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The conditions are established under which the space-time structure is compatible with the possibil­
ity of simultaneously satisfying the causality and equivalence principles ("causal completeness"). 
Metric forms with "removable" singularities analogous to the singularities on the gravitational 
radius in Schwarzschild's metric form are investigated from the point of view of satisfying these 
conditions. It turns out that in order to satisfy these conditions it is necessary to extend the 
Einstein-equation solutions represented by such forms, but the required extension is much narrower 
than that attained by Kruskal' s method. The connection between both types of extensions is estab­
lished. 

1. In the general case, the Riemann space cannot be 
covered by a single system of coordinates, and can be 
represented only as a union of a finite or denumerable 
number of regions, each of which admits of such a 
covering. Therefore a solution obtained for Einstein's 
equations in a certain coordinate system does not of 
necessity define space time ( S-T) as a whole. This 
raises two problems: a) establishment of a criterion 
of completeness of S-T on the basis of physical con­
siderations, and b) extension of the solutions of 
Einstein's equations beyond the limits of the region of 
their initial definition, when this criterion is violated. 

UsuallyL 1- 4 J S-T is regarded as complete in the 
following sense: the geodesics can be continued to 
infinite values of the affine parameter or to a singular 
point - a point where the geometric invariants are 
singular. (We recall that the affine parameter for 
space-like geodesics has the meaning of length, and 
for time-like ( TL) geodesics it has the meaning of the 
proper time of body moving on the geodesic, while for 
null geodesics it has no direct physical interpretation.) 
There are no known theoretical or observational justi­
fications for the necessity of this type of completeness 
- affine completeness. The physical meaning of the 
requirement of affine completeness is not sufficiently 
distinct, owing to the fact that it implies equivalence of 
all types of geodesics, to the absence of a unified 
physical interpretation of the affine parameter for all 
the geodesics, and also to the uncertainty of the degree 
to which it guarantees the possibility of satisfying the 
causality principle. 

In order for the criterion of completeness of S-T 
to have a clear-cut meaning, it must be defined in 
terms of concepts pertaining to local macroscopic 
processes ("observer"). We shall say that S-T is 
causally complete if its structure admits the possibility 
of satisfying the following physical principles. 

I. ("Chronometric principle"). A complete experi­
ment determining all the space-time relations between 
bodies includes only local measurements on moving 
bodies; in particular, the only direct measurement of 
intervals in S-T is measurement of the proper time of 
the bodies (see, e.g.,C5 J). 

II. ("Strong" equivalence principle). Everywhere in 
S-T where the geometric invariants are non-singular, 
a freely falling non-rotating body is acted upon, ac­
curate to small deviations due to the finite dimensions 
of the body, by a system of physical laws independent 
of the curvature of the S-T along the world line of the 
body (see, e.g.,C6J). In particular, the body either has 
a history that extends in units of proper time into the 
past and the future without limit, or its world line 
reaches a singular point of S-T in a direction in which 
this does not take place. 

III. (Causality principle). The irreversibility of the 
causal sequence of physical events is a general condi­
tion for physical realizability of bodies. In particular, 
in the S-T region encompassed by a macroscopic 
process (and therefore by a causal and irreversible 
process), the only physically realizable bodies (they 
can arise or can be produced from other bodies, they 
exist either "primordially" or are introduced from 
the outside) are those and only those on which the ir­
reversible processes have the same direction as the 
aforementioned process. 

In order to formulate a criterion that determines 
when the structure of the S-T agrees with principles 
I-III, it is convenient to regard the S-T as an open 
manifold with respect to time. This has physical justi­
fication in the fact that any concept of completeness of 
S-T must imply inevitably that the bodies cannot cross 
the boundary of the S-T. Therefore the points of the 
boundary of the S-T either cannot be reached by the 
matter, and it is then meaningless to regard them as 
an element of physical reality, or else are singular, and 
then there are no space-time relations in them in the 
usual sense. Thus, let us assume that the temporal 
boundary of the S-T, namely an aggregate of the initial 
and final points of TL geodesics, does not belong, by 
definition, to the S-T. Inasmuch as the geodesics are 
not continuable beyond the singular points of S-T, the 
latter belong to the boundary of S-T, so that the S-T 
does not contain its own singular points. By virtue of 
the latter circumstance, the S-T is locally Lorentzian 
at all its points, i.e., at each S-T point there exists a 
local light cone and in each direction inside the cone 
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there passes strictly one TL geodesic that is continu­
able in both directions from the apex of the cone. 

Under the indicated conditions, in order that the 
structure of S-T agree with 1-111, it is necessary and 
sufficient to satisfy the following criterion of causal 
completeness. 

A. At all points of the S-T there can be defined on 
the local light cones cavities of absolute future and 
absolute past and, by the same token, directions of TL 
geodesics from the past into the future, such that 

a) the direction of the TL geodesic from the past 
into the future does not change over its entire extent; 

b) each TL geodesic can be continued into the 
future (defined in accordance with condition a) either 
to the infinite values of the affine parameter, or to a 
singular point; if the TL geodesic is continued in the 
past only to a certain value so of the affine parameter 
s, then no other TL or null geodesic reaching this 
point can be continued beyond the point where s = so 
(this point is not necessarily singular), i.e., the point 
belongs to the boundary of S-T. 

B. There exist TL geodesics that can be continued 
in the past either to infinite values of the affine parame­
ter, or to a singular point of S-T. 

In accordance with principle I, the properties of 
S-T are formulated here for TL geodesics. In view of 
the local Lorentzian behavior, the equivalence principle 
is valid for at least a sufficiently short interval of the 
proper time of the body. Then the conditions A, a) and 
A, b) are necessary and sufficient to permit satisfac­
tion of the causality and equivalence principles in their 
complete formulation. All that needs explaining is the 
condition A, b). Let a TL geodesic y be continuable 
only to a finite value s 0 of the affine parameter s, the 
point where s = so not being singular. If it is located 
in the future with respect to other points on r, then the 
principle of equivalence can be violated by producing 
(say, by collision between the bodies) a body having a 
geodesic y as its world line. This geodesic would end 
at s = so, i.e., in contradiction to II, the body would 
cease to exist at a nonsingular S-T point. On the other 
hand, if the point where s = so lies in the past, then, 
even when observing the body on y, one cannot state 
that it was produced at s = so, since it can fall on y as 
a result of a non-geodesic process (e.g., collision). 
Further, it is impossible to produce a body that would 
reach the point where s = so, by virtue of the causality 
principle: according to A, b), this body would have to 
be sent in the past. Finally, if the criterion B is not 
satisfied, then in S-T there are neither "sources" of 
matter - singular points of S-T lying in the past, nor 
geodesics on which the matter could exist "primord­
ially." Therefore, without violating II, it is impossible 
to propose the existence of even trial bodies, thus 
making 1-111 physically meaningless. 

Let us make a few remarks concerning TL geodesies 
that cannot be continued infinitely in the past or to a 
singular point. Their physical interpretation is possible 
only in connection with the causality principle. By the 
same token, supplementation of I-II by the causality 
principle III expands the class of Riemannian spaces 
that admit a physical interpretation, and even this in 
itself justifies the study of the consequences that fol­
low from adding the causality principle to the general 

theory of relativity. Inasmuch as the initial points of 
these geodesics are not singular, matter can fall on 
them only as a result of nongeodesic processes. If 
there are no such processes, the geodesics are 
"empty." However, the general theory of relativity 
does not imply that all the TL geodesics are world 
lines of real bodies. Finally, in S-T with geodesics 
of this type, reversal of the direction of time would 
violate the equivalence principle. This imparts im­
portant irreversibility features to S-T. On the other 
hand, when there are no such geodesics, conditions A 
and B are not violated when the past is replaced by the 
future. In this case we shall say that S-T is causally 
reversible. 

2. Let us apply the foregoing considerations to 
solutions of Einstein's equations, in connection with 
which the problem of the S-T has been discussed many 
times (e.g.,C 1 ' 3 ' 4 ' 9 - 13J). These are the well known 
vacuum solutions of Schwarzschild, de Sitter, Kottler, 
Reissner-Nordstrom, and also the recently published 
solutions of Newman, Tamburino, and Unti [?J and 
Kerr [sJ. The S -T described by each of them is char­
acterized by the existence of a family of geodesies with 
the following properties: 

a) Consideration of the family is sufficient in the 
study of the completeness of S-T (see, e.g.,C 3J). 

b) Only two coordinates, which we shall denote by 
~ and ?;, vary along the geodesics of the family; these 
coordinates can be chosen such that the metric form 
becomes (we omit terms that do not depend on d~ and 
d?;) 

-ds2 =A (sl di,.'- B(s) d£'. (1) 

where the coefficients A and B have the following 
properties: 1) they depend only on ?;, 2) they reverse 
sign on the surface r defined by the equation ?; o= 1 and 
their order of magnitude at ?; ~ 1 is 

B(sl ~ ~ -1 (2) 

and 3) in the regions ?:o < ?; < 1 and 1 < ?; < ?:k ( ?:o 
< 1 and ?:k > 1 are constants) they retain their sign 
and are monotonic differentiable functions of ?;. For 
example, the Schwarzschild metric form can be repre­
sented in the form 

-ds2 = r(r- 1)-1dr2 - r-1 (r -- 1)dt2 , r = \;, t = £. 

We use below only the foregoing properties of the cited 
solutions, and the results pertain equally well to any 
solution of Einstein's equations that possesses such 
properties. 

Integrating the equations of the geodesics for ( 1), 
we obtain Bd~ = v-1 ds, where v is an arbitrary con­
stant. Hence, by virtue of (1), we obtain along the 
geodesics 

d'; -
1; = consl, ds = ± y-A when v = oo, 

di,. VB --- d(; if-v'B ----"- = esignB -1'1- v2B, - = e"---===-
d£ A ds vf'AB ' 

when 0 < lvl < oo, 

(3) 

(4) 

where I E I = 1 and sign B is the sign of the coefficient 
B. The roots here and below are understood in the 
arithmetic sense. Integrating (4) under condition (2), 
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we verify that, independently of the choice of the time 
direction, it is always possible to realize a body having 
the geodesic (4) as its world line and reaching the point 
where !; = 1 after a finite interval of proper time. But 
in this case I~ I = 00 , i.e., the body is outside the S-T 
region covered by the system of coordinates ~. and 1;, 
thus indicating the need for extending the solution (1). 

In this typical example, the incompleteness of the 
solution is connected with the course of the geodesics 
near the surface on which the metric form (1) has 
singularities of the type (2). We shall consider exten­
sions that eliminate the causal incompleteness or the 
irreversibility caused by precisely such singularities 
of the solutions of type (1). Many of the aforementioned 
solutions have singularities of type (2) on several non­
intersecting surfaces. The extension procedure is 
analogous for each of them. It is therefore sufficient 
to consider the vicinity of only one of them. 

Let us define our terminology and notation. The 
local map [HJ of an open region of S-T is defined as a 
system of local coordinates covering this region. The 
latter is referred to as the region of the local map. 
The S-T as a whole is defined by a set of local maps, 
the regions of which in their aggregate cover all of 
S-T, and by metric forms specified on each of the 
local maps; these forms are solutions of the Einstein 
equations in the coordinates of the map. In a particular 
case, the set can consist of one map. Since the regions 
of the maps are open, it follows that, first, the S-T as 
a whole is open (in agreement with the statement made 
above) and, second, the S-T is connected only when the 
region of each map overlaps the region of at least one 
other map. With this, in order that each of the maps 
define in the overlap region the same topology, and in 
particular, in order that the convectiveness of the 
curves be conserved, the transformation from the co­
ordinates of one map to the coordinates of another 
should be at least topological, i.e., mutually unique and 
mutually continuous. Third, infinite values of the map 
coordinates do not belong to the map. The direction of 
time in S-T should be specified in a consistent manner 
along each TL geodesic (the reference direction of the 
TL coordinate has no direct physical meaning). Imply­
ing time direction, we shall speak for brevity simply of 
the direction of TL geodesics. 

The vicinity 0(- oo < ~ < oo, /; 0 < !; < /;k) of the 
surface r is assumed to be the region of the local map 
( ~' /;). Let R be the part of 0 where 1 <!; < /;k, and 
T the part of n where /;0 < !; < 1 (this agrees with the 
notation in [laJ). Then n = R + T + r. In view of (2), 
B > 0 in R and B < 0 in T. We choose /;o and /;k 
such that B < 1 in n. 

The natural way of extending the solution (1) is to 
assume geodesics (4) with some fixed v as the co­
ordinate lines of a space-like coordinate, and the value 
of the parameter s along them as the TL coordinate. 
The region into which the geodesics go will then 
certainly belong, at least in part, to finite values of the 
new coordinates. 

LetT and p be the new coordinates; dT = a1d~ 
+ a 2 d~, dp = a3 d~ + a4dl;, and the geodesics (4) at 
v = 1 are the coordinate lines p. By definition, dT 
= ds and dP = 0 along the latter, thus imposing two 
limitations on the four quantities O!j. Setting a1 =as 

= 1 and finding with the aid of ( 4) that at E = ± 1 

a•=±signBY~¥1-B, a4 =±signBYA 1 , 
B B '11-B 

we represent the connection between T, p and ~. !; in 
the region of overlap in integral form: 

' - b -
r V'A ---t'=;±JsignB -11-Bd\,, 
,, B 

I VA dt p = s ± J sign B - - . ( 5) 
'" B 11-IJ 

Depending on the sign in front of the integrals, we get 
two systems of coordinates T\ p + (upper sign) and 
T-, p-, analogous to the freely falling coordinate sys­
tems of Lemaitre for the Schwarzschild metric. 

In n - r, the correspondence between the coordi­
nate systems (T·,~·),(T-,p-), and(~,/;) istopolog­
ical. In fact, a pair of finite values ~. !; of ( 5) in 
n - r, where !; f 1, is in unique correspondence with 
a pair of finite T± and p±. To the contrary, in view of 
(5) we have 

(6) 

The integral on the right side converges as a result of 
(2), and since the integrand does not reverse sign, the 
dependence of p± - T ± on !; is monotonic. Therefore 
each pair of values of p± and T± from n - r corre­
sponds strictly to one value !; f 1, and then any of the 
equations in (5) defines uniquely a finite ~. Thus, the 
connection between ( ~' !; ) and any of the systems 
( T+, p•) and ( T-, p-) in n - r is mutually unique, as 
is consequently also the connection between ( T •, p •) 
and ( T-, p -). The mutual continuity and moreover the 
differentiability of the transformations between the 
systems in question follow from the fact that all the 
partial derivatives of T± and p± with respect to ~ and 
!; in n- r exist, and the Jacobians J± = ±vAB/-rr-=13 
of the transformations (5) are of definite sign in n. 

Since the integrals in the right side of ( 5) tend, by 
virtue of (2), to - oo as !; --- 1, the points on r belong­
ing to the local maps ( T±, p±) correspond to ~ = ± 00 • 

By the same token, each of the maps ( T±, p±) covers 
one of the "coordinate infinities" ~ = ±00, !; = 1. 

Substitution of (5) in (1) yields 

-ds2 = (1 -B) (dp±) 2 - (d-t±)'. (7) 

Unlike (1), the forms (7) have no singularities on r. 
In this sense, the singularities of the form (1) on r 
are removable by the coordinate transformation (5). 
We note, incidentally' that the points on r where I~ I 
< 00 , belonging to the map ( ~. /;), do not belong to the 
maps (T±,p±), inasmuchas IT±I and IP±I are in­
finite in them. Therefore the form (7) extends the 
metric given by (1) beyond the limits of the local map 
( ~. !; ) , but it does not remove essentially the singulari­
ties in the region of the map ( ~' !; ) • In n - r, the 
S-T metric defined by the form (7) coincides with the 
metric defined by (1), since in n - r the correspond­
ence between the three coordinate systems under con­
sideration is topological. 

We shall show that the causal incompleteness of 
S-T, due to the course of the geodesics near r, can 
be eliminated if the solution (1) is extended by adding 
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to the local map ( ~, ?; ) , with the metric form ( 1) 
specified on it, local maps ( T±, p±) with metric forms 
(7) specified on them. To this end we trace the course 
of the TL geodesics in the S-T region covered by the 
indicated local maps (we retain the symbol n for this 
region), and specify their direction in suitable manner. 

The geodesics (3) ~ = const near r belong com­
pletely to the map ( ~' ?; ) . They are time-like only in 
T, meaning that they are continuable as TL lines only 
up to r, but not into R. By virtue of (3) and (2) their 

length I J 00 ~ ds I from the point with ?; = 1 to any 
1 

point with ?; < 1 is finite. Therefore, only a time 
direction corresponding to decreasing t is compatible 
with causal completeness in T. 

As already shown, the geodesics (4) do not reach r 
in the region of the map ( ~' t). Consequently, in the 
region of the map ( ~, ?; ) the surface r consists of 
initial points of the TL geodesics emerging from it, 
and, by definition, does not belong to S-T. By the same 
taken, the local map ( ~' ?; ) breaks up into two: with 
?; > 1 and with ?; < 1. The physical meaning of this 
statement is that exchange of bodies or signals directly 
between the regions of S-T of the two maps is impos­
sible. 

Substituting (5) in ( 4) we obtain the equations of the 
geodesics (4) in terms of the coordinates T± and p±: 

_d~ = 1 ± e 1'1 - v:Jlj_f1_- B 

dr± 1 ± el'i-Bl'i- vzB 

As above, the upper signs pertain to the coordinates 
T+ and p+, and the lower ones to T- and p-. Near r, 
i.e., as B - 0, we have 

1 +B/2 

v2 -1 B 3v4-2v2 -1 ---+----
v2 + 1 2 ( v2 + 1)2 

if ±e = 1, 

if ±e = -1. 

(8) 

(9) 

It follows therefore that near r, the geodesics (4) 
break up on each of the maps ( T±, p±) into two families: 
family Ya of geodesics that approach r with a slope 
~ 1 + B/2, and family Yp of geodesics that approach 
r with a slope ~(v2 - 1)/(v2 + 1) f 1. On the map 
( T+, p+) (upper signs in (9)) the family Ya consists of 
geodesics with E = 1, and Yp of geodesics with E = - 1, 
while on the map ( T -, p-) the relations are reversed: 
E = 1 for the family Yp and E = - 1 for the family Ya· 
In other words, the geodesics with E = 1 ( E = - 1) on 
the map ( T+, p +) belong to the family Ya ( Yp), and on 
the map ( T-, p-) to the family Yp (ya). 

Since by virtue of (6) the lines t = const on the maps 
( T±, p±) are straight with unity slope, and since B > 0 
in R and B < 0 in T, it follows from (9) that the 
geodesic families Ya in R and T approach r asymp­
totically, i.e., they do not reach r within the limits of 
the corresponding inap, going off to coordinate infinity 
whereas the geodesic families Yp penetrate r, and 
consequently their sections close to r can be traced 
within the limits of the map. Inasmuch as the geodesic 
families Ya on the other map belong to the family Yp, 
the section of each of the TL geodesics (4) close to r 
can be traced on one of the maps: the geodesics (4) are 
continuable everywhere in n. 

We now specified directions that are compatible with 
the criterion of causal completeness for the TL 
geodesics in n. We are essentially referring to com­
patibility of the directions of the time on the maps de­
fining n, since the region of each of them, by virtue 
of the definition of the system of coordinates, is 
topologically isomorphic to part of a Euclidean plane, 
and the metric forms (1) and (7) specified on them do 
not have any singularities within the limits of the maps. 
By the same token, on each of the maps, accurate to 
curved geodesics, the picture of the geodesics is the 
same as in the open region of the Minkowski S-T, and 
consequently, the directions of the TL geodesics on 
each of the maps can be made compatible by specifying 
one of the two conceivable time directions. 

Let us establish first several relations. By virtue 
of (7), the value of the local speed of light in coordi­
nates T +, p + and T-, p- is the same and is equal to 
( 1 - B r112• We denote by 13± the ratio of the deriva­
tive ctp±j dT± along the world line of the body to the 
local speed of light. From (5) it follows that 

1-B/2 B/2 dr+ --- - d~ 
p± =--==- ---==--- = 11 - B ± l'AB- = 

~-B ~-B~ ~ 

1 B d£ 
-------
1'1-B 1'1-Bdr± 

(10) 

Along the world line of a physically realizable body 13± 
< 1. Inasmuch as ( 1 - B/2 )/~ > 1 in R and in 
T, and l1- B > 1 in T, we ftnd from I 13±1 < 1 that 
in R we have 

and in T 

dr+ 
dr- < 0, 

d~ 
dr+ < O, 

d\, 
a,-> o. 

(lla) 

(llb) 

As was already established, only one time direction 
in T is compatible with causal completeness, namely 
a direction corresponding to decreasing ?;. (We note 
that this result can be obtained also by considering the 
motion of bodies on the geodesics (4). When the time 
in T is in the direction of growing t, the causality 
principle is violated.) Therefore, by virtue of (11), the 
direction of the future in T corresponds to a growth of 
T+ and a decrease of T-, and in R to either a growth 
or to a decrease of all the TL coordinates T+, T-, and 
~- There can be no additional limitations on the time 
direction in R in view of the invariance of the metric 
form (1), specified on the initial map ( ~' t), relative 
to the change of the sign of ~. 

Let us see how to reconcile, under the foregoing 
limitations, the time directions in R and T. It is ob­
viously sufficient to regard each geodesic on that local 
map on which its section near r is represented com­
pletely. In other words, on each of the maps ( T ±, p ±) 
it is necessary to consider the geodesic families 
Yp ( ± E = -1 ). By virtue of (10) and (8) we have 

-- d~ eB 1'1 - v2B 
l'AB-= , 

dr± 1±el'1-Bl'1-v2B 

whence we get d?;/ dT+ < 0 and dt/ dT- > 0 for the 
geodesic families Yp· 

(12) 
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Assume that in R the direction of time corresponds 
to the growth of 7+, 7-, and ~. Then, by virtue of 
d?;/d7+ < 0, on the local map ( 7+, p+), the geodesic 
families Yp cross r in the direction from R to T, 
i.e., the motion of physically realizable bodies through 
r is possible and proceeds from R into T. The situa­
tion is different in the region of the map ( 7-, p-). By 
assumption, the time direction in R corresponds to 
growing 7-, whereas in T, by virtue of d!;/ d7- < 0, it 
corresponds to decreasing 7-. Therefore on the 
( 7-, p-) map the geodesic families Yp are directed 
away from r both in R and in T. By the same token, 
the surface r on the map ( 7-, p-), as on the map 
( ~' !; ) , consists of initial points of the TL geodesics 
outgoing from it, meaning that it does not belong to 
S-T. The map ( 7-, p-) breaks up essentially into two 
maps, one of which pertains to R and the other to T. 

When the time direction in R corresponds to de­
creasing 7+, 7-, and~' the result is similar, but the 
geodesics pass from R into T within the limits of the 
map ( 7-, p-), and on the map ( 7+, p+) the surface r 
does not belong to S-T. 

Thus, there exist two combinations of time direc­
tions on the considered local maps, compatible with the 
causal completeness of S-T. This completes the proof 
of the statement that causal incompleteness of S-T is 
eliminated by the considered extension of the solution 
(1). The extended solution is defined by five local maps, 
ofwhichonlyone, (7+,p+) or (7-,p-), connectsthe 
regions R and T. Both conceivable time directions are 
compatible with causal completeness in R, but only one 
in T. In this sense, R is causally reversible and T is 
causally irreversible. The latter circumstance leads 
to the physical nonrealizability in T of bodies that go 
over from T into R. The points of the surface r 
belong to S-T only in the region of the map connecting 
R with T. In the region of other maps it represents, 
as it were, a cut on the map (not in S-T !) , ensuring 
causal completeness. (We note the analogy with the 
theory of complex variable, where a cut on the complex­
variable plane ensures uniqueness of functions.) 

It is interesting that the extension in question re­
stores in a certain sense the affine completeness of 
S-T. Near r, namely from T into R, only the TL 
geodesics ~ =canst are not continuable. However, if 
we disregard the difference in the physical interpreta­
tion of TL and space-like geodesics, then the geodesics 
~ = canst in R can be regarded as continuations of the 
TL geodesics ~ = canst from T. Then all the geodesics 
are continuable in the union of the regions of all the 
maps ( ~' !;), (7±, p±). 

3. The S-T of the extended solution (1) contains a 
causally irreversible part and in this sense is causally 
irreversible on the whole. Let us consider briefly the 
connection between the obtained extension and the ex­
tensions that lead to a causally reversible S-T (for 
example [3 , 10 ' 13 ] ). 

We use a transformation analogous to that used 
in[ls, 3 J. We introduce new variables x and 17 with the 
aid of the relations 

t -

sh } U sign B V ~ d\, + £ J = Et ctg (X + 'l), ,, 
t -

(13) 

sb{ U signB V ~ di,- (; J = ezctg()(-11), 

where I E1 I = I E2l = 1. The form (1) is transformed in 
this case into 

4ete:;8 
-dsz=Q(dx2 -dYJ2) Q= (14) 

' lsin(x+Tl)sin(x-YJ)I 

The transformation (13) is mutually unique and 
mutually continuous in n in the intervals to < {;; < 1 
and 1 < {;; < !;k· In view of the periodicity of the co­
tangent, it makes it possible to map topologically 
either R or T in the interior of any square separated 
on the ( x, 'IJ) plane by the lines x - 1] = V11T, 

X- 1] = ( V1 - 1 )IT, X+ 1] = Vz1T, and X+ 17 = ( Vz + 1 )1T, 

where v1 and Vz are integers. We denote by K(v1v2) 
the interior of the square with given v, and v2, by ( kl) 
the vertex of the square lying on the intersection of the 
lines X- 17 = k1T and X+ 'I)= l1T, and by (kl, mn) the 
side of the square joining the vertices ( kl) and (mn) 
(without the vertices). If 1] is the ordinate axis, then 
( V1 Vz) is the lower vertex of the square K ( v 1 v 2 ). 

We map T in K ( 00) at E1 = - 1 and E2 = 1, and R 
in K( 10) at E1 = Ez = -1 (see the figure). The region 
T is mapped on the part of K ( 00), which we shall call 
the map T, bounded by the diagonal {;; = !;0 (see the 
figure), while R is mapped on the part of K ( 10) - the 
map R -bounded by the lines {;; = l;;k. 

At the indicated values of E, and E2 the maps T and 
R are "joined together" in the sense that in the open 
region V, consisting of the maps T and R and the 
boundary (00, 01) between them, the form (14) has no 
singularities, and in particular, on approaching the 
boundary (00, 01) from K(OO) and from K(10), the 
coefficient Q tends to the same limit ( cos X cos 7J r', 
and the geodesics continue beyond (OO, 01) without a 
change of slope. It is easy to see that the segment 
(00, 01) is the part of r with ~ = 00, belonging to the 
map ( 7+, p+). The vertex (OO) is the part r with 
I ~ I < "" of the intial map ( ~, {;;). The transformation 
(14) compresses it in the point (OO), but this leads to no 
physical consequences, since that part of r, as shown, 
does not belong to S-T (it is on the "cut"). The seg­
ments (OO, -10) and (10, 00) are the part of r with 
~ = - 00 , corresponding to the "cut" on the map 
( 7-, p-). The region V, regarded as a local map ( 7], x) 
with a metric form ( 14) specified on it, encompasses in 
this manner the region of all maps ( ~, {;;), ( 7 +, p +) and 
( 7-, p-). It can be shown that, by considering the map 
( 1], x), we obtain also the physical consequences ob­
tained above for the case when the "cut" is made on 
the map ( 7-, p-) (a cut on the map ( 7+, p+) corre­
sponds to the mapping of R in K ( 0 - 1)). In particu­
lar, the region of the map ( 7J, x) can be part of a 
causally complete S-T. 

7.+'1};0 
(-II) 
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The methods of constructing the maps ( T±, p±) and 
the map ( 1], x) are, however, greatly different. The 
former is natural in the sense that it is based on intro·­
ducing a system of coordinates made up of bodies 
moving from the region of the initial local map. The 
resultant extension is the minimum required to be 
able to follow without limit the history of any body, and 
the local maps obtained are automatically overlapping. 
In the second method, different transformations 
(different E1 and E2) are used in R and in T, giving 
non-overlapping maps, although admitting of a "join­
ing." It is not known whether both methods always 
lead to the same result. This has made it necessary to 
consider first the "natural" method, by obtaining the 
minimum extension. Henceforth, for the sake of 
brevity, we shall use "joining," corresponding to 
Kruskal' s procedure. 

In order to obtain a causally reversible extension, 
in addition to the mappings already performed, we map 
T in K ( 1 - 1) and R in K ( 0 - 1). These mappings 
can be "joined" with each other and with the previously 
obtained mappings by connecting the segments (10, 00),, 
(O- 1, 00), (-10, 00) and the points (OO). The form 
(14) has no singularities in the obtained union W of the 
mappings, and W can be regarded as a local map of 
S-T. By virtue of the method used to construct W, the 
picture of the geodesics in W is symmetrical with re­
spect to the plane x = 0. Consequently, all the relations 
on W do not change when the direction in which 1] is 
reckoned is changed, and by the same token the S-T 
region of the map W is causally reversible. Thus, 
causal reversibility is attained by symmetrical doubling 
of the causally irreversible map V. 

We note that with the aid of joining it is possible to 
effect also more complicated constructions. Let us take, 
for example, two maps W superimposed one on the 
other, and instead of joining on each map along ( -10, 
00), we effect the joining crosswise: K ( 0 - 1) of the 
lower map with K ( 00) of the upper one, and vice­
versa. We obtain a two-sheeted map (which can be 
mapped if desired on a plane), a region of which may 
belong to a causally reversible S-T. We see that 
formally nothing prevents us from obtaining multiply­
sheeted maps with different joinings. Inasmuch as 
solutions of the type (1) with several surfaces similar 
to the surface r can be extended into solutions with an 
unlimited number of such surfaces (e.g. ,c2 ' 3 J), it is 
clear that the joinings can lead to a very complicated 
structure. 

In this connection it becomes doubtful whether the 
extension of the Schwarzschild S-T constructed by 
Kruskal [lOJ is maximal. Kruskal proves this stating 
that in the extension constructed by him there are no 
geodesics that can be continued beyond its limit. But 
it is also necessary to show that the permissible join­
ings do not lead to a larger extension with the same 
properties. (The problem of permissible joinings has 
so far not been considered at all in topologically com­
plicated variants.) It is possible that a more correct 
view is that Kruskal' s extension and an analogous ex­
tension for (1), represented by the map W, are the 
minimal causally complete and reversible extensions, 
whereas extension of solution (1), represented by the 
map V or the maps ( T±, p±) and ( ~, ?;) is the mini-

mal causally complete irreversible extension. It is 
possible that it is precisely the minimality which will 
make these extensions physically preferred. 

4. An important conclusion that follows from the 
foregoing is that the physical requirement of simultan­
eous satisfaction of the principles of causality and 
equivalence does not lead to the requirement of geo­
metrical completeness, but only to the requirement of 
causal completeness of S-T - geometric completeness 
in one of the two TL directions (into the "future"). In 
a causally complete S -T, a family of TL geodesics 
which are not continuable without limit in the past, is 
admissible. This was illustrated above by examples 
pertaining to the vacuum regions of S-T with spherical 
or cylindrical symmetry in connection with the fact that 
the number of exact solutions of Einstein's equations, 
for which extension methods have been developed, is 
small, and that almost all of them pertain to vacuum. 
The next example, however, shows that a geometrically 
incomplete S-T structure is physically conceivable 
also in the presence of large masses of matter. 

Let us examine a world produced as a result of 
anticollapse (explosion) from a Schwarzschild singu­
larity. Prior to the start of the anticollapse, this world 
could formally be described by the pure vacuum 
Schwarzschild solution continued without limit into the 
"past". However, such a "empty duration" lacking any 
physical events has no content. Essentially, a boundary 
of a physical world "in the past" is part of a light cone 
with a vertex at the point corresponding to the start of 
the anticollapse. The TL geodesics starting on this 
boundary are the ones forming a family of geodesics 
which cannot be continued into the "physical past" 
without limit. This is a physical fact, having no direct 
bearing on the formal geometry of the Riemannian 
manifold describing the S-T, because the geodesic 
families can be continued formally beyond the limit of 
the physical S-T either without limit or to the Schwarz­
schild singularity. A physical world represents only 
part of a geometrically complete manifold. 

The same meaning is possessed also by the con­
sidered causally irreversible extensions. Formally, 
they are geometrically incomplete, admitting of further 
extension (symmetrization, "increase of multiplicity," 
"doubling," or Kruskal extension), which leads to a 
complete geometry. The physical meaning of the S-T 
boundary as a boundary separating the physical region 
from a region having no events (matter) is less lucid 
for vacuum solutions. The clarity is restored by as­
suming that only in the physical part of the S -T is 
there "trial" matter. The physical essence of such an 
assumption is ensured by condition B of Sec. 1. 

The need for symmetrizing causally irreversible 
S-T-i.e., extending it to a complete geometry-to a 
causally reversible S-T does not follow from physical 
facts, To the contrary, physical observations serve as 
evidence in favor of the simultaneous satisfaction of the 
principles of causality and equivalence in macroscopic 
processes. Therefore the requirement that the struc­
ture of S-T admit of the possibility of time reversal 
(that it be formally geometrically complete), would be 
an independent postulate, introduced independently of 
experiment. In this sense, at the present stage of de­
velopment of the theory and of observations, one must 
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admit of a logical possibility of a physical world with 
incomplete geometry. 

5. The considered exact solutions of Einstein's 
equations are vacuum solutions with spherical or 
cylindrical symmetry. Actually we considered only 
part of their region of definition: the vicinity n of the 
surface r. However, the method of extending the solu­
tions is based essentially on the possibility of unlimited 
continuation of the surface r into the future and on 
relation (2), which are valid for the metric in vacuum. 
If these conditions are violated when joining the ex­
tended vacuum solutions to the non-vacuum ones, then 
the foregoing considerations regarding the direction of 
time in causally irreversible extensions are not applica­
ble. That is to say, in anticollapse, the joining with the 
solution for matter cuts off part of the Schwarzschild 
"singular sphere" in the future. Therefore the direc­
tion of the TL geodesics from T into R, which can be 
realized in the vacuum region in the case of anti­
collapse, is compatible with the causality principle. 
This is due to the well known fact that a body from R 
cannot penetrate into T in the case of anticollapse - it 
will collide first with the front of the expanding matter, 
beyond which the T region no longer exists. To the 
contrary, the causality principle is not compatible with 
such a process as the discarding of a shell by a body 
situated "under the singular sphere," for in this case 
the structure of the "singular sphere" in the remote 
future remains the same. 

The joining of causally irreversible extension with 
non-vacuum solutions outside the vicinity of n (e.g., a 
collapsing body in the metagalaxy) does not affect the 
considerations of compatibility with the causality 
principle of only time direction in T, corresponding to 
motion from R into T. 

The author is sincerely grateful to L. E. Gurevich, 
A. Z. Dolginov, A. G. Doroshkevich, I. D. Novikov, 
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