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The Abrikosov, Gor'kov and Dzyaloshinskii technique [1oJ is used to investigate the excited states of 
electrons in semiconductors. An equation for the exciton spectrum is derived. In the limiting case 
of large excitons radius the equation goes over into the Wannier-Mott equation with a static dielec­
tric constant Ko· Possible corrections to the Wannier-Mott equation are discussed as well as some 
experimental results pertaining to the exciton spectrum in cuprous oxide. 

I. INTRODUCTION 

IT is well known that the long-wave edge of the spec­
trum of the main absorption in a number of semicon­
ductors consists of a series of ·discrete lines connected 
with exciton production (see, for example, the 
viewsC 1 ' 2 J). The greater part of the experimental re­
sults on exciton spectra in semiconductors can be 
successfully explained within the framework of the ef­
fective mass method (EMM). In the EMM the exciton is 
described in the simplest case by one equation of the 
Schrodinger type for two Coulomb interacting particles 
with effective masses me and mh and effective 
charges -e/..fl< and e/IK. respectively for the elec­
tron and the hole ( K is a certain effective dielectric 
constant of the crystal). 

Since the dielectric constant K is introduced purely 
phenomenologically in the EMM, the nature of K, 

whether it is optical or static, can be established only 
outside the scope of the EMM (incidentally, different 
opinions concerning the meaning of K are encountered 
in the literature [1- 3]). 

Investigations devoted to the determination of the 
effective electron-hole interaction usually follow one 
of two directions. A review of the work pertaining to 
one of these directions was presented by Knox [1 J, and 
we shall not dwell on it in detail here. We note only that, 
following Knox [1J, all these approaches use a more or 
less artificial construction of the wave functions of the 
crystal, so that it remains unclear to what degree the 
results obtained in them can be directly applicable to 
excitons. 

The authors of the papers dealing with the other 
direction start their calculations with the Schrodinger 
equation for all the crystal electrons, without introduc­
ing any charges that are "extraneous" with respect to 
the crystal. The excitons and the exciton spectrum are 
obtained respectively as excitations and the spectrum 
of the entire crystal. The fundamental work in this 
direction is the paper of WannierC4 J, although in his 
paper, as well as in the later papers by others [ 5], the 
electron-hole interaction was obtained without screen­
ing. 

Appreciable progress in the development of the en­
tire trend was reached only recently, owing to the use 
of methods of quantum field theory. Kazarinov and 
Konstantinov [6 ] were the first to use a diagram tech­
nique to obtain the exciton spectrum. In their paper, 
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however, the question of the dielectric constant K was 
not resolved, and K was introduced already in the 
initial Hamiltonian. Sham and Rice C7 J solved fully the 
following problem of obtaining the EMM equation and 
K from the total Hamiltonian of the crystal. In addition, 
they pointed out several possible corrections to the 
EMM. 

An attempt to solve this problem was undertaken 
even earlier by Abe, Osaka and Morita[aJ. However, 
even the original equation (3.6) in their paper seems to 
us incorrect. In fact, this equation should be integral 
not only in the wave vector, but also in the frequency 
(see Eq. (2.8) of our paper). 

In addition to the papers indicated, there is one more 
devoted to the question of interest to us. This is the 
paper by Kubler [9J, which essentially duplicates the 
calculations of Sham and Rice, and furthermore gives 
an incorrect formula for K (it is sufficient to note that 
according to this formula K = 1 for crystals of the 
CuzO type, in which the corresponding interband transi­
tion is forbidden). 

In this paper we do the following: 1) we derive the 
EMM equation for the excitons by a method different 
from that of Sham and Rice [7 J; 2) we derive an equa­
tion which is more general than the usual EMM equa­
tion, and from which the latter is obtained in the limit­
ing case of large-radius excitons; 3) we present formu­
las for different corrections to EMM, and these cor­
rections are discussed together with certain experi­
mental results. 

We use the technique of Abrikosov, Gor'kov, and 
Dzyaloshinski! [wJ. In the formulation of the problem 
which follow essentially Sec. 19 of their book [wJ. In 
the entire paper, with the exception of those places 
where numerical estimates are given, we use a system 
of units in which li = 1. 

2. EQUATION FOR THE TWO-PARTICLE GREEN'S 
FUNCTION 

In this paper we use the simplest model of a crystal. 
We assume that a conduction band c and the valence 
band v, with which the exciton is connected, have at 
small values of the quasimomentum I p I « 1/ d ( d­
lattice constant) quadratic dispersion laws with iso­
tropic effective masses 

<,(p) =eg+P'i2me, (2.1) 

( Eg is the width of the forbidden band). We note, how-
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ever, that the distortion of the exciton spectrum due to 
the anisotropy of the masses, band degeneracy, spin­
orbit interaction, or the influence of other bands can be 
investigated within the framework of the EMM 
itself [ll, 12J. 

Assume that at the instant of time t0 the crystal is 
in an excited state described in the interaction repre­
sentation by the vector 

j<ll,(to)) = ~· <Jlnk(p)a,t+k(to)avp(to) J<llo(to)). (2.2) 
p 

Here I <l>o( t)) is the vector of the ground state of the 
crystal in the interaction representation, k is the ex­
citation quasimomentum, n is the set of the remaining 
quantum numbers characterizing the excited state, 
ffnk ( p) are the amplitudes to be determined, and 
a+( t) and a ( t) are the creation and annihilation oper­
ators, also in the interaction representation. The 
values of p and k are bounded by the Brillouin zone. 

At the instant of time t > to the crystal is in a 
certain state <l>2. The amplitude of the probability of 
the state <I> 1 at the instant of time t is obtained in the 
usual manner (see Sec. 19 ofC 10J). It is determined by 
the following formulas: 

(<lJ,(t) j<ll2(t)) =- ~'P:k(P2)'Pnk(P!) 5F(p~,P2; k)e-iw(Ho) 2a;; (2.3) 
P1P2 

(" n . dw, dw2 
F(p~, P2; k) = J Gcv; vc(P2 -f- k, p,; pz, P1 -f- k) e•(w,<,+w,,,) (Zn)2-' 

1:'!,1:2-+-f-0, (2.4) 

c:~, vdPz + k, p,; pz,p, -f- k) =- Gcc(P2 + k)Gvv(P1) • 2n6(w,- wz) 1\p,pz 
-f- iG,,(p2 + k)Gv•(p,) r,., va(P2 -f- k, p,; P2, Pt -f- k)Gvv(P2)Ga,(p, + k). 

(2.5) 

To abbreviate the notation, we have introduced here the 
4-vectors P1 = P1, w1, P2 = p2, w2, and k = k, w; we 
have also dropped the symbols c and v from the func­
tion F. Summation over the repeated Greek indices 
which number the energy bands is implied (in particu­
lar cases A., J.L, v, or a can coincide with c or v). In 
the right side of (2.5), which describes the two-particle 
Green's function Gil in terms of the vertex part r, 
we have left out an inessential term Gcv ( P2) Gvc ( P1) 
-27To(w) Oko· In deriving (2.5) we also used the fact that 
the Green's function G of the electron in the crystal is 
diagonal in the quasimomentum p, this being a conse­
quence of the translational symmetry of the lattice. 

The spectrum of the two-particle crystal excitations 
that have a specified quasimomentum k is determined 
by the poles of the function F, which lie in the lower 
half-plane of the complex variable w (see Sec. 19 
of [lO=). To determine the function F, we first derive 
an equation that must be satisfied by the two-particle 
Green's function Gil. In the zeroth approximation, 
when r = 0 and Gv ( P1 = Gvv ( P1) = G~0 >( P1) and also 
Gc (p2 + k) =Gee (p2 + k) = Gg> (p2 + k), where the 
Green's functions of the free particles [10J are 

G~0H(p2 + k) = W2 + w- e,(p2 + k)-f- ill, 
(2.6) 

we get 

F(O) ·k-- i {) 
(PhP2, )- - ( -f-k)-f- ( )+ ·~ PIP2 

(I} ec Pz Cv P2 ~u 
(2. 7) 

In this approximation the sought spectrum coincides, 

as it should, with the spectrum of the free electron­
hole pair: w = t:c(P + k)- Ev(p). 

The experimentally observed exciton spectrum cor­
responds to excitation energies w = Eg - IE I, such that 
I c: I « Eg. This makes it possible to regard the exciton 
levels in the semiconductors as shallow levels, and the 
ratio IE 1/ Eg « 1 as the small parameter in the exci­
ton theory. 

As the zeroth approximation we choose the Hartree­
Fock approximation. Then, out of the four diagrams 
corresponding to the first-order corrections to the 
function Gil, it is necessary to take into account only 
two diagrams for r. The contribution from the other 
two diagrams (see Fig. 16 ofC 10J) vanishes in any 
order C13 J. 

A simple analysis shows that out of all the second­
order diagrams for the vertex part r (see Fig. 57 
of [10]), one diagram is singled out, and in it the pole 
of the two Green's functions G~0 >(p3 +k) and G~(p3) 
in the frequency region of interest to us w ;::; Eg come 
closer together (the integration is carried out with re­
spect to w3). Denoting by ( cp2 + k, vp1 I U I vp2, cp1 
+ k) the aggregate of all the diagrams for r which do 
not contain "singular" elements, that is, lines 
G~0 > ( p3 + k) G~0 > ( p3), we can write for r cv;vc ( P2 + k, 
P1; P2, P1 + k) an integral equation analogous to (18.3) 
of [1oJ. Leaving out this equation, we write down im­
mediately the equation for the function Gil, which is 
connected with r by formula (2. 5). This equation is 

G,~, ,,(p2 + k, p,; P2, PI+ k) = - G}0) (P2 + k) G~O) (P2) 

x{2n6(w,-w2)6p,p2+i :L ~ <cpz+k,vpzJVlvp2,cps+k> 
p, 

II dws l 
XGcv; vc(Ps -f- k,p,; Ps,PI -f- k)~ J · (2.8) 

The right side of this equation should contain, 
generally speaking, the exact Green's functions G, and 
not G<0>. It can be shown, however, that the difference 
between them, which obviously appears only in second 
order in the interaction between the electrons, leads to 
negligibly small corrections to the exciton energy. 

In the next section we shall obtain on the basis of 
(2.8) an equation for the function F and find its solu­
tion. 

3. DERIVATION OF THE EQUATION FOR THE 
EXCITONS 

We first obtain an expression for U. The form of 
U in the first order in the interaction is obvious; 

<cp2-f- k, vpsJD'Jvp2, crrr k) = -(cp2-f- k, vpsiUicp3 -f-k cp2) 

-f-(cp2-f-k, vpsJUivp2, cps-f-k), (3.1) 

where, for example, the second term on the right is the 
matrix element of the energy of interaction between the 
electrons U = e2/ I r1 - r2l corresponding to a transi­
tion between the Bloch states cp2 + k - vp2 and vp3 
- cp3 + k. Sometimes the matrix elements for U are 
best written in the form of a series in the reciprocal­
lattice vectors [BJ. 

We defer a discussion of the second term in the 
right side of (3.1) to the next section. An approxima­
tion of U by the first term in the right side of (3.1) 
corresponds, obviously, to neglect of the crystal polar-
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ization. At small quasimomentum transfers I p~ - p2 I 
this matrix element is equal to 4rre2/V I p3 - Pzl, where 
V is the volume of the crystal. In this case diagrams 
of higher order become important and we must sum a 
chain of diagrams, similar to that shown in Fig. 60 
of [loJ. As a result of this summation we obtain 

< +k l-UI· +k)- (cp,+k,vp,IUicp3 +k,vp2) ( 3 2) cp2 ,vp3 vp2,cps ___ _________._ , • 
x(pz- p,, wz- ,w,) 

where K ( q, wq) represents the dielectric constant of 
the semiconductor (see formula ( 5.42) in [l4J). 

The physical meaning of formulas (2.8) and (3.2) is 
exceedingly lucid; the electron-hole pair producing the 
exciton polarizes the crystal, which in turn screens the 
electron-hole interaction; the polarization, together 
with the screening, depends on which exciton state is 
excited. 

In the equation for Gil, which is obtained by substi­
tuting (3.2) in the right side of (2 .8), we can neglect the 
frequency dispersion of the dielectric constant 
dq, wq), putting in K wq = 0, as follows from (2.8) 
and (3.2),and from the condition w ~ Eq· The corre­
sponding equation for the function F will then take the 
form 

[ec(pz + k)- Bv(Pz)- W- ib]F(p~,P2; k) 

"' (cp2 +k,vp2 +qiUicp,+k+q,vp2) F( + ·k)- ., 
- LJ ( )' - P1. P2 q, - ~uP1P2, 

q X q . (3 .3) 

where K ( q) = K ( q, 0) is the static dielectric constant, 
which takes into account the spatial dispersion. 

The solution of (3.3) can be expressed in terms of 
the amplitudes <Pnk ( p) that enter in (2 .2) in the follow­
ing manner: 

F ( . k) = _ i }; <jl:k (Pt)<i'nk'(Pz) . 
Pt, Pz, W - Enk + ib (3.4) 

n 

The functions <Pnk ( p), which are assumed to form a 
complete system, are the solutions of the equation 

[e,(p + k)- e,(p)] <i'nk (p) 

_ .._, (cp+k,vp+qiUicp+k+q,vp) ( + )- ( ) (3 5) 
LJ ( ) <i'nk P q - Bnk<i'nk P · . 
q X q 

We note that it follows from (2.3) and (3.4) that the 
probability amplitude of the excited state (2.2) oscil­
lates in time at a frequency Enk, as should be the case 
for a stationary state with such an energy. 

Equation (3. 5) is valid for excitons with low binding 
energies. If, in addition, the amplitudes <Pnk ( p) differ 
noticeably from zero only in the region I p I « 1/ d and 
the excitation quasimomentum I k I « 1/d, then (3.5) 
simplifies appreciably. The summation over q in the 
left side of the equation can in this case be extended to 
all of q-space, after which it is possible to go over 
from summation to integration. Further, the dispersion 
of Ec ( p) and Ev ( p) for all p can be regarded as 
quadratic (Eq. (2.1)), and the matrix element 
( ... I U I ... ) in (3. 5) can be replaced by 4rre2 /V q2 • 

After a few simple transformations we obtain the 
following result: 

( mh ) 
<i'nk(P)=Xn\P+ Mk, 

k2 
Bnk = Bg + 2M+ En, 

m*e4 

En = - 2xo2n2 ' 

(3.6) 

where the functions Xn ( p), n = 1, 2, ... , are the solu­
tions of the hydrogen-like equation in the momentum 
representation 

p2 e2 5 Xn (p + q) 
-2 ,Xn(P)--2 2 2 d<j=EnXn(P)-

m Jt xo q 
(3. 7) 

By Ko we denote here the static macroscopic dielectric 
constant of the crystal, that is, K ( q) as q - 0 [l4J. 

Equation (3.7) is the EMM equation describing the 
relative motion of the electron and hole in the exciton. 
It is also called the Wannier-Mott equation. 

4. CORRECTIONS TO THE EMM 

The simple calculations which we shall now present 
show that, out of all the diagrams discarded in the 
derivation of (3. 5), only the one corresponding to the 
second term in the right side of (3.1) leads to an ap­
preciable correction to the exciton energy. (We recall 
that we are considering only excitons with low binding 
energy I E I « Eg). Physically this correction takes 
into account the change of the exchange energy of the 
electrons upon excitation of the crystal. 

Allowance for the second term in the right side of 
(3.1) leads, as can be readily verified, to the appear­
ance in the left side of (3.5) of an additional term 

}; (cp + k, vp + ql Ul vp, cp + k + q) <i'nk(P + q). (4.1) 
q 

We confine ourselves to the calculation of the exchange 
correction to the large-radius exciton levels with 
small k; the latter are of particular interest in optics. 
In this case the matrix element under the summation 
sign in (4.1) can be calculated by the kp perturbation 
method well known from semiconductor theory (see, 
for example, [3J). As a result we get, 

(cp+k, vp+qiUivp, cp+k+q) =4ne2 1Pcvi 2 /Vm2ej, (4.2) 

where Pcv is the matrix element of one of the momen­
tum components of the interband transition in the center 
of the Brillouin zone. Regarding the corresponding ad­
ditional term in (3. 7) as a perturbation, we obtain in the 
first order of perturbation theory 

nen~~~ = 4ne2~P:vl 2 1'\jln(O) 12, (4.3) 
meg 

where lJ! n ( r) is a hydrogenlike wave function in the 
coordinate representation. 

The exchange correction (4.3) differs from zero only 
for s-excitons, whose binding energy it lowers. The 
latter circumstance follows, incidentally, also from 
general considerations. This lifts partially the mo­
mentum degeneracy. 

If a= K 0 /m*e 2 is the Bohr radius of the exciton, 
then 11f!n(O)I 2 =(~n3a3 r1 c 15J. Therefore b.E~~x~ 1/n3, 
whereas En~ 1/n . Consequently, the s-excitons cannot 
produce a hydrogenlike spectrum, provided, of course, 
the quantity ( 4.3) cannot be neglected in comparison with 
En. As to the quantity 

A (I) 32 3 'I 12 2 
Ll.Enex - Xo n Pcv I Bn I 
-~~~~----~ Bg 

(4.4) 

it can be asserted in general that it cannot be neglected. 
Thus, for example, in a CdS crystal, where Ko = 9.3, 
I E1l ~ 0.028 eV, Eq = 2.58 eV, and the oscillator 
strength for the transition to the lower exciton state is 
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f1 = 2.6 x 10-3 [I6 ], the quantity (4.4) is equal to 0.2. In 
Ge it is apparently of the same order [8 J. In the second 
order of perturbation theory, we would obtain the value 
AE;:~x/ E1"" ( Aci;~x/2EI) 2, which also differs from.zero 
only for the s-states. In the case of CdS its value 1s 
0.01. 

As is well knownl1•11 • 13 J, the optical transitions in 
the s-exciton states are forbidden in the dipole approx­
imation if the interband transition is forbidden in this 
approximation, that is, Pcv = 0. The dipole transitions 
are allowed in the p-states for which the exchange 
correction ( 4.3) vanishes (as well as for all states if 
Pcv = 0). Consequently, a hydrogenlike exciton absorp­
tion (or reflection) spectrum should be observed more 
readily in those semiconductors in which the corre­
sponding interband transition is forbidden. In addition, 
the crystals should, of course, be cubic in order that 
the dielectric constant Ko be a scalar, and should also 
have c- and v-bands that would conserve the quadratic 
dispersion law (2.I) in a region of the Brillouin zone 
with linear dimensions of the order of the reciprocal 
of the Bohr radius a of the exciton. 

Such a crystal is cuprous oxide Cu20, in which 
several exciton series were observed[l•2•17 J. We con­
sider here only one of them, the so called "yellow" 
series. It has been shown experimentally [2J that nine 
out of the ten identified exciton levels of this series are 
well described by formula (3.6) with n = 2, 3, ... IO. At 
the same time, the binding energy of the Is-exciton, 
I E1 I"" O.I4 eV, is larger by approximately 0.04 eV 
than the value that follows from formula (3.6) with 
n=l. 

This circumstance is a reflection of the fact that 
the Is-exciton in Cu20 is not a large-radius exciton. 
Indeed, assuming Ko = 9 [I7J and using the experimental 
value of the exciton Rydberg constant 0.097 eV, we ob­
tain for the reduced mass the value m*"" 0.6 m and 
for the Bohr radius of the exciton the value a "" 8 
x 10- 8 em. The lattice constant of Cu20 is d"" 4 
x 10-8 em, so that the ratio d/a"" 0.5, and the inequal­
ity a » d is not satisfied, i.e., the EMM equation ( 3. 7) 
is not valid for the Is-exciton. On the other hand, the 
ratio of the binding energy of the Is-exciton I E1l 
""O.I4 eV to the forbidden band width Eq"" 2.2 ev is 
I E1l/Eq ~ 0.06 « 1. Consequently, the validity of Eq. 
(3.5) is subject to no doubt in this case. 

The exact solution of (3.5), in any case, calls for 
knowledge of the Bloch functions and of the function 
K ( q). We therefore confine ourselves to an approxi­
mate solution of this equation. 

Following Knox [1J, we assume that the quadratic 
dispersion law (3.1) remains valid also for the Is­
exciton. Then, obviously, the matrix element in (3.5) 
can as before assumed equal to 4rre2/Vq2. At small 
q ( q < 1/ d) the function K( q) can be represented in 
the form of a series in powers of q (more accurately 
in powers of qd), and we can confine ourselves here to 
the first two terms of the expansion. Since K ( q) is an 
even function of q and is furthermore a decreasing 
function (at any rate for small q), we can assume that 

~(q) = ><o- a(qd) 0, (4.5) 

where a is a positive constant of the order of unity. 
Regarding the additional term which appears in this 

case in (3.6) as a perturbation, we obtain in the first 
order of perturbation theory 

(tJ __ 4ne2ad" I (O) [2 ~Bnq - 2 '¢n • 
~. 

(4.6) 

Substituting here llfn ( 0) [2, we get for the Is-exciton 

~e~~J =8a(~)2~0.2a (4.7) 
e1 Xo a 

The second-order correction can be neglected since 
AEiq1 / E1"" 0.01 a 2 « AEi~ / E1. When a = 1.5, the 
value Ac:i 11 / E. 1 ""0.3 calculated from formula (4.7) co­
incides w&h the corresponding experimental 
value [1,2,17]. 

It should be noted that similar corrections will be 
necessary also for other levels with n > 1, since 
AE~~/ En~ 1/n. But these corrections pertain, as fol-

lows from (4.6), only to the s-states and therefore are 
not connected at all with the dipole exciton lines of the 
"yellow" series. 

In conclusion, let us stop to discuss the allowance 
for the frequency dispersion of the dielectric constant 
K(q, w). From the very derivation of (3.5)-(3.7) it is 
sufficiently clear that the correction to the exciton en­
ergy due to allowance for the frequency dispersion is 
small compared with the corrections discussed above. 
In order to verify this, it is necessary to turn to Eq. 
(2.8) for the two-particle Green's function, in which U 
is determined by formula (3.2). An estimate of the cor­
responding correction can be made in analogy with 
(4. 5) --(4. 7). Accurate to a numerical coefficient, the 
correction to the exciton levels for the frequency dis­
persion of the dielectric constant K is equal to 
I Li.E~~ /En I r:;; (En/ Eq ) 2K~1 • This quantity is at least 
two orders of magnitude smaller than the correction 
(4.7) for the spatial dispersion of K, and three orders 
smaller than the exchange correction (4.4) in CdS. 
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