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We use relaxation theory [sJ to establish the form of the dispersion laws for the complex coefficients 
referring to the compression waves, which occur in the general spectral equations of the dynamics and 
heat transfer in an isotropic medium.C1 J We find a connection between the dispersion laws of three co
efficients: the compression modulus K, the thermal expansion coefficient a, and the specific heat cv 
for the case when the compression waves have a single relaxation time (Eq. ( 11)). As an illustration 
of the limitations imposed by Eq. (11) when phenomenological dispersion laws are given we consider 
three models of a medium, used in the literatureP•4 • 6J We discuss the influence of the choice of model 
upon the spectrum of light scattered by density fluctuations. In the theory of scattering developed by 
Mountain[ 6 • 7J an error is shown to occur and as a result it describes scattering in the liquid with a 
dispersion only in the shear modulus, notwithstanding the original statement of the problem. 

1. STATEMENT OF THE PROBLEM 

THE set of linearized spectral equations for the dis
placement s and velocity v in an visco-elastic medium 
and for the deviations from the equilibrium values of 
the specific entropy ( S1 = S - So), density ( p 1 = p - Po), 
and temperature ( T1 = T -To) can be written in the 
form 

. oaap X ;; - Tt (1) 
zwpv- iwS.=--V2T~o S•=-3 a+cp-. 

0 "- OXp ' poTo Po To 

Va = iwsa, O"aB = 2jliiuB + K ( u - aT.) liap, 

1 ( OSa OSp) U (2) 
Uap = -z\ OXp + OXa , Uap = Uap- 3 liap, 

U == Uaa = OSa/OXa = -pi/po, 0" == O"aa = 3.K(u- ;i"T.). 

Here aa(3 and ua(3 are, respectively, the tension and 
deformation tensors, K the thermal conductivity coef
ficient, and the four quantities with a bar on top are 
complex functions of the frequency w which we can 
conveniently call by their usual name although, strictly 
speaking, the usual nomenclature refers only to a quasi
equilibrium state ( w - 0). In fact, K and Ji are com
plex elastic moduli: 

.K(iw) = K(ffi2) + iw1;(w2), ji{iw) = ~t(w") + iwT](w2), 

i.e., K is the "isothermal" hydrostatic compression, 
and J.1. the shear modulus; ?; and 1J are the bulk and 
shear viscosities; a and cp are the complex thermal 
expansion coefficient and specific heat "at constant 
pressure." In the following it will be convenient to in
troduce three more complex quantities: the specific 
heat "at constant volume" cv, the Poisson ratio y, 
and the "adiabatic" compression ratio Ka, which are 
equal to 

_ _ To-2- cp _ 
Cv=Cp--aK, y=-:::-, Ka=y.K. 

Po Cv 
(3) 

When w = 0, all these parameters take on the real 
thermodynamic values which we shall indicate by an 
index 0 ( K ( 0) = Ko, JJ.( 0) = J.l.o, and so on; for liquids 
andgases JJ.o=O). 

When there is no spatial dispersion, Eqs. (1) and (2) 
which satisfy the symmetry conditions of kinetic coef-
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ficients and which as w - 0 change to the usual equa
tions for a non-dissipative medium, give the most 
general spectral description of a visco-elastic iso
tropic continuous medium. In a somewhat different 
notation these equations have been used to study equili
brium thermal fluctuations in such a medium with an 
arbitrary frequency dispersion of the parameters [lJ 
and this made it possible to obtain afterwards general 
spectral formulae for the Rayleigh scattering of light 
in such a medium.C2• 3J 

Of course, the results of such a phenomenological 
theory must be made concrete whenever one deals with 
a comparison with experiments, for instance, for dis
persion and damping of ultrasound, the spectral distri
bution of the intensity of scattered light, or the integral 
values of the intensities of the different components of 
this light. This means that the dispersion laws of the 
coefficients K' a, Cp, and II must be introduced ex
ternally, i.e., they must be taken either from a well
defined model of the medium as, for instance, in 
Kneser's theory for diatomic gases [ 4J or from a gen
eral "thermodynamic" theory which takes into account 
the kinetics of some internal parameters as was done 
by Mandel'shtam and Leontovich for compression waves 
in liquids.CSJ 

However, in many papers the dispersion laws for the 
coefficients of the spectral equations are given formally 
satisfying only the condition that they do not violate the 
dissipativeness of the medium and the problem then 
arises in how far these laws are independent of one 
another. The present paper is also devoted to some 
considerations in this connection and some of the con
sequences arising from them mainly for the theory of 
Rayleigh scattering. In the concluding section we give 
an analysis of the scattering theory in liquids which 
was recently developed by Mountain.C6 , 7J 

2. DISPERSION OF COMPRESSION WAVES 

In accordance with the basic ideas ofCsJ, Eqs. (1) 
and (2) are a consequence of some more general set of 
linear equations which are. satisfied not only by the 
mechanical and thermal variables s, v, Ua(3, aaf3• S1, 
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and T1, but also by some internal parameters ~k 
( k = 1, ••• , n). One obtains Eqs. (1) and (2) by eliminat
ing the ~k and hence the dispersion of the coefficients 
in (1) and (2) is determined by the kinetics of the same 
parameters ~k· It is clear that when the number of 
these hidden parameters n is sufficiently large one can 
always choose such a model of the medium that with the 
accuracy required practically any independently given 
(but physically realized) frequency dependencies of the 
quantities K, a, cp, and II can be reproduced. It is 
sufficient to appeal to the case, studied in [5J, of a 
liquid with such a small shear viscosity and thermal 
conductivity that we can completely neglect them 
( !i = 0, K = 0) thus assuming that the propagation of the 
propagation of the compression waves is isentropic. 

The "reaction eq.uations," i.e., the kinetic equations 
for ~ = { ~1, ... , ~nf were in C5J written in the following 
spectral form: 

Tt Pi 
(1 +iffiTk)Sk=Ek---Pk-, (4) 

To Po2 

where E = E ( T, p, 0 is the internal energy per unit 
mass of the liquid, p = P(T, p, 0 the pressure, Ek 
= ( aE/a~k)o, Pk = (apja~k)o, and Tk the relaxation 
time of the parameter ~k· The energy equation follow
ing from the condition of isentropic behavior has the 
form 

(5) 

Capital letters indicate derivatives for ~k = const: 

Cv = ( ::) , PT = (:: ). • 

in contrast to the derivatives corresponding to the 
equilibrium state, i.e., taken for Ilk= aw( T, p, ~)ja~k 
= const ( w: free energy): 

I iJE) I iJP) 
Cv =\aT v, PT =\aT. v o 

Eliminating the ~k from (5) by means of (4) we get 
an expression for 81 in terms of T1 and P1• Compari
son with the formula for 81 following from (1) and (2) 
gives the dispersion laws for the specific heat cv and 
the product aK. 1 ' Moreover, the expression obtained 
in [5 J for the complex velocity of propagation of the 
compression waves V ( iw) immediately determines the 
"adiabatic" Ka = yK since for II= 0 and K = 0 we 
have V2 = Ka/Po· As a result of those comparisons we 
have three formulae: 

_ R1 (iffi) 
Cv = Cv + ---z;;-• 

-- -- R3 (iffi) T0 (~i()2 
Ka = yK = poPp---+ ----, 

Po PoCv 

where we have introduced the notation2 ' 

1lFor the mentioned comparison it is clearly unimportant that 
in[ 5] it was assumed that S1 = 00 

(6) 

2lWe note that for the real and imaginary parts of Rk = Ric - iRk: 
we have the obvious inequalities 

(h is a factor with the dimensions of a density) from which one can de
rive some limitations for the real and imaginary parts of K, CiK, and cvo 

n E 2 

R1(iw)= ~ 1 ~ 
k~l + !WTk 

n p 2 

Rs(iw)= ~ •0 

k~l 1 + !WTk 

to simplify the equations. It follows from (6) and (3) 
that the dispersion laws for the quantities K:, a, and 
cp have the form 

_ Ra(iw) - 1 (P +R.(iw)) K=poPp---, a=-=- T -- , 
Po K To 

__ C + Rs(iw) + To - 2]( 
Cp - v T;- Po a , 

and the total dispersion drops (from w = 0 to w = oo) 
of the quantities K' aK, and Cv are according to (6) 
to (8) given by 

Ra(O) 1 n 
liK=K,-Ko= ---=- ~ Pk', 

Po Po •~t 

Comparing these expressions with the ones derived 
in[5J from the relations between derivatives with 
~ = const and with v = const we see that Ko = PaPp 
aoKo = PT and Cvoo = Cv· 

(7) 

(8) 

(9) 

The frequency dependence of the three coefficients 
K, a, and cp which remain in Eqs. (1) and (2) when 
II = 0 is thus in final reckoning determined by the 
values of the 3n quantities Ek, Pk, and Tk (k = 1, ... , n) 
and the total dispersion drops of these coefficients by 
the three quantities: R1 ( 0), Ra ( 0), and R3 ( 0) which 
depend only on the Ek and the Pk. The statement made 
earlier about the possible reproduction of any independ
ently given dispersion laws for K, a, and cp for suf
ficiently large n is obvious. Already in the particular 
case of Kneser's theory when the ~k are the concen
trations of excited molecules and the pressure is inde
pendent of the ~k ( Pk = 0, Ra = R3 = 0) we have K = Ko, 
a = ao but for the approximation of any dispersion law 
for Cp (or Cv) there remain in our arrangement 2n 
quantities Ek and Tk· 

The position changes appreciably if we introduce the 
often used assumption about the presence of only a 
single relaxation time for the quantities which are 
directly connected with compression waves; we shall 
denote it by T '. Equations (7) in which now n = 1 given 
then 

E.• 0 E;P; P;2 (10) 
R1(iw)=--·-- R2(iw)= 1 +'··-~'' Rs(iw)=---, 

1+iw-r'' ·~· 1+iw-r 

and hence for any T' we have the relation R~ = R1R3 
from which follows in accordance with (6) and (8) that 

To(a,K,- aK) 2 = -po(K, -K) (c.,- Cv)o (11) 

In particular, putting here w = 0 we get a relation be
tween the total dispersion drops: 

T0 [L\(aK) )2 = -poi\K!J.cvo (12) 

In the case of a single (arbitrary) relaxation time 
the dispersion laws for the coefficients K, a, and cv 



A CORRELATION THEORY OF RAYLEIGH SCATTERING 149 

(or cp) are thus connected. Assuming, e.g., that ~K 
= 0 we must by virtue of (12) assume also ~a = 0, and 
when ~cv = 0, ~( aK) = 0 is also necessary. 

3. MEDIUM WITH WEAK DISPERSION 

In contrast with the preceding section we shall now 
take the shear modulus /i and the thermal conductivity 
K into account, but we shall consider only acoustic and 
thermal waves. To get rid of the shear waves it is suf
ficient to put v = grad cp and then elimination of all 
variables bar the velocity potential cp and the tempera
ture fluctuations T 1 from the set (1) and (2) leads to 
the equations 

w2p0cp + (K + '/sf!) V"!'-ak"iw1't = 0, 
(13) 

aKToV 2cp + poc,iwTt- xV 2T1 = 0. 

We restrict ourselves to weakly dispersive media 
for which we can retain in all formulae only terms in 
first order in the disperion drops and also in the 
thermal conductivity K. If we use Eqs. (9) we obtain 
from Eqs. (6) and (B) the following dispersion laws for 
K' a, and Cv and for the specific heat Cp which is 
connected with them through the first of Eqs. (3): 

Here 

- I !J.K ) 
K=Ko\1+-$3 , 

Ko 

(14) 

•" -1-Rk(iw) (k=1,2,3) (15) 
"'"- Rk(O) 

and we have introduced the relative drop ~cp / Cpo for 
which we have from (3) in first order the expression 

IJ.cp = ~:_.,__+ ( 1-~)f/J..K +2~) 
Cpo YoCvo \ Yo \ Ko ao ' 

(16) 

With the same accuracy the condition (12) changes in 
the case of a weakly dispersive medium to the following 
one: 

!J.K !J.cv { !J.K !J.a ' 2 
--=-(yo-1) -+--). 
K 0 c,o · Ko ao , 

(17) 

Although now ji I= 0 we proceed nevertheless from 
the earlier formulae for the quantities which describe 
the bulk elasticity of the medium i.e., we assume that 
there is no interdependence of the dispersion laws for 
K, ii, and cv, on the one hand, and the shear modulus 
ii, on the other hand. This is correct because /i char
acterizes the elasticity of the medium for deformations 
or motions of a completely different (vortex) kind while 
the relaxation times for compression and shear are 
usually different. 

We now turn to the simplest case when for each type 
of wave we assume the existence of a single relaxation 
time T I for the quantities K, a, and Cv and T for the 
shear modulus /i: 

- . JJ.o+iW'tJloo 
Jl=Jl+lwt]=--.---. 

1+zw't 
(18) 

For low-viscosity liquids usually r << T 1 i.e., the dis
persion of the compression is completed at much lower 
frequencies than the dispersion of the shear starts to 
appear. According to (10) and (15) 

iurt' 
'IJlt = '1Jl2 = $3 = ' ""¢ (19) 1+zw;' 

and the dispersion formulae (14) take the same form 

A = Ao ( 1 + ~ ¢ ), (20) 

where for A we can take any of the quantities K, ~ 
cv, cp, Y, or Ka and 

IJ.y =IJ.cp _ IJ.cv =( 1 _~)( !J.~+Z~~- /J.c"-), 
Yo Cpo Cvo 1 yo/ , Ao ao c,.o 

Ma= !J.K + !J.y (21) 
Kao Ko Yo' 

We discuss some particular choices of dispersion 
laws and see what they mean from the point of view of 
relaxation theory. 

One possible assumption is that there is no disper
sion for the quantities a and Cp, i.e., ~a = 0, ~Cp = 0. 
According to (21) or (16) and (17) we then have 

!J.cv !J.y !J.K !J.Ka !J.K 
-=--=-(yo-1)-., ---=yo-.· (22) 

Cro Yo Ao Kao Ko 

This was just the assumption made in [3 ] although it 
corresponds to a rather particular medium. Indeed, 
when there is a single relaxation time r 1 ( n = 1) it 
follows from (9) that by virtue of ~a = 0 and ~K I= 0 
the derivatives with respect to the parameter ~ of the 
energy and pressure are connected by the relation 

poE,+ aoToP, = 0. 

Another particular case corresponds to the Kneser 
model in which, as we mentioned, P ~ = 0. In accord
ance with (9) this means that ~a = 0 and ~K = 0. The 
condition (17) is satisfied identically and it follows 
from (16) and (21) that 

IJ.cp = !J.cv, ~~: = ~: = -( 1- ~.) ~::. (23) 

A third model was developed on the basis of the 
theory of Rayleigh scattering developed by Mountain [sJ 
for a liquid. To evaluate the wq intensity of the 
density fluctuations in the liquid he starts from the 
hydrodynamics and heat transfer equations (Eqs. (11)
(13) inC6 J) which after eliminating the density fluctua
tions P1 and replacing the velocity v by grad cp can 
be written as follows 

( !J.KiwT' 4 ) 
w2p0cp + Ko + --. -, + iwt]v + 7 i(J)'l'] 8 V2cp- aoKoiwTt = 0, 

1+l(J)'t 3 

(24) 

Here TJv and 7J s are the frequency-independent bulk 
and shear viscosities introduced by Mountain. 3 > Com
paring Eqs. (24) with the general Eqs. (13) shows that 

3)Jn accordance with the Kramers-Kronig relations one must under
stand the occurrence of frequency-independent viscosities in the sense 
that in actual fact there is for the compression modulus Kat least (apart 
from r') a second relaxation time r" ~ r', but neither r" nor the relaxa
tion time r of the shear modulus occur explicitly if one agrees not to go 
outside the range of frequencies for which wr" ~ I and wr ~ I. 
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one assumes in (24) the product aK and the specific 
heat cv to be dispersionless, i.e., A ( aK) = 0 and 
Acv = 0. By virtue of (9) this means that in the given 
case when as before only one relaxation time T 1 

( n = 1) occurs, the internal energy of the medium is 
independent of the parameter ~: E~ = 0. Equations (24) 
thus correspond to yet another model of the medium 
assuming condition (11) but different from the two pre
ceding models. This conclusion is not connected with 
the requirement of weak dispersion, but if the medium 
is a low-viscosity one, this model leads in first order 
in the dispersion drops according to (16) and (21) to the 
relations 

~:= ~:=-( 1 - ~J~~, 11::,- v~~· (25) 

We note, however, at once that the final result of[ 6 J, 
i.e., the formula for the spectral intensity of the scat
tering does not correspond to the model and viscosity 
we just described for which all quantities referring to 
compression ( K, a, cv, cp, '7, Ra) are real while only 
the shear modulus ji has dispersion. As will be shown 
below the additional condition that R and a are real 
separately, which are not contained in Eqs. (24) ap
peared in connection with an error let through in [6 , 7 J 
when the density fluctuations correlation function and 
thereby the expression for the spectral intensity of the 
scattered light were derived. 

4. ISOTROPIC SCATTERING 

The expression for the spectral intensity of isotropic 
scattering (Eq. (4.1)) obtained in[zJ takes the form 

lract(w) = (2n) 3 l Yl'l u(w, q) I' 

E>IYI' { L'l,(z) t;,(-z) t 
=~ ~- L'l(-z) J (z= iw). 

(26) 

if we neglect the temperature dependence of the dielec
tric constant E, i.e., limit ourselves to scattering by 
density fluctuations only. In (26) ® = kBTo is the tem
perature of the medium in energy units, w the shift in 
frequency reckoned from the frequency of the initial 
light, q the scattering vector ( q = 2k sin ( 1:1/2), where 
k is the optical wave number in the medium and 8 the 
scattering angle), Y ( iw) a coefficient which in the 
case where it is frequency-independent has the value 

Yo= -po(i:ie / iJp)r, 

and I u 12 is the wq transform of the correlation func
tion of the relative dilatation, i.e., the trace of the de
formation tensor u = uaa = - P1/ Po· The quantities 
A1 and A are in the notation of the present paper given 
by the equations 

( Cv aq2 ) To --
!'>,(z)=(z'+in) ---+-, +--,lakl', 

Cro ,_, Cvoq 

where for simplification we have introduced the nota
tion 

- q2 - 4 ··· ij2 X k -A-- 111=-:--f.l-, a=--. 
PJ 3 PJ p.1'"'r:1 

Equations (26) and (27) give (when oE/oT = 0) the 
spectral distribution of the intensity of the scattered 

w 

light for any allowable dispersion laws for the parame
ters of the medium, simply by substituting in them 
these dispersion laws. For instance, if there are two 
relaxation times, T 1 for the compression and T for the 
shear, it is sufficient to introduce into (26), (27) Eqs. 
(18) to (20). We shall, however, not give the rather 
complicated resulting expression but restrict ourselves 
to the above-mentioned models (22) and (23) of the 
medium. 

The structure of the spectrum is, of course, in 
general the same both for the two models and for the 
general case. It consists of the undisplaced line, the 
Mandel'shtam-Brillouin doublet and two "wings" (see 
figure) namely, a "shear wing" (background caused by 
the dispersion in /i and/ or the relaxation of the ani so
tropy, usually simply called the wing) and the "com
pression wing" (background connected with the disper
sion of the quantities K, 0!, and cv). In ref.L 3J the 
existence of a "compression wing" in isotropic scatter
ing was first mentioned; its integral intensity was also 
evaluated there (under condition (22). Mountain [nJ also 
had this wing in mind when he stated the problem of the 
contribution to the scattering spectrum of "additional" 
or, as other authorsCaJ have called them "non-propa
gating" modes of motion of the viscosity. 

The form of the two wings depends essentially on 
the dispersion laws, in particular, on the magnitude of 
the relaxation times. In the simplest case of one re
laxation time for each kind of wave it is given by the 
factor ( 1 + w2 T '2 ) _,, and by the same factor but with 
the time T for the "shear wing" i.e., the "compres
sion wing" stretches up to frequencies I w I ~ 1/ T ', 

and the "shear wing" occupies a band I w I ;S 1/ T. As 
far as the doublet is concerned, when T << T' the posi
tion of its lines (shifted WMB from the undisplaced 
line) and their width r are determined by the disper
sion of the "adiabatic" modulus Ka ( r depends also 
on the thermal conductivity) apart from its dependence 
(in first approximation) on the form of the connection 
between AKa/ Kao and Acv / cvo: 

[ q2-r:'2 t!.Ka l 
WMs=Wo 1+-2 (1+-~) , Po wo--r: -

q"'r' !'J.Ka ( 1 \ aq4Kao 
f= + 1--) ---, 

2po(1+wo2-r:'2 ) , Yo· 2powo2 

where 

( 4 ) q' 
"Jo2 = Kao + 0 ~to - = 'l(oko + mo. 

v ; Po 

The choice of a model of the medium affects, of 
course, both the total integral intensity of the isotropic 
scattering and the integral intensities of its separate 
components. To illustrate this we give without deriva-
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tion the integral intensities4 > of the undisplaced line 
( Ic), the doublet (1MB), and the ''compression wing'' 
( Ic.w.l in the cases (22) and (23), restricting ourselves 
as before to the first order in the dispersion drops and 
for both models expressing these corrections in terms 
of LlKa. For the sake of simplicity we take the viscos
ity to be zero ( f-/{) = 0 and hence LlJl = Jl 00 = lJo IT, w~ 
= Yoko) and we shall assume that we can neglect the 
dispersion of the coefficient Y. 

If ( 22) is valid, 5 > 

8Yo2 { 1'1Ka[ ( Wo"<'2 )'l} IMs=-,-,- 1+-;,· yo-1- 1+ ,,, . -fw, 
Aao }._ao , U.lo 1 _ 

I _ 8 Y o2 ;'1,./( a -c------c--c 

c.w. - Kao Kao ( 1 + l•>o"<'') 2 ' 

Irad= Ic +IMs+Ic.w. +Iw 
(28) 

= _Ec>!o' [.1 + 1'1Ka ( 1 - Wo
2<'2 

)] 

ito YoKao 1 + Wo2<'2 . 

while for the Kneser model, i.e., when (23) is valid, 

8Yo2 ( Yo 1'1Ka) Ic=-,-(yo-1) 1----. -"-, 
Rao Yo- 1 Rao 

8Y02 { 11Ka[ ( luo2T'2 ''l} 1MB = -- 1 + - -;- Yo - ·-- 2 i,- ) - lw, 
Kao Aao 1 + <Jlo 't- .1 

] c.w. = E>~o2 11_f{_a (~r?~';~,-)2 ' 
Aao Aao 1 + l•Jo"T 2 

8Yo2 

Irad= Ic + IMB +I c.w + lw = -Ku 
(29) 

Here lw is the correction for the dispersion of the 
shear modulus which is equal to the integral intensity 
of the shear wing: 

4q4-t;4;'1,. !l 
Iw= E>Yo2 ------. 

3po2 ( 1 + Wo2T 2 ) 2 

(30) 

An appreciable difference is present between Eqs. (28) 
and (29) with regard to the dependence of the dispersion 
corrections both on wo T' and on Yo = cpa I cvo. 

We do not give the analogous formulae for the third 
model corresponding to Eq. (25) since in the next sec
tion we analyze Mountain's result in the form in which 
it was obtained in[ 6 J, i.e., without restriction to the 
case of weak dispersion and taking into account fre-
quency -independent viscosities. 

5. REMARKS ON MOUNTAIN'S THEORY[6 • 7 J 

It was established in Sec. 3 that it is assumed in the 
initial equations of Mountain's that ak = aoko, cv 
= eva and, hence, 

iakl 2 = a2k2 = ao2ko2 = ko(Yo -1)ccoq2 I To. (31) 

4)The integral intensities are determined by the residues of the in
tegral f lrad (z) dz in the appropriate poles of Irad (z). In a medium 
with a weak dispersion it is sufficient to find these poles up to first 
order in the dispersion drops and the thermal conductivity K. The total 
intensity lrad can be found at once using the general theorems (6.6)
(6.8) given in[ 1 ]. 

s>Equations (28) correspond to (2.1)-(2.4) in[ 3] for oe/oT = 0 and 
/lo = 0 while lc in (2.1) was given only in zeroth approximation. Unfor
tunately, there is a misprint in (2.4) and in Eq. (2.2) and (2.9) following 
from it an error slipped in: in the square bracket the term 'Yo- I was 
omitted. 

The last expression follows from the thermodynamic 
relation 

To To 
Cpo = Cvo +- Uo2Ko = Cvo +- Cl.o2ko, 

Po q2 

into which the first Eq. (3) goes over when w = 0. 
Substituting (31) into (27) and the result into (26), 

we get 

(z'+m) 1+- +ko(Yo-1) ! 
( aq') 

E>Yo2 z 
J. d(w)=-- ------·----c.c. 
ra 2nz - - aq' 

K(-z)[(z2+k+m) ( 1+-z-) +ko(yo-1)] . 

(32) 
(c.c.-complex conjugate quantity). If we follow the 
scheme of [G] and assume that the frequency dependence 
of the coefficient of "i1 2 rp in (24) is determined by the 
dispersions of both elastic moduli, i.e., 

q' ( b' ) 4 -· q2 ( ) 
k = K Po= ko + q2z bv + 1 + z-r' , Fii = -:i ~~Po= q2zb, 33 

where bv = 1JviPo, bs = 4'lsi3Po, and b' = ( T'lpo)L:.K, 
and substitute this expression into (32), the result (see 
below, Eq. (39)) differs from that obtained by Mountain. 

If we assume that not only the product ak, but also 
a and k themselves separately are real, the only fre
quency dependent parameter turns out to be the shear 
modulus /J., i.e., we must put in the coefficient of v2rp 

k= ko, ( b' m = q'z bo + -- -- ). 
. 1 +ZT' 

where 

bo = bv + b, = (r1, + 1 /,~.) / po 

For real K Eq. (32) takes the form 

(34) 

8Y02 { (z'+in)(1+arJ'/z)+ko(yo-1) } 
lrad(w) = 2nK0 ~[ (z2+ko+m) (1 +aq2/z) -t:/,;(yo-1) J+c.c .. (35) 

Substituting here Eq. (34) for m and bearing in mind 
that kaYo= KoYoq2IPo = ygq2 and z = iw, we are then 
led to Mountain's result (Eqs. (25) to (27) inl6 J), vis., 

8Y02 N,D, + N,D, (36) 
J;ad( w) == rrXo D,' + Di ' 

( 1 ) b'q2 (<o 2-.:' + aq2 ) 
N, = - w2 + b0aq' + V02q2 1 - - + -- --.---;;;--, 

, Yo 1 + ,,,,, - (37) 

N2 = wq2 [a + b0 + ~(! - ~q;ll, 
1 + r>J-T- _ 

D1 = q2 [-w2 (a + h0 ) + V02q2 ~- · b'w'(~ ~ ~q"]_ l , (38) 
Yo J + WT 2 .. 

[ b'q2 (w"<' + aq2)l 
D2 = tu -ru2 + V02q2 + b0aq' + 1 + to'''' _ • 

These formulae thus reflect the influence on the 
compression waves exerted by the dispersion of only 
the shear modulus, to which (in accordance with the 
initial scheme) are assigned such values of the relaxa
tion time and dispersion drop as in fact the compres
sion modulus possesses. Apparently, we must look just 
here for an explanation of the satisfactory agreement 
of the result (36) -(38) with experiment.CaJ 

We note that Mountain's result which is advantageous 
because of its simplicity can be even further simplified 
since the bracket in the denominator in (35) differs 
from that in the numerator only by terms k0 ( 1 + aq2l z). 
We can thus write (35) in the form 

8Yo2 { k0 (1+aq2/z) } 
lrad(w) =- 2nK0 z[(z2+ko+m) (1+aq2/z)+ko(yo-1)] +c.c. ' (35a) 
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whence we get (with the old D1 and D:J for N1 and Nz 
instead of (37) the expression 

Vo'q' aq' Vo'aq' (37a) 
N1 =-ko=---, N,=ko-=--~. 

Vo w VoW 

We now give the result of substituting into (32) the 
dispersion laws (33) in which not the shear modulus JJ., 
but the compression modulus K relaxes with relaxa
tion time T '. For the sake of simplicity we restrict 
ourselves to the first order in the viscosities bv and 
b', and we find instead of (36) 

6Y02 { q2 ( b' ) Np, + N2D2} (39) 
lua(w) = nKo ko bv + 1 + w'1:'2 + D,2 + D,2 ' 

where D1 and D2 are, as before, given by Eqs. (38) 
and N1 and N2 differ from (37a): 

( b' ) 
N 1 = -k0 + 2aq' \ bv + 1 + w'1;'Z , 

aq' ( b' ) N, = ko-- 2q2w bv + ----," . 
(J) 1 + "'''. 

(40) 

Of course, as bv = const the spectral intensity (39) 
does not vanish as I w I - co. The evaluation of the in
tegral intensity requires either the dropping of bv or 
taking the second relaxation time T" << T' into account 
(see Sec. 3). In the admissible range of frequencies 
w 'S 1/r' the additional terms occurring in (39) and 
(40) beyond those which are contained in (36) and (37a) 
affect in turn the total intensity of the "compression 
wing" without, however, changing its form. 

It is naturally of interest to see where in Mountain's 
derivation the additional condition that K (and thereby 
also a) be real entered, notwithstanding the author's 
intentions. 

To obtain the autocorrelation function of the density 
fluctuations P1, the wq-transform of which determines 
J rad ( w), Mountain performs on the initial equations 
for P1(t, r), v(t, r), and T1(t, r) a spatial Fourier 
transformation (and obtained equations for the trans
forms P1 ( t, q), ... ) and a time Laplace transforma
tion (transforms P1 ( z, q), ... ) . It is possible to use 
the algebraic equations thus obtained to express 
P1 ( z, q) in terms of the initial ( t = 0) values of the 
tq-transforms, i.e., in terms of P1(0, q), v(O, q), 
and T 1 ( 0, q). Explicitly this equation is the following: 

,);'(z,q) = i);'(O, q)P(z) + iCJV(O, q)Q(z) + T,(O, q)R(z), (41) 

where P, Q, and R are well-defined functions of 
z, P(z) = F(z)/G(z), where G and Fare given by 
~qs. (17) and (18) of [sJ). The terms with v( 0, q) and 
T 1 ( 0, q) were, however, dropped by Mountain. The 
motivation which refers only to 1\ ( 0, q) is given on 
p. 208 of [7J: "Since the density and temperature are 
thermodynamically independent it is not necessary to 
include terms containing T1 ( 0, q) in the solution for 
fh (z, q)." 

First of all, it is not clear how one can transfer this 
argument to the velocity v(O, q) which for some rea-

son completely dropped out of the argument, although 
v is certainly connected with P1 through the equation 
of continuity. 

Secondly, the argument itself is wrong. The thermo
dynamic independence of equilibrium quantities bears 
no relation to the problem of the correlation between 
the thermal fluctuations of these quantities and this is 
the only essential one for the scattering spectrum. 

During the remainder of the derivation, Eq. (41) is 
multiplied by p1(0,- q) ='Pi (O, q) and the statistical 
average is taken. The omissions in cs, 7J thus mean that 
the density fluctuations are assumed to be uncorrelated 
with the velocity and with the temperature fluctuations. 
This is correct just when there is no dispersion in the 
compression modulus, i.e., when K = Ko. 

InC1J we calculated a number of cross wq-trans
forms, amongst whom P1Ti (Eq. (5.9) in[1J). 61 The 
correlation function in the tq-representation is 

+""~---
p, (11 , - q) 1\ (1 2 , q) = ) p1 (- w, - q) I\ ( w, q) eioo(t,-t,) d ''• 

-00 

which for t1 = tz = 0 gives 

+<»·~--~--
p,(O,-q)T,(O,q)= ~ p1*(JJ,q)l\(w,q)dJJ. 

-oo 

This integral and also the analogous integral for 
qp, ( 0, - q) v( o, q) can easily be evaluated using the 
theorems (6.6) and (6.7) given in[lJ. Under the initial 
restrictions of Mountain's theory ( aK = aoKo and C"v 
= Cvo) both integrals turn out to be proportional to 
~K = K00 - Ko. Hence it follows that dropping the 
second and third term in (41) means the introduction 
of the additional condition that R be real. 
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6)We use this opportunity to correct Eq. (4.14) in[']: in it one 
should retain only the first two terms in the braces. 


