get®

3)We note that account of anharmonism of fourth order leads to
a change in the numerical values of the coefficient of € only, and
does not affect the imaginary part of the elastic modulus tensor in the
approximation considered.
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A ‘ ‘/ QlA'A2>ZCv;_T+ 3 ( Quw )2&?_7_‘_1 (Q/”)-"'\ 2 spBra
2 N \ psa Ah PSASA/ Sp—S 0 PSASA s;‘,—f—s;_
h Qo \2 $asa 4
- T kmzwy (4' 5)
+ 8n2 AZ,A' (psAsA,,\' Sar + Sa .
Ag” Qn.a )
—_— - CvaT. 4.6
B 21 < p5r? TNALva. ( )

Here €T) is the energy of the thermal phonons:

T%

s Y T e—— —
g 272h35,3

/T
? dzz3(er—1), er= 2 erh.
0 A

The separate terms in (4.5) define the contribution
to the renormalized elastic modulus tensor as the re-
sult of processes of scattering or decay, Ql’)\)\r. Here,

let,t = (K + B)%+ %/isp2 + 1/ 1042 + 18/105C* 4 4/3sAC
+ (K4 B) 3fsp+ A2 44/15C) 4 p("/154 + %¥/s15C),

Qllz,l = "7/15(K +2B)2 4 46/ 405u% + /542 4 4/4C?
=+ 2/5(K + 2B) (1%/ou + 2/34 + %/:C) + 4/ 1s1.(*/34 -+ 8C) +-8/:AC,

Qlt?l=4/15(K+ZB+7/3M+A)2+8/35(K+2B+7/3H+A)C+18/63C2,
Qn, v = Qmw,a= Qam = Q,m; Qurv=0. (4.7)

Substituting (4.5) in (4.3), we get an expression for the
renormalized velocity of longitudinal sound:

2 0-2
s = s,2+p%ch—%aT, (4.8)

which gives, as it ought, a decrease in the elasticity
with rise in temperature. Equations (4.5) and (4.7) de-
termine the value of the coefficients Q%/s*, Q3/s* in
terms of the elastic and anharmonic constants. For the
damping decrement I'), we obtain a formula which was
first discovered by A. I. Akhiezer:t!2]

Iy & 1Q%CvT | pst. (4.9)
It follows from (4.8) and (4.9) that equal contributions
are made to the renormalization of the sound velocity
(neglecting dispersion) by the processes of scattering
and decay, while the damping of the sound is determined
only by the scattering processes (in linear approxima-
tion in 7R).

We now turn to the dispersion equation (4.2) and con-
sider the second component in it. The values of sfz and
I'p appearing in it are equal to

_1 Diyg Y ~ (4.10
Saf———m{ Zx(psﬁ)cﬂf T, Tp=Ty, )
where
Dy = K+ B + 2[3p 4 /34 + 2/15C,
Dy = 5/5(K + 2B) + 5o + o + 2sC. (4.11)

The term considered in the dispersion equation de-
scribes the interaction of first and second sounds. In
other words, in a definite frequency range, the exist-
ence of coupled elasto-temperature waves is possible.
Assuming the corresponding coupling coefficient to be
small,” we obtain the following expression for the fre-
quencies of the coupled elasto-temperature waves:

“YWe note that the ratio s,,2/s? ~ e1/ps?~ (qra®) T/Ms?
serves as the small parameter in our case, where a is the lattice con-
stant, M the atomic mass and q = T/hs is the mean momentum of
the thermal phonon. For T = 10°K, this ratio is of the order of 10™.
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Q2= 312( 1+ e = §°¢%,
s 2—s9
19 .
Qo2 = 5,2 <1 — 4>q2=322q2, (4.12)
542 — $92

These relations were obtained in[*J in a somewhat dif-
ferent form. In contrast with that research, where the
anharmonicity was taken into account by the introduc-
tion of a single averaged constant, here the specific
dependence of the value of s;» on the elastic and an-
harmonic constants is determined. This makes it pos-
sible to estimate the value of the contributions made to
the longitudinal sound velocity from the various mecha-
nisms of interaction of sound with thermal vibrations.
Using the expressions for s,, sz, and s;», we find
the approximate formulas for the renormalized veloci-
ties:
~ D2
§2 = 52— (Q2CvT + Qa2er) /ps* +‘¥;‘;CVT,
52 = s —1/o(D? [ p3s4) Cy T

It is seen from (4.13) that while the contribution to the
velocity of longitudinal sound from processes of scatter-
ing and decay enters with a minus sign, the contribution
arising from interaction with temperature waves is
positive. Thus, on the one hand, the presence of an-
harmonism leads to a decrease in the elasticity with
increase in T; on the other hand, the number of thermal
phonons increases with T, i.e., the pressure of the
phonon gas increases, and so does its elasticity. If, by
making use of (4.5) and (4.10), we calculate the total
effect of these two contributions, we then always obtain
a decrease in the sound velocity for solids (K ~ )
with increase in the temperature ~T* for T < @.

We write down the expression for the damping decre-
ment associated with elasto-temperature waves. It fol-
lows from (4.1) that

(4.13)

— P QZ,_ 2072 I‘ 92_322_3 ZZI‘
I‘=._1( VKSZQH- 2( 2q%) — S122g’ L) (4.14)
Q2 52g2 + Q2 — 5.2q2 — 55202

Substituting the expression for the frequencies £; and
Q. and expanding in a series in s3/s% we get

Sta?ss?
(312 j— 322)2

12257

(52— s22)2 T~ T

Ty~ T+ (T —TY), (Te—Ty).

(4.15)

Both terms in I'; are of the same order and conse-
quently, near the lower boundary of the existence of
elasto-temperature waves  ~ 76’ the damping decre-
ment of first sound is 1ess~than that of second sound.
Here, there are terms in I';, just as in I'p, that do not
depend on the frequency.

The temperature and frequency dependence of the
damping decrements of first and second sound have the
form -

Iy ~ artnQ2er + astyler,

T‘z ~ bﬂ:gz + bz‘l,’U—’t + b3Tu'1ET. (4.16)

Transverse Waves. Let q Il X3 and u Il x;; then Eq.
(3.28) takes the form

463
—pQ% 4 Aun@? + Ajihg? + IQ14,%/Cyy = 0. (4.17)

By estimating the last term in (4.17), we can show that
it will make a contribution to the frequency and damp-
ing decrement of higher order in Q7. Omitting it, we
get

Q2 — 2% + 2iQT; == 0, (4.18)
where
Ty = A¢?/ 2.

The quantities A{ and A{ are determined by Egs.
(4.5) and (4.6) and by replacement of ! by t, we have

st=uplp—A/p, (4-19)

Qi1 =*/15(K 4 2B +"[su + A)2,
Qut,t = Yis(n 4+ 1.:4)3?,

Qui,i = 5fs(K + B + Ysp + 14) @u+ oA +B).  (4.20)

The difference of the dispersion equation (4.18) from
the corresponding equation for longitudinal waves (4.1)
is significant. First, as should be expected, additional
branches of oscillations do not appear for transverse
waves. Second, the specific dependence of st and Iy
on the constants K, y, A, B, C differs appreciably
from such a dependence for longitudinal waves. There
is also a difference in the frequency and temperature
dependence. All this can be used for the experimental
determination of elastic and anharmonic constants.
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