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We evaluate the probability for an adiabatic transition between two terms in the case when one of them 
has a ''break" caused by the pseudo-intersection with a third term. We show that for small velocities 
when the "break" is important, it is necessary to take transitions in the vicinity of the "break" into 
account. 

IT is well known that inelastic transitions between non
intersecting terms have an adiabatic character and that 
at low velocities the probability for a transition is ex
ponentially small. In the case of two terms transitions 
are then "realized" in complex points where the terms 
"intersect." [ 1J 

The situation may change appreciably if one of the 
terms has for one reason or another a "singularity." 
In that case it is necessary to take into account the in
fluence of these regions on the transition probability. 
This, if we consider the generally speaking non-physi
cal case of a system with two terms when one of them 
has a break (approximated by a hyperbola) we can 
easily show using perturbation theory that in the region 
of the break the transition probability is P ~ v3 for low 
velocities v of the colliding particles. 

One of the reasons for the occurrence of a singular
ity of the "break" type is the pseudo-intersection of a 
term with a third term which does not intersect with 
the first one (Figs. 1 and 2). Such a situation is very 
often encountered in the spectra of colliding atoms. 

In the following we evaluate the probability for the 
transition between levels E 3 and E 1 under the as
sumption that the transitions are caused in the main 
region of the "break" Ll.R of the levels. 

1. In Fig. 1 we have depicted three levels, two of 
which ( E3 and E2) have a pseudo-intersection point 
while E 1 is in the region Ll.R at a distance w0 where 
wo » Ll. ( Ll. is the separation of the levels E3 and E2 
in that region). E~, E~, and E~ are the zeroth approxi
mation levels corresponding to the case where there is 
no interaction between the terms (Fig. 2). The levels 
E3 and E2 have no intersection whatever with E 1. 

The system of equations for the transition amplitude 
in the time-dependent theory have the form 
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Cm(t) =- ::6 Cn(t)dmn l'XP ( i ~ Wmn rlt), (1) 
m,cn 

Here m, n = 1, 2, 3; Wmn = Em - En; dmn 
= Jl/lm~ndr; En and 1/Jn are the eigenvalues and eigen
functions when the interaction is taken into account, and 
depend on t as a parameter. The set of three equations 
(1) can not be solved in general form but the way the 
problem is stated enables us to apply perturbation 
theory. Indeed, since the coupling is large between the 
levels E3 and E2 and small between E2 and E 1 ( E2 
and E1), we can put C1 = 0 or 1 (depending on the 
initial conditions) and in first approximation find C2 
and C 3 by solving a set of two equations; after that we 
find C 1 in the next approximation, using the values of 
c2 and c3 found in the first approximation. 

2. To evaluate the matrix elements d12 and d13 we 
expand 1/!n in terms of the eigenfunctions 1/J~ of the un
perturbed problem corresponding to the intersecting 
terms: 

m=i 

and, as usual, we find the expansion coefficients bm 
from the set of equations for the stationary problem 

(E,• + v11 -E) b, + v,,h, + v,,b, = o, 
(E,0 + v,,- E) b, + F,, b, + V,,b, = 0, (2) 
(E,0 + V,3 - E) b3 + v,, b, + V32b2 = 0 

together with the normalization condition I C1 12 

+ I C2l2 + I C3 12 = 1. The set (2) can be solved approxi
mately by bearing in mind that in the regions close to 
the roots En of the secular equation, the difference 
E~- En~ Ll.m >> Vm (V3~, where n = 2, 3, and Ll.m 
= E~ - E~. The terms En and the coefficients bn have, 
up to terms of first order in Vmn/ Ll.m with n = 2, 3, 
the following form: 

1. The root E = E~: 

2. The root 

(!) (1) v, b,l'l - - v,, 
/; 1 =1; b, =-; -

1'1,, . 1'131 ( 3) 

E2 = - 1/.(F,o + F,"- YL'l322 + 4V.122 ): 

b\'1=-=1-[-V12 (1+k) +V13 (1-k)'"]; (4) 
V2'>, 

(2) 1. 1 (2) 1 . II 

b, =--=(1-+k)h, b,, =--=.(1-k)". 
y2 y2 

3. The root E 3 = - 1/ 2 (E2° + T:,O + V c\,0 + 4 Vd) : 

b1131 = ~ [F12 (1- k)'h + V"( 1 + 1.)'']; (5) 
-y2.'\, 
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where 
(6) 

Using the values from (3) to (6) the matrix elements 
become 

1 v,, k 
d,,= -=------yu,, ( 1 - k) •1, 

1 v,, k d,, = -----~-~-. 
l'2 1'1,, (1 + k) '1, 

Here, and everywhere, we have taken into account only) 
terms in first order of V mn/ ~n1 ( n = 2, 3). 

3. In the following we consider the particular case 
of the term behavior when the angles of inclination of 
E~ and E~ with respect to E~ are the same in absolute 
magnitude (see Fig. 2); it is not difficult, as far as 
principle is concerned, to generalize this to arbitrary 
angles. Then 

(9) 

( 10) 

where ~32 = a ( t - to), V mn = const, and to is the point 
where the terms E~ and E~ intersect. 

We look for the transition probability in the case 
when the system of colliding particles is initially in the 
upper level E3: 

CJ(-oo) = 0, C,(-oo) = 0, !Cs(-oo) I = 1. ( 11) 

The solutions of C2 and C3 are known in the first ap
proximation of our problem. This are the Landau
Zener solutions of the problem in the adiabatic case.C2J 
Using the notation of [2], we write them as follows: 

i { (-r:-i\'1• (<+i\'"\ c, =- (A + iB) \-~~ ' -(A- iB) . -- I f 
2 -r+t \ T-l . 

X exp (- it.t \< ff+_;,2 dx J , 
\ 2 ' I 

(12) 

We now write down the value of the amplitude C1 in 
terms of the variable T, using (7), (8), and ( 12): 

where G = V12/2l'Zwo, 
M = i ( yl 1- ,; -- , ) 'h [ ( r - i) 'h - {'t + i) '••] + 

+ (Y1 + ,, + -r:) 'I•[ {'t- i) •;, + (-r + i)'l•], 

N = i(f1-: <'+T)'h[(< -i)'/,- (<+i)'h]
- (fi + 1:2 _::·t) '1•( (T- i) '/, + (< + i) 'l•j. 

(15) 

(16) 

The integral in (15) can be obtained by shifting the 
integration path into the lower half-plane going round 
the cut which goes from the point T = -i to -i 00 • The 
integrand can be expanded in a power series in the 
vicinity of T = -i and we take into account the first 
term in the expansion. As a result the probability for 
the transition from the level E 3 to the level E 1 is of 
the form 

(17) 

Using the asymptotic value of the D-function and using 
the fact that wo >> V 32 we get for large J.L 

(18) 

where v is the radial velocity in the region ~R and 
F3 and F2 are forces (slopes of the terms E~ and E~). 
The phase 

J.t ~· 3 ( it.t) 8 = ----In " +- n -'- 0 27 + <lf" f -2 4 ,.. 4 ' , " 4 

1f (-r:-i\''• (-r:+i)'l'\ 
C3 = -l (.4 + iB) -+ ~ J +(A - iB) --. J 2 't ! T-! 

appears due to the interference of the solutions for c2 
and C3 and although for low velocities of the colliding 
particles the oscillations are appreciable, cases are 
possible where the averaging over the velocities does 

exp (~ ~ yi + -;, dx), not lead to the vanishing of the oscillating term. It is 
2 • therefore retained in Eq. (18). 

where 

(13) 

Here Dn ( z) is a parabolic cylinder function and 

J.t = 1V,,2ja, T = a(t- to)/2V32• (14) 

Before finding the solution for C1 we make some 
remarks. It is clear that the use of the linear terms 
Eg and E~ in the problem involves their asymptotic 
intersection with E~. Since, however, this does not 
enter into the problem as stated, we restrict the region 
of the asymptotic behavior by the condition 
:Y2 a ( t - t0 ) « w0 which is natural as Wo is large and 
much larger than V32. We do therefore not take into 
account singular points of the kind ~21 = ~31 = 0. It is 
also clear that if we expect that the region of the 
"break" will affect the level E 1, the solution for C 1 
must have singularities in the same points of the com
plex plane as the solutions for C2 and C3, i.e., 
T = ±i. 

Unfortunately, it is not possible to compare directly 
the transition probability obtained here with the one 
from the paper by Dykhne [1J since to do that it is 
necessary to consider an actual case; however, because 
of its character the exponent in Eq. ( 18) can give a 
very insignificant contribution in contrast to the corre
sponding formula in[ 1J. At the same time we must 
note that the factor of the exponent in (18) may be small. 
We note also that in the case when E3 ( E2) and E1 are 
terms of different symmetry, transitions will be in
duced by a rotation of the internuclear axis. In that 
case, apparently, which is of most interest, the nature 
of the matrix elements V 12 ( V 13) and V 32 will be dif
ferent. While V 32 = ~/ 2 = const, V 12 = const · v. In that 
case it follows from ( 18) that 

(here a are the dimensions of the system, ~ the 
separation of the terms EJ and E2) while in the purely 
adiabatic case P2 ~ e -awo v. Bearing in mind that 
wo >> ~ we must expect for small v = v' that P 1 ( v') 
> P2(v'). When the velocity increases, beginning with 



136 V. A. KVLIVIDZE 

awell-definedvalue v=v", Pl(v")sP2(v"). Thisis 
connected with the fact that when the velocity increases 
E3-- E~(E2- E~), the terms will intersect almost 
exactly, the ''break" vanishes, and the transition prob
ability will be determined by the quantity P 2 • Thus, 
Eq. (18) is applicable in the velocity range 

,;::a(!'.-Ctlo) 
Vqu < v"" ln(v4/a!i>o'), 

where v qu is the velocity at which the classical ap
proach to the solution is inapplicable. 

In conclusion we give the formula for the transition 
probability for the case when the slopes of all terms 
are arbitrary: 

_ V 122V,l [ (2F,-F2 -F3) 2 Ctlo'J'f, 
P31 - 8n- -+-

v(Fa-F2)Ctlo2 (F3 -Fz) 2 V322 

xexp {- v(;~~;,)} (1- cos 8). (19) 

We must note that when evaluating P 31 the principle of 
detailed balancing was not taken into account. 
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