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The problem of the resistance of a thin superconducting current-carrying filament in the absence of 
an external magnetic field is considered by taking into account the temperature fluctuations. It is 
shown that if the fluctuations are not taken into account, then a resistance begins to appear at the 
critical current density jc but complete restoration of the current is spread out over a broad cur
rent range. Fluctuations must be taken into account for currents that are close to the critical 
value. In this case a resistance begins to appear at currents smaller than critical. The current 
dependence of the total filament resistance is found for currents close to the critical value. 

INTRODUCTION 

THE influence of temperature fluctuations on the 
"spreading'' of the superconducting transition current 
was noted already by Pippard[lJ. In recent papers [2 •3 J 
this problem is considered for a thin filament and for a 
film. However, Little [2J proposes that the transition 
occurs at the critical temperature Tc· Actually the 
transition occurs at T < Tc but at a current j = jc 
which greatly changes the situation. In addition it is 
assumed in [l- 3J that the resistance (energy dissipation) 
occurs only when some microscopic volume of the 
superconductor goes over into the normal state as a 
result of the fluctuations. In light of the ideas advanced 
by Bardeen and StephenC4 J, this statement seems in
correct to us. Bardeen and Stephen considered the en
ergy dissipation in the intermediate region near a vor
tex, where both a superconducting condensate and an 
electric field exists simultaneously. A similar situa
tion should arise also in a thin superconducting fila
ment. 

We shall consider below the resistance of a thin 
superconducting film carrying a current set by an ex
ternal source. There is no external magnetic field. 

2. CURRENT TRANSITION 

In this section we consider the current transition in 
a thin-superconducting filament without fluctuations. 
The analysis will be carried out by the method of the 
Ginzburg- Landau theory [sJ, using the idea advanced by 
Bardeen and StephenC4J. We shall show that the resist
ance of a filament is not brought back to normal even 
at a current j > jc (under conditions of ideal heat 
transfer). In spite of the crudeness of the presented 
calculation it can be assumed that its results are ap
plicable to the problem of the fluctuation resistance. 
A rigorous solution of the problem of the current 
transition of a thin filament form the superconducting 
state to the normal state calls, of course, for a sepa
rate analysis using the methods of the microscopic 
theory. 

We consider a transition to the normal current 
state for a thin superconducting filament in which 
r << oo/ K, where r is the radius of the filament, 60 is 
the depth of the penetration of the magnetic field and K 
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is a constant of the theoryC 5J. The distribution of the 
current over the cross section of the filament can then 
be regarded as uniform. Since we are using the Ginz
burg-Landau theory, we assume also that T ~ Tc and 
r >> rw where ~0 =two/ .6-o is the coherence length, 
v0 the velocity of the electron on the Fermi surface, 
.6.0 the energy gap at T = 0, and l the mean free path 
of the electron. The latter inequality is necessary for 
the applicability of the Ginzburg-Landau theory to a 
thin superconducting filament with allowance for grad
ient terms only along the filament. 

If the density of the free energy for a current
carrying filament is written in the form [aJ 

F, =Fn + ap,+: ps"+ ~ p,vl, 

then the equilibrium condition corresponding to the 
minimum of the free energy will be 

( 1) 

{)F, m 2 
-= a+~P·+-v, =0. (2) 
{)p, 2 

Here Fn is the density of the free energy in the normal 
state, Ps the concentration of the superconducting elec
trons ( p = I 'lt 12, where 'lt is a wave function of a 
theory of~ 5J), Vs the velocity of the superconducting 
electrons (j = epsvs is the density of the supercon
ducting current, which is set by the external source), 
a and {3 the coefficients of expansion of the free en
ergy in powers of I 'lt 12, and m the electron mass. 

Expressing the equilibrium value of Ps from (2), we 
obtain the dependence of the density of the supercon
ducting current on the velocity vs: 

a em 
j = ep,v, =- e13 v,- 2 ~ v,3• (3) 

We see that the function j ( vs) has a maximum, since 
0! ( T) < 0 when T < T c. This maximum current 
density is defined in [sJ as the critical density: 

. . e ( 2 )''' (4) 
lc = ]max = ~fm \3 I a/ · 

The maximum for the current is obtained at a super
conducting velocity which we denote by vd: 

Vd = (2/a/ /3m)''• (5) 

and at a superconducting-electron density Pc: 

Pc = 2/a/ /3~. (6) 

The states with Vs < vd (i.e., when dj/dvs > 0) will 



RESISTANCE OF A THIN SUPERCONDUCTING THREAD 143 

be stable states with a superconducting current, and 
the case Vs > vd (i.e., dj/dvs < 0) corresponds to 
unstable states. These are the well-known results 
ofCs,BJ. 

We now pose the following question: What processes 
arise in a thin superconducting filament if the external 
source increases the density of the current in the fila
ment to a value larger than jc? We note, first, that 
when j = jc we still have Fs < F . This can be readily 
verified by substituting (5) and (6)\n (1). Thus, when 
j = jc the superconducting state is still favored. This 
means that when j = jc there should be no phase transi
tion in the usual sense of this word. However, the point 
j = jc is singular in some sense, since the transport of 
an electric current j > jc with the aid of the supercon
ducting electrons only is impossible for the very simple 
reason that there are not enough of them: At this stage 
of our exposition we shall use the idea of the mecha
nism of energy dissipation in the transition region near 
the core of an Abrikosov vortex, given in the paper of 
Bardeen and Stephen C4J. Let us apply this idea to our 
case of a thin superconducting filament. 

When j > jc, an electric field E is produced in the 
filament; the condensate is accelerated in this field 
(from a velocity vd to a velocity vd + eEr/m) within 
a time r (the relaxation time of the superconducting 
state). After the lapse of this time, the Cooper pairs 
forming the condensate break up into individual elec
trons; the latter relax with the lattice and slow down to 
a velocity smaller than vd. The electrons then are 
again paired and fall into the condensate (since F s 
< Fn) and the entire process is repeated. Bearing in 
mind this picture and taking into account the existence 
of the normal component of the electron liquid, we 
write the following averaged equation for the current 
density when j > jc: 

• 2 E + E J=epcvd+epc-"t an' 
m 

where an is the normal conductivity. Recognizing that 
the jc = epc vd, we have 

j = jc+ aE, 

where 
a = a, + an, a, = e2pcT I m = A /6nllo2. 

Thus, the experimentally observed resistivity of the 
filament at j > jc will be 

R = <J1(1- jc/ j). 

Consequently, the restoration of the resistance of a 

( 7) 

(8) 

thin filament when j > jc should occur not jumpwise at 
j = jc but monotonically as j becomes larger than jc. 
This, of course, is valid only under the conditions of 
ideal heat transfer, when the filament temperature does 
not rise. 

All the foregoing arguments are valid also for the 
case of a thin film. The spreading of the current transi
tion in thin films was observed experimentally (see, for 
example ,[?J). 

3. DERIVATION OF THE DISTRIBUTION OF THE 
FLUCTUATIONS OF '.II FOR A THIN SUPERCON
DUCTING FILAMENT 

We consider a thin current carrying superconducting 
filament of length 2L. Let its radius be r » r[;l, but 

r « Do ( T )/ K, where Do ( T) is the depth of penetration 
of the weak magnetic field at the temperature T, and 
K ~ Do ( 0 )/ ~o· To use the Ginzburg-Landau theory, we 
assume that T ~ T c· 

Let us compare the two characteristic times, 
namely r s' which is the relaxation time of the super
conducting state, and TT, which is the time of dissipa
tion of the temperature fluctuation in a certain volume 
of the material. We have Ts ~ fi/<l- 10-11--10-12 sec. 
On the other hand, if we assume that the temperature 
relaxes as a result of thermal conductivity, then TT 
~ >.a/zphu, where ,\ is the linear dimension of the 
volume with the fluctuation, lph is the phonon mean 
free path, and u is the speed of sound. If ,\ ~ 3 
X 10-6 em, lph ~ 10-7 em, and u ~ 10 5 em/ sec, then 
TT ~ 10-9 sec. Thus, conditions under which TT >> Ts 
are realistic. This means that all the superconducting 
characteristics of a small volume subtended by the 
fluctuation will follow the temperature adiabatically. 

We now find the law governing the distribution of the 
fluctuations in a thin filament. The temperature fluc
tuation .:lT in a small volume is determined by the 
minimum work that an external thermally insulated 
source can perform. Its density Rmin is, according 
to [a], 

i;~n- = 2~;2 (L\7)', 

where Cv is the specific heat. 
Let </J be the deviation of the wave function '.II of the 

Ginzburg-Landau theory from the value -Ito correspond
ing to the equilibrium temperature. Assuming that the 
current in the filament is close to critical, that is, that 
'.II~~ ( %) I a 1/ {3, and using the expression for the jump 
of the specific heat .:lc in a second-order phase transi
tion, .:lC = ( d I a II dT )2 T c Tc I {3, we have 

RmF< a 6lai C, 
kT =2--.p', a=---;:;r-Ac · 

This will take place in the case of a spatially homo
geneous fluctuation </! due to a temperature fluctuation 
.:lT. On the other hand, if the fluctuation is inhomogene
ous, it is necessary to take into account also the addi
tional density of the kinetic energy, and the total ex
pression for Rmin/kT is 

_f!m;n = a ,,.2 _,_ '!___\( ~-! \2 

kT 2 ' ' 2 dx ) ' 
(9) 

where b = lf/mkT. We took into account here the pos
sible inhomogeneity of the fluctuation only along the 
filament (along the x axis). It is assumed that '.II is 
uniformly distributed across the filament, since the 
filament radius is r « Do/ K, in the spirit of the pro
cedure used for small particles C9J. 

We thus have a random function </! (x). We seek the 
law of distribution of the random quantity lj!. The fluc
tuation probability is 

L 

w ,__, e~.}(m'ir/liT, :llmin ;:-_ s ~ Rmindx, {10) 
-L 

where S is the cross section area of the filament. We 
expand <j;(x) in a Fourier series 

(11) 

Substituting (11) in (9) and taking into account the fact 
that </J (x) is real (that is, </Jg = 1/J-g), we obtain 
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where 'Pg = Re 1/Jg and Xg = Im 1/Jg· Substituting (12) in 
(10) we get w ~ Ilw(cpg)w(xg), where 

g 
w(<pq) - exp {-LS(a + bq2)q>q2}. (13) 

Thus, the random quantities 'Pg, as well as the random 
quantities Xg, are independent, and their distribution is 
given by ( 13). 

We now consider the random quantity ljJ(x = 0). The 
point x = 0 is not distinguished physically in any way, 
and 

"ljl(x = 0) == "ljlo = ::3 !flq· 

Thus the random quantity 1/Jo is a sum of the random 
quantities cpq, the distribution of which is normal 
(wq ~ exp[-cpq/2Dq]) with dispersion 

Dq = 1/2LS(a + bq2). (14) 

It is known from probability theory that the random 
quantity 1/Jo has in this case a normal distribution with 
dispersion D = ~Dq· Substituting here (14) and inte
grating in elementary fashion, we get 

D = 1/28yab. 

Substituting here the expressions for a and b and us
ing the equality [sJ I a I = Ji2 K2/2mc5~, we get ultimately 

D = mMT lf ~C. (15) 
2y3 ft2Sx ' C, 

We have thus found the distribution of the random 
quantity 1/Jo: 

w("ljlo) = e-$o'I2D /l'2nD, 

where D is given by (15). 

4. FLUCTUATION RESISTANCE R. THE CASE 
j < jc 

(16) 

We can now proceed to calculate the fluctuation re
sistance R. We consider first the case j < jc· 

The idea of the calculation can be understood with 
the aid of Fig. 1. It shows the dependence of the equili
brium density Ps on Vs at a given temperature T. It 
also shows the dependence of j s = eps v s on v s· The 
critical current jc corresponds to the maximum of the 
curve. Assume that a current j < jc is made to flow 
through the filament. Corresponding to this current 
are the equilibrium values of the velocity v s and of the 
density p~ shown in the figure. 

We now consider some point of the filament. Since 
the point x = 0 is physically indistinguishable from the 
others, assume that this is the point x = 0. As a result 
of the fluctuation increase of the temperature in a 
physically infinitesimally small volume of the filament 
about the point x = 0, the isotherm Ps ( Vs, T) will go 
over for such a point into Ps ( v s• T + c5T) (shown 
dashed in the figure). If the maximum of the correspond
ing isotherm eps v s turns out to be higher than j, this 
means that at the given point x = 0 there are still 
enough superconducting electrons to carry the current 
j, that is, the local value of the critical current at this 
point is still larger than j. In this case no electric 
field is produced here. 

FIG. 1. Density of supercon
ducting electrons Ps and of the 
superconducting current js as 
functions of the velocity of the 
condensate v s· Solid curves -
equilibrium Ps and js at the 
temperature T, The dashed curves 
correspond to a local temperature 
T + {j T 1 , where {jT 1 is the thres
hold temperature fluctuation at 
which every dissipation sets in 
at a given currentj. The threshold 
density fluctuation is equal to 
{jpl =pi-p~. 

On the other, if the fluctuation temperature rise is 
so large that the maximum of the isotherm epsv s 
drops below the level j, then the situation analyzed in 
detail in Sec. 2 arises: the local value of the critical 
current turns out to be smaller than that of the current 
j set by the external source. In this case there occurs 
at the point x = 0 an electric field E, given by formula 
(7), in which jc should be taken to mean the local value 
of the critical current. Averaging this value of E over 
the distribution (16) and dividing by j, we obtain the 
sought fluctuation resistance R. 

Let us perform this program. Let the fluctuation be 
so large that a field E was produced at the point x = 0. 
Then taking ( 4), ( 6), and ( 7) into account we get 

E=.!_(j-p:1•eY!..), (17) 
a' m, 

where Ps is the density produced at the given point of 
the filament as a result of the fluctuation temperature 
rise. Let P1 be the density at which E first appears. 
From (4) and (6) we can readily establish a connection 
between the current jc and the density Pc· It is clearly 
seen from Fig. 1 that a similar connection exists also 
between the current j and the threshold density P1: 

j = p;1'el'f>/m. (18) 

Substituting ( 18) and ( 17), assuming that the fluctuation 
of Ps is small compared with Ps itself, and confining 
ourselves to the term linear in the fluctuation, we get 

E= 2e lal. (1jl,-1jl), 
cr l"mf> 

where l/J1 is the threshold value of the fluctuation 1/J, 
determined from the formula for P1: 

p,: PI = lJI<f' ::f- 2'¥o1Jll, Pa = lJ!cf' + 2'¥o1Jl, '¥o2 = P•"· 

Averaging E over the distribution (16) 

we get finally 

where 

- e lal ,1-[ ( 1 '] E = --= 12D zi(1 +Ill z,))+-=e-•• , 
cr l"mf> l"n 

2 X 

lll(z)==-~ e-1'dt, z,=,pdy2D. 
l'n o 

(19) 

It remains to connect the threshold X1 with the dif
ference jc - j. This connection is clear from Fig. 1. 
Assuming that j is close to jc, and consequently p~ is 
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close to Pc = (%) I a II {:3, we obtain first Llps = P~ - Pc· 
To this end, we express Ps as a function of Vs using 
(3), and substitute in place of Vs the quantity jslePs· 
We then get for js 

;.z-!!!-= _ _.!:_p,"-p/. 
2~e2 ~ 

Expanding this expression about the point jc in a power 
series in Ajs = jc - js and .a.p, we get 

2 /a/ ( }em )''• -. -. 
~p.=p,"-3(3= e2 /nl Ylc-ls· 

Putting js = j we obtain the dependence of p~ on 
jc - j: 

2 /a/ (}em )''• -. -. 
P•"=-gp+ e"/a/ YJe-J. 

Using (18) and recognizing in addition that 

2 /a/_ ;?• (m)''• 
-g-~--7- II 

and introducing the notation 

8 = Uc- i) /Jc, 

we obtain finally. 
4 lal (2)"' lal-

-bp1=-g-~-e+\3 ~ye. 

Since 

we have 

11/~(- ,;2 ) ljl!=-3 r-~- ye+ fa8 . 
It now remains for us to obtain the dependence of x1 
= lJ! 1 I.fif5 on E. Then, using (15) and the expression 
obtained inC 5J for the depth of penetration of a weak 
magnetic field, 60 = ./ mc2{:3/ 41Te2 / a /:_we get 

x1=- 3'/~xo(is+ v~e). (2Q) 
6yn 3 

For convenience we have introduced here the dimen
sionless quantity x0 , which depends only on the dimen
sions and the material of the superconducting filament: 

he yxS ( c. )''• 
xo=-; b''•'(kT\... ~c · 

0 

(21) 

The fluctuation resistivity of the filament R = E/j 
is (see ( 19)) 

R = _!_.3'1• V 3n _!_ [ x1 (1 + <l>(x1) )+ 1_ e-~··]. {22) 
cr 2 xo '(n 

If I x 1 I » 1, then the asymptotic expression for R is 

1 3'/• y3 1 e-x,• 
R=----=----. 

(] 2'(2 Xo X12 
(23) 

It follows from (22) and (23) that the region where the 
fluctuations are appreciable is given by the condition 

lxd ~ 1. (24) 

Recognizing that ( Cv I .a.c )114 ~ 1, we get from (20) and 
(21) the condition (24) in the form 

e ~ bo'T I xS. 

Let us present a few estimates. Let T ~ l0°K, 
K ~ 1, 60 ~ 10- 5 em, and S ~ 10-12 cm2. We then have 

Xo ~ 100 and E = (jc - j )/jc ~ 10-2. This is the inter
val of the currents near the critical current where the 
fluctuations are significant. If the thickness of the fila
ment is smaller by one order of magnitude and 
S ~ 10-14 cm2, then xo ~ 10 and E ~ 1. In this case the 
fluctuations play a very important role. 

If the current is equal to the critical value, then 
x1 = 0 and the fluctuation resistance reaches a value 
R ~ 3a-1lxo. If S ~ 10-12 cm2 we get R ~ 0.03 a-r, and 
if S ~ 10-14 cm2 we get R ~ 0.3 a-1. 

5. TOTAL RESISTANCE R. THE CASE j > jc 

In this case, as follows from Sec. 2, an electric field 
that depends on the difference j - jc appears even in 
the absence of fluctuations in the filament, and its value 
according to (7), is 

E = (i - ic) I cr. (25) 

The density Ps is in this case Pc = (%) I a 1/ {:3 (see 
{6)). The presence of the fluctuation of Ps causes a 
local change of the critical current density at the given 
point of the filament. Thus, if the density at the given 
point of the filament is now not Pc but Ps, then the 
local critical current equals, according to (18), 

., -
ie. Joe = P• 'e'(f>lm. 

It is obvious that the local electric field will now be 

1(· .,, ,;r;) 
EJoe =--;;- J-p, ef m . 

Recognizing that 

we get 

Substituting this expression in (26), we obtain 

E Joe = _!_ ( i- Jc- 3e V ~ PciP) · 
cr \ m 

(26) 

Eloc will differ from zero, obviously, only so long as 
the fluctuation does not reach a certain threshold value 
lj!2 , which is determined by the fact that the local 
density p2 = '11~ + 2'l'cl/!2 becomes critical for an ex
ternally set current j, that is, 

- ( j )'''(· m )''• Pz- -;- II · 
From this we get directly the difference op2 = P2 - Pc 
and a corresponding threshold 1/!2: 

¢2 = '/s"'/p,e, e == (j- j,) I;,. 

Averaging of E1oc over the distribution (16) gives the 
average value of the electric field in the filament: 

•• 
E= ~ EJoew(ljl)dljJ. (27) 

Integrating (27) we obtain the following final result: 

E 1 [ l 1 ''1fT 1 ' (28) R=-:-=-e 1+<I>(x2) +-·3• --e-x•, 
fc 2cr cr 2 :ro 

where x2 = 3- 514 ( 21T) -l/2 EXo, and Xo is given by (21). 
It is clear from (28) that the region of currents 

where the fluctuations are significant is determined by 
the condition X2 ~ 1, or 
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.,, --
E ~ bo yTc/xS. 

If Tc ~lOoK, K ~ 1, Oo ~ 10- 5 em and S ~ 10-12 cm2 

then E ~ 0.1. When j = jc, that is, when E = 0, formula 
(28) gives an expression for R which coincides with the 
expression that follows from (22) with x 1 = 0, as of 
course it should. On the other hand, when x2 - oo the 
total resistance R - E/ a, corresponding to formula 
(25). 

6. CONCLUSION 

We have considered the current transition in a thin 
superconducting film with allowance for the fluctuation 
of the density of the superconducting electrons. The 
resistance of the filament at a current close to critical 
is given by formulas (22) and (28) for the cases j < jc 
and j > jc, respectively. A qualitative picture of the 
transition is shown in Fig. 2. 

In conclusion, we wish to examine the results ob
tained in Sec. 2 from a somewhat different point of 
view. It was assumed there that the filament radius 
r « Oo / K, and satisfaction of this condition ensured 

E 

FIG. 2. Schematic repre
sentation of the current tran
sition in a thin superconduct
ing filament. I - electric field 
depends linearly on the current 
density, if the fluctuations are 
disregarded; 2 - transition 
curve with allowance for 
fluctuations; in the case of in
sufficient heat transfer, the 
filament temperature rises 
above T c and the filament goes 
over into the normal state 
(curve 3), where Ohm's law 
(the straight line 4) is satifisfied. 

the homogeneity of the distribution of the current over 
the cross section of the filament. There was not need 
anywhere else to assume that the filament radius is 
small. In hard superconductors of the second kind, 
that is, superconductors of the second kind with a large 
number of pinning centers for the Abrikosov vortices, 
the distribution of the current over the cross section 
will also be approximately homogeneous. If we now 
assume that the pinning forces are very large and the 
flowing current, up to the critical value, cannot be torn 
away from the pinning center, then the critical density 
will be the same as for a filament or a film, and 
formula (8) describes one more type of resistive state, 
in which the dissipation is connected not with the notion 
of the vortices transverse to the magnetic field (as 
in [4J), but with the mechanism described in Sec. 2. 
These questions, however, call for a separate analysis. 
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