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It is shown that scattering of fast charged particles in a thin single crystal is accompanied by a spa
tial regrouping of the particle flux. The corrections that must be introduced in the cross section for 
the scattering of a fast electron in the crystal as a result of this spatial regrouping are determined. 

1. The scattering of charged particles in a thin single 
crystal was considered in the Born approximation of 
perturbation theory by Ter-Mikaelyan [1J, who pointed 
out the existence of interference effects with respect to 
the transmitted wavelength. In connection with experi
ments on the interaction of particles in thin single
crystal films [2- 4J, it is of interest to consider more 
accurately the scattering of charged particles in single 
crystals. 

The wave function of the charged particle in the 
summary external potential of the crystal atoms 

U(r)= ~ ~dqUo(q)exp(iq(r-Ra)) 

should satisfy the equation 

(L'l + Po2)'¥(r) = 2EoU(r)'l'(r), 

which is valid for relativistic particles at Eo 
= (pg + m 2 ) 112 » U (for nonrelativistic particles 

(1) 

(2) 

Eo = m and (2) coincides with the Schrodinger equation). 
It is convenient to seek the solution of (2) in the 

form 

'l'(r) = const·exp{ip0r + S1 + iSz}. 

The real functions of the coordinates S1 and S2 satisfy 
the equations 

(VS,) 2 - 2poVS, + L'lS,- (VSz) 2 = 2E0U, 

2poVS, + L'lS, + 2VS,VSz = 0. 
(3) 

Assume that the direction of the initial motion of the 
particle makes an angle Bo with the crystallographic 
axis; the particle acquires in the crystal, as a result of 
the multiple scattering, an angle spread ( 82 )L, which 
depends on the thickness of the crystal. 

Let us consider the case of a thin crystal, when 

(4) 

i.e., the multiple-scattering angle in the crystal is 
small compared with the entrance angle. In this case it 
is possible to neglect the term V'S2 in (3) compared 
with p 0 j_. 

We now assume that the inequality 

( 5) 

is satisfied, so that the term ( V'S1) 2 in (3) can be 
neglected. The solution (3) when conditions (4) and (5) 
are satisfied takes the form 
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I dlUo(l) eilr . 
S1 (r) + iS2 (r) =- 2E0 J I . ~ e-•IR •• 

l2 -i- 2po -16 a 
(6) 

Substitution of (6) in (5) causes (5) to be replaced by the 
equivalent condition 

(7) 

so that the wave function of the particle in the external 
field ( 1) becomes 

W(r) = con&t·exp(ip0r + iS2) (1 + S,), (8) 

where S1 and S2 are defined in (6). The limits of ap
plicability of (8) are determined by the inequalities (4) 
and (7). 

We note that by omitting S1 and neglecting the quan
tity l 2 in the denominator of (6)' it is possible to obtain 
from (8) the well known approximate solution of the 
Schrodinger equation for the motion of a fast particle 
(Eo » U) in an external field: 

Vo = po/Eo is the particle velocity. For a sufficiently 
thin crystal, the foregoing analysis is valid also for 
zero entrance angles. 

(9) 

2. The obtained solution makes it possible to show 
that the motion of charged particles in a crystal is 
accompanied by spatial regrouping of the particles. In 
fact, the probability-density distribution in space is 
given by 

W(r)= const· {t-2Re2E0 ~ d!Uo(i)eil•. ~ e-iiR.-;•u.} (10) 
zz + 2p,l- tb 

a 

( Ra - equilibrium coordinate of the atom, Ua - thermal 
displacement). Let the transit time of the particle in 
the crystal be slow compared with the period of the 
lattice vibration. In this case the vibrations affect only 
the change in the positions of the atoms prior to the 
interaction with the particle. Averaging over the vibra
tions yields the expression 

{ 
· diU 0 (I) ei!r -

W (r) = const · 1- 2 Re 2Eo ~ l' + 2Pol- ib e-l'u', 

[ (~)' {)121 (l_j_) ~ eilllnll" + ( 2art )' ~ {)121 (!_]_- 2art ll_L) ~ eilunua]}' 
, nil n1_=#'0 ;nil 

(11) 

where we are considering a cubic crystal, a is the 
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lattice constant, u2 is the mean square of the thermal 
displacement of the atom, and the normal to the surface 
coincides with the axis of the crystal. The crystal is 
regarded as infinitely large in the transverse directions, 
and therefore the dependence on ry and rz in the 
probability distribution {11) is periodic, and we can 
consider only the case when ry and rz vary from 
-a/2 to +a/2. For the particular case of normal inci
dence of the particle (along the x axis) this distribution 
takes the form 

{ ux2 [ ( r -L2 ) Wo(r) = const· 1 - ---- exp - ---=-. 
v0u2pa 2u2 

~x2 ( ~2.x2 ) ( ( r 2 )) J } --2-exp - 2- 2Ko(r-Lx)+Ei - 2~ , a=zZe2. 

(12) 

The validity of this formula is limited to the thicknesse~ 
L2 « pu2 av0 /cL Thus, the distribution of the probability 
density in the transverse plane ( y, z) changes with the 
sign of the charge. The probability distribution ceases 
to be constant and varies significantly with the distance 
to the lattice site. For positively charged particles, the 
probability density in the interstices is larger than 
near the sites. Therefore the positive particles shift 
effectively towards the region of smaller electron 
densities. Negatively charged particles, to the con
trary, have a large probability of passing near the 
lattice sites. Here, naturally, the particle flux through 
the entire cross section of the crystal remains con
stant. 

3. In the case of oblique incidence at small angles 
of inclination, the picture remains the same, but the 
result can be obtained in close form for inclination 
angles 1 » eo »a/ L ( L - crystal thickness). In this 
case, by averaging at a specified eo over the azimuthal 
angle and averaging near eo, it is possible to obtain 
from the small spread of the angles, on the order of 
a/L, for x ~ L »a/eo, 

(13) 

We emphasize that formula (13) is valid for a relatively 
thick crystalline plate, the thickness of which satisfies 
the inequality 

a 8o2 

s;<L<lf1E2Lrad 

(Es = 21 MeV, Lrad- radiation length). Comparison 
of ( 12) and ( 13) shows that the spatial regrouping of the 
particles upon scattering in the crystal depends signif
icantly on the angle eo between the direction of the 
incidence and the crystallographic axis. At small en
trance angles e0 , the effect depends quadratically on 
the path x covered by the particle, and at relatively 
large entrance angles eo, the dependence on the path 
x disappears, starting with lengths L ~ a/e 0 • We note 
that the obtained formulas agree qualitatively with the 
experimental data on scattering of charged particles 
in a crystal [z,3 J, but the limited region of applicability 
of the obtained formulas, particularly condition ( 7), 
does not permit a quantitative comparison with the 
available experimental data. 

4. Let us see how the ordering action of the crystal 
lattice will affect the process of scattering in the 

crystal. Let us calculate the mean square of the 
scattering angle in a thin crystal. In this case the 
usual Born analysis leads to interference effects [ 1J. 
The cause of these effects is that at high energies the 
longitudinal part of the momentum transferred to the 
Coulomb field of the nucleus becomes small. If this 
quantity becomes smaller than the vector of the re
ciprocal lattice of the crystal, then the screened 
Coulomb fields of the different atoms act coherently, 
and the resultant amplitude of the process increases. 
The effective number of the coherently-acting atoms 
depends on the angle of entrance of the particle rela
tive to the crystallographic axes, leading to the occur
rence of interference phenomena [ 1J. However, the 
influence of the crystal lattice on the scattering process 
will become manifest also in the fact that the number 
of particles with different impact parameters changes. 
When considering positively charged particles in a 
crystal, the particles will move predominantly in the 
region r.L ~ a/2, i.e., with large impact parameters, 
and consequently will be scattered less intensely, 
causing a decrease in the mean square of the scattering 
angle. Using the well known formula for the scattering 
amplitude 

(14) 

and choosing the wave function in the form {8), we sub
stitute the amplitude obtained from (14) into the 
formula for the mean square of the scattering angle 

<e2> = I e2!:'!_dQ. 
J dQ 

It is easy to obtain 

(82) =· (82)T.M{1 + <D(eo, L)}, ( 15) 

where ( e2 )T-M is the mean square of the scattering 
angle, obtained in the paper by Ter-MikaelyanC 1J 

1 -a-~'--
vo-;;Jpa ' 

<D(8o,L)= 2 2y 
-a---!n-

vo8o2pa Uzx2 ' 

a 
So<

L 

a 
8o'5>. L (16) 

It should be noted that the criterion for the applica
bility of the obtained formulas for <I> (eo, L) are con
nected with the condition I 81 ( r) I « 1, by the condition 
for the applicability of relation (8) for the wave function 
of the particle. In the case of small entrance angles 
eo « a/L, this condition imposes a limitation on the 
thickness of the crystal L2 « pu 2av0 /Cl!, and in the 
latter case, eo>> a/L, the expression for <I> (eo, L) is 
applicable provided aje~pa « 1. 
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