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It is energetically convenient for a conduction electron in a semiconducting antiferromagnet to produce 
around itself a region of ferromagnetic ordering with a radius of several lattice constants. The ground­
state energy of such a quasiparticle, called a magnetic polaron is calculated. Domains with ferromag­
netic ordering may also arise near non-ionized donors or acceptors. The low temperature transverse 
magnetic susceptibility of such defects may be comparable with the susceptibility of a perfect crystal. 
Under certain conditions the longitudinal susceptibility of the crystal is completely defined by the de­
fects. 

A preceding paperC 1J considered the ground state of a 
conduction electron in a nonmetallic antiferromagnet. 
It was assumed that the spin of the magnetic atoms of 
the antiferromagnet greatly exceeds unity. It was shown 
that an energetically favored stated may be a self­
consistant state of the system such, that in the antifer­
romagnetic ordering gives way to ferromagnetic order­
ing in a region of radius equal to several lattice con­
stants. This ferromagnetic microregion is a potential 
well for the conduction electron, in which it becomes 
localized. The electron should move through the 
crystal together with the ferromagnetic microregion 
produced by it. Such a quasiparticle, in analogy with 
the polaron in ionic crystals Cz, 3 J, was called a magnetic 
polaron. 

In the present paper we report a more detailed in­
vestigation of the possibility of capture of a conduction 
electron by magnetic polarization, including also the 
case of small spins. We obtain expressions for the 
energy of the ground state of the system at different 
relations between its main parameters. It is shown, in 
particular, that at small values of the spin the anti­
ferromagnetic sd interaction is much more favorable 
for the production of the magnetic polaron than the 
ferromagnetic one. However, even if the magnetic 
polaron is not produced, the minimum energy of the 
system at small values of the spin is still much lower 
than the quasiclassical value C 4J. 

Microregions with ferromagnetic ordering can occur 
also around defects that behave like donors or acceptors 
with respect to the electric properties of the crystal. 
The corresponding electrons or holes at these defects 
can be naturally interpreted as localized magnetic 
polarons. Recently numerous investigations, based on 
the Heisenberg model, were made of the influence of 
impurities on the magnetic properties of ferromagnets 
and antiferromagnets (see, for example, Cs-7J). It is 
clear, however, that localized magnetic polarons can­
not be described within the framework of this model, 
and the results of such investigations are not applicable 
to them. The "non-Heisenberg" defects considered 
here can possess anomalously large magnetic moments. 
At the practically attainable impurity concentrations, 
the impurity contribution to the transverse magnetic 
susceptibility can be comparable with the susceptibil­
ity of an impurity-free antiferromagnet. In definite 
cases, the longitudinal susceptibility is determined 
practically entirely by the defects. 
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1. FREE MAGNETIC POLARON 

We investigate the ground state of a conduction elec­
tron in a nonmetallic antiferromagnet. To describe the 
system we use the sd-model. It is assumed that the 
crystal lattice is primitive cubic, and that both mag­
netic sublattices of the antiferromagnet are identical. 
We consider the case when the probability of observing 
the conduction electron near the magnetic atoms is 
much higher than near nonmagnetic atoms, so that the 
latter can be simply regarded as field sources. Ac­
cordingly, the Hamiltonian of the system under con­
sideration is 

:Je = ~ [EA6oo'- A (sSr)oo•]aro" aro•­

+ B ~a;. af+go- { ~ (~r Sr.g)· ( 1) 

Here afa and ara are the operators of creation and 
annihilation of the conduction electron with spin pro­
jection a on the magnetic atom with number 
f = (fx, fy, fz); f and Stare the operators of the spin 
of the conduction electron and of the f-th magnetic 
atom. Further, EA is the "atomic" energy of the con­
duction electron, B is the Bloch integral, A is sd­
exchange integral, and I is the integral of exchange be­
tween the magnetic atoms. We use the nearest­
neighbor approximation, so that the index g, which 
numbers the neighbors, runs through six values. 

A very important factor in what follows is that the 
quantities A and B are large compared with I: whereas 
the former two parameters are of the order of 
0.1-1 e V, the exchange integral usually amounts to 
several hundredths or even thousands of an electron 
volt. 

If we assume that the conduction electron leaves the 
antiferromagnetic ordering unchanged, then we obtain 
for the energy of the system, neglecting the zero­
point oscillations of the spins, the following expres­
sions C4J: 

E =Eo +EA -l'(AS / 2) 2 + Bk2, 

Bk = 2B[cos kxa +cos kya +cos k,a], 
(2) 

where Eo is the energy of the ground state of the anti­
ferromagnet, a is the lattice constant, and k is the 
quasimomentum. 

It is seen from (2) that when I A I S » 6 I B I the 
antiferromagnetic ordering prevents the electron from 
gaining energy as it moves through the crystal. In 
the opposite limiting cases, it leads to a mutual can-
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cellation of the contributions from the exchange inter­
action of this electron with the magnetic atoms. We 
can therefore expect the energetically more favored 
state to be one in which the antiferromagnetic ordering 
is replaced by ferromagnetic ordering in some region. 
The energy lost by the magnetic subsystem is compen­
sated by the gain in the energy of the conduction elec­
tron, which can move freely inside the ferromagnetic 
microregion, acquiring inside this region a full gain in 
the energy of the sd-exchange. 

We calculate below the energy of the magnetic 
polaron at rest. In the problem under consideration, 
the interaction Hamiltonian of the s-electron with the 
magnetic subsystem has a much more complicated 
structure than the Hamiltonian of the electron-phonon 
interaction in the polaron problem. In addition, the 
commutation rules of the spin operators are much 
more complicated than those of the Bose operators. It 
would therefore be apparently ineffective to employ 
here a field procedure similar to that developed in 
polaron theory. 

We solve the problem by a direct variational method. 
It is assumed that the continuous-medium approxima­
tion is applicable. In constructing the trial function it 
is assumed that ideal ferromagnetic ordering is estab­
lished in a region of radius R; when r = R this be­
comes abruptly an antiferromagnetic ordering. The 
value of R serves as the variational parameter. Such 
a state of the magnetic subsystem will be denoted by 
the symbol I 0 >R· Since the ferromagnetic state is an 
eigenstate of the Heisenberg Hamiltonian, the state 
I 0) R with R >> a should lead to a groundstate energy 
which is close to the true energy. Such an approach is 
similar to that used by Pekar [2J in the polaron theory. 
A more accurate trial function, just as in [2J, should 
take into account the fact that the center of the mag­
netic polaron may be located at any lattice site. 

The detailed form of the trial function depends on 
the sign of the sd-exchange integral A. In ferromag­
netic sd-coupling, the spin of the conduction electron 
inside the ferromagnetic microregion, obviously, is 
assumed to be polarized along the momentum of this 
region. Outside this region it is necessary to take into 
account both spin polarizations of the s-electron. We 
shall assume that the magnetic moment of the micro­
region is collinear with the antiferromagnetism vector. 
As is well known, in the ground state of an antiferro­
magnet, the magnetization of the sublattices is close to 
the limiting value even when S = %. Therefore in that 
sublattice, in which the moment is parallel to the mo­
ment of the microregion, the s-electrons can also be 
regarded as fixed. In the other sublattice, at the mag­
netic atom closest to the s-electron, there is mixed in 
with the "correct" projection of the spin of this atom 
also an "incorrect one," which differs from it by 
unity. The limitation of the deformation of the magnetic 
ordering in the antiferromagnetic region to the atom 
closest to the conduction electron is justified by the 
condition I A IS » I I I S2. 

If we include in I 0 ) R also the vacuum electron 
function, then, in accordance with the foregoing, the 
trial wave function is constructed when A > 0 in the 
following manner: 

{ "' • • + <D = .:::.J [ cr, 1 ar, 1 + cr, 1 ar, 1 Sr,] 
lf,J;;>R/a 

+ ~ c,da;.l + 2Jcr,1a;,1}IO)R· 
Jfd<Hfa fz 

(3) 

The indices f 1 and f2 denote here atoms belonging re­
spectively to sublattices 1 and 2. It is assumed that the 
moment of the ferromagnetic microregion is parallel 
to the moment of sub lattice 2. 

As to the antiferromagnetic sd-coupling, it is 
necessary here to take into account both projections 
of the conduction-electron spin and also inside the 
ferromagnetic microregion. At the same relative 
position of the moments of the microregion and of the 
sublattices, the wave function is chosen in this case in 
the form 

<D = { ~ c,da;,r + ~ [erda;.!+ 
)td:;:;-R/a ]f1]<R/a 

+ c,>la;>ls;,] + ~ [cr.~a;e~ + c,.~a;.~stl}JO)R· (4) 
f, 

The systems of equations for the determination of 
the coefficients of the functions (3) and (4), to which it 
is necessary to go over in the approximation of the 
continuous medium, are obtained in the standard 
manner. When A< 0 the set of amplitudes Cfa can be 
regarded as a "bispinor" wave function, whose com­
ponents are defined as follows: 

ih (r) = Ct.J, ljJ, (r) = Ct,J, 'i'• (r) = Ct,j, 'i'• (r) = cr,~. ( 5) 

Expansion of the coefficients Cfa in a Taylor series 
makes it possible to make a substitution of the type 

~cf,+gt->[6-t a'f'l]'iJ2 (r). 
g 

Taking the foregoing into account, the Schrodinger 
equation takes in the case of antiferromagnetic sd­
coupling the form 

{A: [1- 28(r- R)]-ER }'1'1 + B(6 + a2L'l)'iJz­

-AV ~ H(R- r)'ljls = 0, 

B(6 + a2L'l)'iJi + ( ~S -ER )'i'z-A v ~'I'• = 0, 

1/S [ A(S-1) 
-A Vz-H(R-r)¢1 + - 2 

1/S [ A(S-1) J -AVz'i'•+- 2 -ERijJ;=O, 

S(x)=1 for x~O, S(x)=O for x<O. (6) 

We use here the notation 

ER=E-EA-8ni!JS2 (R/a) 3• (7) 

The terms ~I/ A were omitted from (6). 
The system (6) is solved by transforming it into a 

single equation with respect to 1/11· This component of 
the wave function is represented by a spherical wave 
with a real wave number k in the ferromagnetic 
microregion and an imaginary wave number iK outside 
this region. As a result we obtain the following system 
of transcendental equations for the determination of the 
energy: 
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(L'(ER) - B 2(6- a2k2) = 0, 

-(AS/2+ER)L(ER) -B2[6+a2k2 ctg2 :kR] =0, ctgkR<O, (8) 

where L( E) is given by 

AS A'S[ A(S-1)]-1 (9) 
L(E)=z--E+-2-E+ 2 . 

In the case of ferromagnetic sd-coupling, the ag­
gregate of the coefficients of the wave function (3) is 
regarded as a "vector" wave function with components 

'1'1 (r) = cr, t, 'i'o (r) = cr,to 'i'a (r) = cro~. ( 10) 

When A > 0 the Schrodinger equation is of the form 

{ A2S (1- 28(R- r)]-ER }1P1 +B[6 + a2~]1jl,-A v fe(r-R)Ijla=O, 

B[6 + a2~] 'iJ1 + [-AS/2 -ER]'i', = 0, 

,rs [ A(S-1) ] 
-A V z-8(r-R)1Jlt + - 2 -ER ljla = 0. (11) 

It is solved in exactly the same manner as (6) and leads 
to the following equation for the energy: 

A2S 
-B (6 - a2k2) = AS--:-=-,--..,-,.,.--,---

2B(6- a2k') +A 
B (6 + a2k2 ctg2 kR]2 ( 12) 

6- a2k2 ' 

ER=-AS/2-IBI[6-a2k2 ], ctgkR<O. (13) 

Proceeding to the analysis of (8), (12), and (13), it 
should be noted that they have solutions only when R 
exceeds a certain minimum value RM· The energy 
levels ER in the polaron well start with the lowest 
value at R = 0. This value is lower than the minimum 
energy of the band electron (2), inasmuch as when 
R = 0 the wave functions (3) and (4), unlike the band 
wave function, take into account the conservation of the 
projection of this spin of the s-electron, due to the ex­
change interaction with the magnetic atoms. If a mag­
netic polaron is produced, then its radius R should 
exceed RM, in order that the gain of the electric 
energy compensate for the loss in the energy to the 
creation of the ferromagnetic microregion. When R 
tends to infinity, the polaron level tends, for A< 0 and 
A > 0 respectively, to 

ER= 1/,A(S+1)-6IB[, (14) 

ER = 114(A -12IBI] - 1/.{[A -12IBI]' 

-48IBIA(S-1) +4A'S(S+1)}'''· (15) 

Further, from (6) and (11) we see that at large 
values of S it is sufficient to use in place of the 
"bispinor" or (vector) wave function the "spinor" 
wave function with components 1/11 and 1/!2 • In this case 
(8), (12), and (13) reduce to (5) of[lJ. 

Each of the systems of equations (8) and (12), ( 13) 
can be simplified in the limiting cases I A IS « 61 B I 
and in the opposite case. In the first of these cases 
(weak sd-interaction) both systems lead to the same 
equation for the parameter k: 

~kRM=sinkR, (16) 
n 

where the minimum radius RM is in this case 

_n [~-IAIS2(1+2/S)J''• (17) 
RM -2a I AIS 48B2 • 

In some cases it is possible to obtain an approximate 
solution of ( 16): 

k=.!!..[ 1-~ RM] 
R n R 

(18) 

The energy ER is expressed in terms of k with the 
aid of relation (13), where for A < 0 it is necessary to 
replace the sd-exchange integral by its modulus. If no 
magnetic polaron is produced, then the minimum energy 
of the system is equal to 

A 2S2 
[ 2 J (20) E(O)=Eo+EA-6IBI- 48 IBI 1+S · 

In the opposite case of strong sd-coupling with 
A > 0 and not too large values of S, the energy ER 
and the parameter k are determined as before by Eqs. 
(13) and ( 16), but the minimum radius is given by the 
expression 

RM = ~ a [ 6 ( 1 - i'2S1 + 1 ) r·. (21) 

and the energy of the system in the absence of a ferro­
magnetic micro region is equal to 

AS 6IBI 6IIIS' (22) 
E(O)=Eo+EA--- +---. 

2 l'1+2S (2S+1) 

On the other hand, if A < 0, then the energy is 
given by 

ER=~(S+1)- IBI 2S (6-a2k2). 

2 1+2S 

The parameter k is determined from (16) with the 
minimum radius 

n [ IBI ]''• 
RM=2a 3(1+2S)IAI · 

The value of E ( 0) is in this case 

(23) 

(24) 

A (S + 1) 144B2S 
E(O) r:::: Eo+ EA + ---2-- + A (1 + ZS)' + 

6IIIS' (25) 
(1+2S). 

It is possible to obtain an explicit expression for 
the value of Ro of the parameter R at which the total 
energy of the system is minimal only if R 0 » RM· 
Using (7), (13), (18) and (17), (21) we obtain 

( n IBI )''• 
Ro =a J21lfS" . (26) 

In the case of a strong antiferromagnetic coupling, the 
value of I B I in (26) should be replaced by 
I B I 2S/ ( 1 + 2S). 

Attention is called to the weak dependence of Ro on 
B/I in (26). However, at smaller values of Ro this de­
pendence is much stronger. If the magnetic polaron is 
energetically favored, then in typical cases the value 
of Ro amounts to 2-3 lattice constants. 

It has been assumed so far that the energy of the 
system is minimal when the moment of the ferromag­
netic microregion is collinear with the antiferromag­
netism vector. In principle, it may turn out that the 
energy is even lower when these vectors are mutually 
orthogonal. A direct calculation shows, however, that 
the electronic part of the energy of the "parallel" con­
figuration in the cases considered above is lower than 
the energy of the "perpendicular" configuration, with 
the exception of the case of a strong antiferromagnetic 
sd-coupling. However, even then the gain in that part 
of the energy is smaller than the loss in the surface 
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magnetic energy due to spin rotation through an angle 
rr/2. 

The results obtained here for small spins differ 
most strongly from the results for large spins in the 
case of a strong ferromagnetic ad-coupling. This is 
connected with the strong decrease of the energy of the 
system due to the non-conservation of the a-electron 
spin projection on the atoms of the "energetically un­
favored" sublattice. As a result, as seen from (22), the 
correction to the energy of the system due to the trans­
lational motion of the a-electron in the absence of a 
ferromagnetic micro region is of first order in B/ A. 
On the other hand, in the case of large spins such a 
correction is of second order of smallness. Therefore 
the tendency to the formation of a magnetic polaron de­
creases with decreasing spin when A> 0. 

In the case of antiferromagnetic ad-coupling, there 
is no such strong lowering of the energy of the system 
due to the "oscillations" of the spin of the conduction 
electron, and in the case of small spins the tendency to 
form the magnetic polaron remains sufficiently strong. 
The reason for this difference can be easily explained 
with S = Y2 as an example. When A> 0, the ground 
state of the atom with the conduction electron on it is 
triply degenerate with respect to the direction of the 
total spin. Whereas in one sublattice this total spin is 
directed only to the magnetic moment of the sublattice, 
in the other sublattice it is perpendicular to this direc­
tion. These states are not orthogonal to each other 
with respect to the spin variables, since we are dealing 
with localization of the a-electron at different atoms. 
Thus, the a-electron going from atom to atom remains 
in states with the same energy, and the influence of the 
antiferromagnetic ordering reduces to a renormaliza­
tion of the Bloch integral. 

At the same value of the spin, but at the opposite 
sign of the ad-exchange integral, the ground state of 
the magnetic atom with the conduction electron on it is 
a singlet state. It is impossible to construct a singlet 
state with an a-electron on an atom of the other sub­
lattice, which is not orthogonal to the first in the spin 
variables. Therefore for the conduction electron, the 
atoms of different sublattices are energetically not 
equivalent to each other, and antiferromagnetic order­
ing, as also in the case of large spins, hinders the 
translational motion of the a-electron. 

2. LOCAIJZED MAGNETIC POLARON 

In this section we shall consider the state of an 
a-electron which is localized near a positively charged 
defect. We investigate also the magnetic properties of 
such defects. The consideration advanced in the pre­
ceding section concerning the state of the system can 
be repeated practically verbatim for the present case. 
The localized a-electron will tend to establish near the 
defect ferromagnetic ordering in place of antiferro­
magnetic ordering. If the disturbance of the antiferro­
magnetic ordering near the defect is energetically 
favored, then such a state can be interpreted as a 
localized magnetic polaron. 

The ground state of the system is determined in the 
same manner as in the preceding section, but it is pro­
posed to add to the Hamiltonian {1) a term that de-

scribes the field of the defect. The analysis is con­
fined to the case of sufficiently large spins. We use the 
continuous-medium approximation and employ a varia­
tional principle. In the construction of the trial wave 
function it is assumed that at r = R, which plays the 
role of the variational parameter, the antiferromag­
netic ordering changes jumpwise into ferromagnetic 
ordering. In the absence of an external field, the mini­
mum of the energy is reached if the ferromagnetism 
vector M is parallel or antiparallel to the antiferro­
magnetism vector L. Which of these two orientations 
gives a lower energy depends on the exact position 
of the defect (the particular magnetic sublattice it 
belongs to etc.). In accordance with the results of the 
preceding section, the wave function of the system can 
be represented as the product of the electron wave 
function and the wave function of the magnetic sub­
system. The electronic function is a two-component 
one with respect to the two magnetic sublattices (the 
spin of the conduction electron can be regarded here 
as fixed). The electronic Schrodinger equation takes 
the form 

{ IAIS e2 } EA +-2-[1-26(R- r)]---;;.-Ee lilt +B£6+ a211]¢2 = 0, 

(27) 

where E: is the dielectric constant of the crystal and 
Ee is the electron energy. 

A solution of (2 7) can be obtained in explicit form if 
it assumed that in the region r > R the change of the 
Coulomb energy over the depth of penetration of the 
electron into the antiferromagnetic region is small 
compared with the energy of the ad-exchange. Under 
this condition we obtain for 1/11 the solution: 

lilt= Ctexp{- !_}(J>/\1- n, 2, 2r), 
pn np 

(28) 

where 

1/ Ee'(oo) 1 IAIS 
n= V Ee'(R)' Ee =Ee+BIBI+-2--EA, 

cl> (a, {3, z) is the confluent hypergeometric function, 
p = 2 I B I a2 E:e-2 is the Bohr radius, Ee {R) is the elec­
tron energy as a function of the radius R (solution in­
side the ferromagnetic micro region); 

(29) 

where the parameter K is connected with the electron 
energy by the relation 

B2[6+a2x2)2= [6IBI-E'.][IAIS+6IBI-E'.] (30) 

(solution outside the ferromagnetic microregion). 
The joining of the solutions (29) and (30) on the 

boundary of the microregion leads to the following 
transcendental equation for the determination of the 
electron energy: 

x =- ..!!_{rexp (- _!__) (J) (1- n, 2, ~)} . (31) 
dr \ pn np r~R 

If I A I S » 6 I B I, then (31) can be replaced with suf­
ficient accuracy by 

${1- n, 2, 2R / np) = 0. (32) 

The Schrodinger equation (27) can be solved also in 
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the cases R » p or I A IS « e2/ t.p, using perturba­
tion theory: 

E.(R)=E.(oo)+ IA;s (OIO(r-R)IO>, (33) 

where the averaging is carried out over the ground 
state of the localized electron with A = 0. 

The magnetic defect of the type under consideration 
has a moment 

8n (Ro )3 
M~ 3 [LB8 ---;; • (34) 

Here J.lB is the Bohr magneton and Ro is determined 
from the condition of the minimum of the total energy 
of the system. However, this moment is "bound" to 
the antiferromagnetism vector. If the external magnetic 
field is not strong enough to break this bond, then the 
magnetic susceptibility xP of such defects is uniso­
tropic. 

If the weak magnetic field H is parallel to L, then 
owing to the random distribution of the defect over the 
crystal their summary moment becomes equal to zero 
up to a field value at which the moment of the quasi­
particle either changes by unity or is established along 
the field. It may turn out, however, that the critical 
field for the rotation of L by rr/2 is smaller than the 
critical field indicated above. For defects that are ar­
ranged symmetrically with respect to the magnetic 
sublattices (anion vacancies etc.) we can expect the 
critical field that reverses the orientation of M to be 
equal to zero. In this case the longitudinal magnetic 
moment of the crystal in weak fields will be deter­
mined completely by the defects as T - 0. 

When H l L, the magnetic moment of each of the 
sublattices deviates from its position at H = 0 in the 
direction of the applied field, by an angle cp 1 or cp 2 

respectively. The influence of the defects on the mag­
netic moment of the crystal becomes manifest not only 
by their anomalously large magnetic moments, but 
also by deviation angles that are anomalously large 
compared with the ideal lattice. Assume, for con­
creteness, that the magnetic moment of the defect at 
H = 0 is parallel to the moment of sublattice 2. Within 
the framework of the phenomenological theory [a], the 
energy E of a cubic crystal at small values of H can 
be represented as a functional of the sought angles 
cp 1 ( r) and 'Pz ( r) in the following manner: 

E = E[l] + E[m], l = <p2- 'P~o m = 'l't + <1'2, (35) 
82 co 

E[l]= - 8 ) l(r-r1)[l(r)-l(rt)]'drdr1 

r,r1~R 

b82 co HM +- ) l2(r)dr--l(R), 
2 r;;;.R 2 

(36) 

82 co 

E[m]=- 8 ) l(r-r1)[m(r)+m(r1)]2drdr1 

r, r1;;.R 

"" HM 
- [LB8H ) m(r)dr- 2 m(R). 

r~R 

(37) 

Here the quantities I ( r) and b describe respectively 
the exchange interaction between the atoms from dif­
ferent sublattices and the anisotropic interaction that 
ensures stability of the configuration under considera­
tion. In writing out (36) and (37) it is assumed that the 

moments of all the atoms in the ferromagnetic micro­
region r < R are inclined by the same angle 'Pz ( R), 
and that outside this microregion the interaction of 
the s-electron of the defects with the magnetic atoms 
can be neglected. 

Let us assume (this is confirmed by further calcu­
lation) that the quantity l ( r) is a slowly varying func­
tion of the radius r. Taking into account the small 
radius of action of the exchange forces, the Euler equa­
tion for the functional E [ l] (36) takes the form 

1 d [ d ] -- r2-l(r) -x12Z(r) =0 
r2dr dr ' 

(38) 

where 

4b 
x,=w· 

82 co 

/ 1 = 3 ) l(r)r2dr. 
0 

The boundary conditions for this equation are obtained 
from an arbitrary variation of l ( r) at r = n and 
r = oo: 

r2 dl(r) I = O, dl(r) I HM (39) 
dr r~ r2~ r~R =- 2nlld · 

The solution of Eq. (38) with boundary conditions 
(39) is given by expression 

HM exp {- Xt(r-R)} 
l(r)= 2nlltl[1+xtR]r · ( 40) 

It is dear from (40) that in order to consider the de­
fects independently of one another, as was done here, 
it is necessary to satisfy the condition K1 >> n11S, where 
n is the impurity concentration. 

As regards the quantity m ( r), it cannot be regarded 
in general as a slowly varying function of r at dis­
tances on the order of the exchange-force radius, i.e., 
the lattice constant. This can raise doubts concerning 
the applicability of the phenomenological approach. We 
shall show below, however, that it is possible to neglect 
the rapid variations of m ( r) and to assume this quan­
tity constant. Variation of the functional E [ m] (37) 
yields the following equation for its extremal value: 

, mM 
.I J(r-r1)(<p(r) +<p(rt)]dQdrt= -[i>{)(r-R), 

1'1;;:;>-R 

where 
2[LBHS (" 

<p(r) = m(r) --
1
-,

1
-, J = J/(r)dr, 

dQ is the solid-angle element corresponding to the 
vector r. 

(41) 

According to the condition R » a, Eq. (41) can be 
approximately replaced by the equation 

"" HM 
\ F(r- r1)[<p(r+R)+ <p(r1 +R)]drt =- --6(r), 
· 2nR2 
0 

(42) 

the kernel F ( r) of the integral equation (42) decreases 
rapidly over a distance on the order of a. Without 
limiting the generality of the obtained estimate, it is 
convenient to approximate it by means of an exponential 

F(r) ~ Kexp (-r/a,). (43) 

By direct verification we establish the equivalence 
of the integral equation (42) with the kernel (43) and the 
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following differential equation: 

2 HM [ ll(r) J c:p"(r+R)--cp(r+R)= ---- !J"(r)--- . 
a,1 2nR2a1K a,z 

(44) 

The solution of ( 44), obtained by extending it to the 
region r < 0 and using a Fourier transformation, is of 
the form 

HM { y2 } 21J.BHS 
m(r)= exp --(r-R) +--. 

4n y2 R2Ka,2 a, I l I 
(45) 

Thus, according to (45), the quantity m ( r) remains 
practically constant up to r - R ~ a1, where it ex­
periences an abrupt jump. However, from a compari­
son of ( 45) and ( 40) it follows that 

m(R)/I(R) ~a/R¢;;1, 

i.e., the cont~ibution of m ( R) to cpz ( R) can be 
neglected compared with the contribution of l ( R). 

From (45) and from the definition of the quantiy m 
it follows that the magnetic moment of an antiferromag­
net is equal to its value in an ideal crystal already in 
the direct vicinity of the defect. We therefore obtain 
the following expression for the transverse suscepti­
bility x~ of the defect under consideration: 

xj_ ~ M2n/ 4:t lldR(1 + XtR). (46) 

An estimate of the effect showed that at a defect con­
centration n ~ 1020 em -3 , an effective electron mass 
ti2/ I B I a2 equal to the true mass, a dielectric constant 
E ~ 5, and a Neel terpperature ~o.Ol eV we get x~ 
~ 10-4S2 and R0 ~ 5A. Comparing the result (46) 

with the well-known expression for the susceptibility 
X.L of an ideal antiferromagnet, we obtain X~/ X.L 
~ Rgna-2 , i.e., xl_ amounts to several times 10% of 
X.L under the conditions considered. 

The author is indebted to L. V. Keldysh and R. A. 
Suris for a discussion of the problem during different 
stages of the work. He is also grateful to S. V. Tyabli­
kov for a discussion of the work. 
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