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The surface photoeffect from a metal in a dielectric or in a solution is considered by applying the so­
called threshold theory of production of slow particles, without making any assumptions regarding the 
concrete shape of the potential barrier at the boundary. In one limiting case the relations derived go 
over into the well-known Fowler formula for photoemission in vacuum. However in the case of photo­
emission in a medium in which Debye screening occurs (electrolyte) or in a dielectric with a suffi­
ciently high dielectric constant, qualitatively different results are obtained. In particular, the quad­
ratic law for the quantum yield predicted by the Fowler theory is replaced by a % law. The explicit 
dependence of the quantum yield on frequency of the incident light is considered in a general form. 
The theory yields a quantitative explanation of a number of experimental data and predicts some new 
effects. 

1. FORMULATION OF PROBLEM 

INTEREST has recently been renewed in the study of 
the surface external photoeffect1 > (photoemission) from 
metalsC1 - 10J. The renewed interest in the surface 
photoeffect is connected primarily with the appearance 
of new interesting light sources, which make it possible 
to investigate surface multi photon processes [2 • 3J. In re­
cent years, a number of new detailed experiments were 
also performed on the interface between a metal and a 
dielectric or a metal and a semiconductorC4-aJ, for the 
purpose of investigating the potential barrier. In addi­
tion, experiments were started on the interface between 
a metal and an electrolyte solution [a-1oJ. In the latter 
case, the features of the construction of the interface 
between the metal and the electrolyte [12] make it pos­
sible, by applying a relatively small potential differ­
ence, to vary quite noticeably the properties of the 
surface and its photoemission characteristics. This 
uncovers wide prospects for using the external surface 
photoeffect to obtain important experimental informa­
tion on the properties of interfaces and adsorption 
layers. 

The theoretical analysis of the photoeffect produced 
under the influence of monochromatic radiation of fre­
quency w has been the subject of a large number of 
papers [13- 18]. The basis of the calculations is usually 
chosen to be the general expression for the density of 
the photoemission current I from the metal, in the 
form 

I=~ j{E,pu,Al [1+exp(E~!')rp{E,pu)H(p')dEdp11 • (1) 

1lThe surface external photoeffect is the result of the possible inter­
action between the electrons and protons as a result of a change of the 
potential on the boundary of the metal[ 11 ]. The surface photoeffect pre­
dominates at light frequencies lower than the so-called threshold of the 
ultraviolet transparency of the metals w* (the photon energy corre­
sponding tow* is of the order of 8-10 eV). At frequencies higher than 
w*, the volume photoeffect comes into play, which is weakly depend­
ent on the properties of the surface and which arises essentially because 
either phonons or impurities take part as third bodies in the interaction 
between the photons and the electrons of the metal. 
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Here j(E, Pill A) denotes the asymptotic value of the 
z component of the density of the partial current of 
electrons as z - "", averaged over the surface of the 
metal (the z axis is normal to the surface); p is the 
value of the z component of the momentum of the 
emitted electron pz far from the surface; E and Pll 
= {px, Py} are respectively the alternating energy and 
momentum components of the initial electrons in the 
metal and lie in the plane ( xy); A = {A, Ao} is the 
potential of the incident electromagnetic wave; J.J. is the 
chemical potential of the electrons in the metal, T is 
the absolute temperature, k is Boltzmann's constant, 
and p ( E, Pii) is the distribution density function. The 
e -function e ( p2 ) in (1) is the result of the energy and 
the momentum conservation laws. 

As seen from ( 1), the main task is to calculate the 
quantity j (E, Pll, A). So far, two different approaches 
were used. The first, employed for the first time in 
Fowler's phenomenological theory of the single-photon 
photoeffect[ls] reduces essentially to a simple replace­
ment of the quantity j in (1) by a certain constant; in 
many other less successful phenomenological theories, 
a more complicated form of j is postulated. In the 
second approach, different variants of which for single­
and multiphoton processes are being developed to this 
very dayC 17- 18 J, the quantity j is obtained from a solu­
tion of the quantum-mechanical problem, in which the 
motion of the electrons in the metal is described by a 
model of "boxes" with different, frequently quite com­
plicated "wall" shapes. The non-equivalence of the 
two indicated approaches - the phenomenological 
one [ls J and the apparently more accurate model one -
is seen already from the fact that when T = 0 they 
yield essentially different dependences of I on the light 
frequency w as w approaches the threshold frequency 
wo of the single-photon photoeffect. 2 > Experiments on 
the photoemission of electrons in vacuum, however, 
confirm precisely the Fowler theory, according to 
which the photocurrent I~ (w - Wo) 2 when T = 0, and 
at the present time this theory can be regarded as uni-

2lThe concept of the threshold frequency w0 is discussed in greater 
detail below. 
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versally accepted [ 19- 20] in spite of the understanding 
that it is based on a number of insufficiently justified 
assumptions. 

In the present paper we determine j by a new ap­
proach connected with the use of the methods of calcu­
lating the so-called threshold production phenomena in 
quantum mechanics [21 - 22]. The possibility of using such 
methods here is based on the fact that the electrons 
emitted in the surface photoeffect possess essentially 
a kinetic energy not exceeding 1-3 eV, and their 
"well depth" in the metal is smaller (in absolute mag­
nitude). The analysis can therefore be performed es­
sentially without reference to a concrete model of the 
metal. In such an approach it is possible, first, to jus­
tify Fowler's theory and to establish the limits of its 
applicability. Second, the general threshold analysis 
makes it possible to describe a number of phenomena 
where the indicated theory is not valid. Included among 
such phenomena, in particular, is the surface photoef­
fect on the interface between a metal and an electrolyte 
solution. 

In the case of surface photoemission from a metal 
into a dielectric with a sufficiently large dielectric 
constant, it is also possible to predict a distinct de­
pendence of the photocurrent on w, which enters in 
Fowler's law only in the limit of very low energies. A 
number of theoretical conclusions can be compared in 
this case with the already available experimental data. 

2. INITIAL EXPRESSIONS 

In the case of the surface photoeffect, it is essen­
tially sufficient to employ the one -dimensional analysis 
for the calculation of j. We shall assume that the metal 
occupies the space - oo :s: z > 0. By virtue of the sym­
metry, the effect is due only to the z -component of the 
electric field of the light wave3 '; the effect of the mag­
netic component on the electrons, and relativistic ef­
fects in general can obviously be neglected (we shall 
henceforth use "electrons" for brevity to denote in 
general all quasiparticles fermions and carriers with 
charge-e). In view of the averaging over the surface, 
the effective potential in which the electrons move can 
be regarded as dependent on z only. For the same 
reason, the current is derived from wave functions 
whose dependence on r 11 = {x, y} can be specified, both 
before and after the absorption of the photons, by means 
of the factor exp ( ip 11 · r11), which is best separated 
from the very beginning. In accordance with the fore­
going, the asymptotic value of the current j ( E, p 11, A) 
is derived from final-state wave functions, of the form 
1/!f ( s, z) exp ( iP11 · r11), which depend in a nontrivial 
manner only on the coordinate z (we have introduced 
here the composite parameter s = {E, p, p 11 , A}), and 
in the asymptotic limit as z - oo the function lj,if ( s, z) 
should be proportional to exp ( ipz). If we confine our­
selves for simplicity to the single-photon approxima-

''Besides symmetry consideration, it is also necessary to bear in 
mind that in the frequency region under consideration, when almost 
total reflection from the surface of the metal takes place, the tangential 
components of the electric component of the field are much smaller 
than the normal components. 

tion, then the equation for lj,i~ 1 '( s, z) can be written in 
the form (we put e = n = c = 1 throughout) 

{- ::2 + 2m(z) U(z)- [2m(z) (E + w)- Pn2] }1P}1' (z) = U A'Po(z). {2) 

Here U A is an operator describing the electromagnetic 
interaction in the first order and does not contain the 
time. For the case of nonrelativistic electrons, its 
form is 

.(f) f)) 
UA(z)= 11 -Az(z)+Az(z)- + 2m(z)Ao(z). 

\ fJz fJz {3) 

Here m ( z) is the effective mass of the electron, which 
generally speaking has different constant values deep 
in the metal ( ( m) ( z) = m 0 , z - - oo), and outside the 
metal ( m ( z) = m, z - 00 ) and does not coincide with 
the usual value of me. 

The functions A ( z) and Ao ( z) are connected with 
the time -dependent components of the potential in the 
following manner: 

A(z,t) = [A(z)e-'"'+A'(z)eiwt]evt, v-+0. 

Ao(z,t) = [Ao(z)e-iwt +Ao*(z)e'"'']e'', v-+0. {4) 

The dependence of A ( z) on the coordinates ( x, y) 
at incidence angles not very close to rr/2 can be 
neglected, since all the characteristic dimensions that 
enter in the problem are much smaller than the wave­
length of the light. 

The function 1/Jo ( E, p 11 , z) which enters in (2) de­
scribes the initial state of the electron in the metal, 
and is by definition a regular function that attenuates 
at z - ""· The equation satisfied by the function 
1J,io(E, Pil> z) is 

{- ::2 +Pii2 +2m(z}'[U(z)-EJ}1Po(z)=0. {5) 

The term containing U{z) describes all the interac­
tions of the electron inside and outside the metal, ex­
cept the interaction with the electromagnetic wave. At 
the frequencies under consideration, it can be regarded 
as independent of the time. 

We must emphasize especially that the following 
conclusions are practically independent of the type of 
interaction inside the metal, provided this interaction 
can be regarded as "sufficiently strong," 4 ' and there­
fore there is no need to specify in detail the type of the 
function U ( z) when z :s: 0. 

To describe the motion of the electrons outside the 
metal, we note that the main part of the emitted elec­
trons has an energy much higher than kT, and there­
fore the deceleration processes for them become sig­
nificant only at distances larger than their de Broglie 
wavelength. The motion of such electrons far from the 
surface can be described, without taking into account 
the deceleration, as the motion of particles with mass 
m in an effective potential well, the depth V of which 
depends on the properties of the medium into which the 
electrons are emitted [Z3J (in the case of emission into 
vacuum V = 0 and m =me). Thus, at a certain dis­
tance o from the surface of the metal, the function 
U ( z) can be written in the form 

4lThe corresponding mathematical condition will be given below 
(see (14)). 
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U(z)=-V-a/z, z~.S. (6) 

The second term in (6) takes into account the image 
forces, with a = 0 in the case of emission into a 
medium with De bye screening (electrolyte), and 
a = e 2/ 4E for emission into a dielectric or vacuum 
(here E is the dielectric constant of the medium rela­
tive to the image forces). The distance o is equal in 
order of magnitude to the region where the surface 
forces decrease and image forces are formed. In the 
case of emission into an electrolyte solution, o coin­
cides with the dimension of the dense part of the double 
layer and amounts to several AngstromsC 12J. The de­
tailed character of the variation of the potential in the 
interval [ 0, o J turns out to be insignificant in many 
respects for the consideration of the threshold effects. 

After determining 1J!? 1 from (2), we can obtain the 
current density j <1 > with the aid of the relation 

. i ( i11Jlt' , 81Jlt ) P ( 7) 
J= 2m 1Jlra_;--1Jlt iiz- = m [1Jlt[ 2, z-+oo 

(from now on the index (1) will be omitted for brevity). 

3. THRESHOLD ANALYSIS OF PHOTOEMISSION 

For the case of a monochromatic wave, the density 
of the photocurrent j can be written in the form of a 
function of p and w, (i.e., j = j ( p, w). We shall now 
show under what conditions the dependence of j ( p, w) 
on its arguments can be determined in general form, 
and we shall find this dependence. 

Recognizing that the function /fo ( z) attenuates 
rapidly, when z > 0 and using (6), we can rewrite (2) 
in the region z :s o, with exponential accuracy, in the 
form 

( 82 2ma] --+p2+-- 1Jlt(z)=0, 
azz z 

p = l'2m (E + V + w) - P112 • 

(8) 

(9) 

Equation (8) coincides with the equation that de­
scribes the motion in a Coulomb field with zero orbital 
angular momentum [21 - 22] • From the asymptotic form 
of 1/Jf it follows that when p2 > 0 the function 1/Jf in 
should be in the general case proportional the region 
z 2: o to the well-known [21] Coulomb function 
Xp,o ( pz, maz), which has the limiting form C21J 

xt. o(pz, maz) = exp {i(pz + 60 + 11 ln 2pz)}, z-+ oo, 

xt o(pz, maz) = Co-1 {1 + pz(21'JO(maz) + iC02)}, 

where 

pz-+ 0, 

6o == argf(1- i!']), Co=(~]''' 11 == ma __ 
- 1 - e--2"11 ' p 

(lOa) 

(lOb) 

0 ( maz) in (lOb) is a certain function that does not 
depend on p and whose order of magnitude is unity 
( maz is not assumed small in this case). 

Thus, accurate to an inessential phase factor, we 
have 

1 + IJlt = -2 . XP. o(pz, maz) 8 (p2)M<11 (p, w), z > {), ( 11) 
lp 

where M< 1 > ( p, w) is a certain function that does not 
depend on the coordinate z and represents, as can be 
readily verified, the suitably normalized matrix ele­
ment of the transition. The general form of M< 11( p, w) 
is discussed in Sec. 4. 

We note further that inasmuch as the quantity pz1] 
= amz does not depend on p, the entire expression in 
the curly brackets of (lOb) is a function of z only (the 
dependence of the last term of (lOb) on p arises, as 
can be readily seen, only in that region of values of p 
where this term can be neglected compared with the 
first). By virtue of the foregoing, if the condition 

p.S < 1 (12) 

is satisfied, we get from (lOb) and (11) an expression 
for 1/Jf near the surface of the metal: 

_llf(il(p,{J)) (13) 
IJlt[,~o = - 2--:--c R(o), 

lp 0 

where R ( o) (the expression in the curly brackets of 
(lOb) when z = o) is a certain dimensionless quantity 
that no longer depends on p or w. 

In the "internal" region z < 0, as seen from (2), 
the energy enters in the equation of motion only in the 
form of a sum with a large interaction inside the metal. 
Therefore, if the function 1/Jf has no singularities when 
z < 0, it should vary little in the case of a relatively 
small change of the final energy. Namely, when the 
conditions I E + w + V I < I U + V I and I E + w + V I 
< I U + V + w I, together with the condition that follows 
from them with allowance for (9), 

p2 <2miU(z)+V+wl, (14) 

are satisfied, it is possible, when z < 0, to replace 
E - pf1/2m by - ( V + w) both in the left side of (12) and 
in the argument of (E, p 11 , z). Accordingly, provided 
there are no resonant energy levels near the threshold, 
it follows from (2) in (6) that if the condition (4) is 
satisfied then 1/!f 1 z =o is a function that is finite in ac­
cordance with the definition of the problem and does not 
depend in our approximation explicitly on p51 • Since 
the modulus of the wave function cannot change notice­
ably over the distance o when the condition ( 12) is 
satisfied in the case of non singular potentials, the value 
of the function I Iff l~=o can be approximately equated 
to 11/Jf I~= o· Hence, using ( 13), we get 

IM<1l(p, w) I'= 4p2Co2~(.S, w), (15) 

where for brevity we introduced the notation 

~(.S, w) = IIJltl',~o I IR(o) I'· 

Using now (7), we obtain with the aid of (10), (11), 
and (15) the following expression for the density of the 
partial photoemission current 

j(p, w) = _1_111f(1J(p, w) 12 = ~ Pa [ 1- exp (- Pa )]-1, (16) 
4mn m . p 

where Pa = 21Tma (in dimensional units, Pa = 1Te2m/2e:ti). 
Expression (16) has been obtained in the so called 
threshold approximation, that is, under the assumption 
that the conditions (12) and (14) are satisfied, as is al­
ways the case for sufficiently small final momenta p 
or at frequencies sufficiently close to threshold. 

Expression (16) simplifies in two limiting cases; 

5>We emphasize that this conclusion, as well as all the following 
ones, can be obtained also without considering in explicit form the 
equation for the electronic function inside the metal. 
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Pa \;(6, ffi), P~Pa, 
m 

(17a) 
j(p,ffi)= 

.£.. \;(6, ffi), P'> pa. 
m 

(17b) 

The critical value p = Pa corresponds to a final 
kinetic energy of the photoelectrons Ea = p~/2m equal 
to 

m 33.54 
Ea=--- eV. 

me 8 2 

In the case of emission into vacuum or into a die­
lectric with not too large a value of E, the value 
p = Pa is reached only after condition (12) is violated, 
corresponding to a final kinetic energy of the electron 
on the order of 3me/m eV, that is, certainly far from 
threshold. This justifies by the same token, according 
to (17a), Fowler's approach in which j =canst is as­
sumed. To the contrary, in the case of emission of 
electrons into a medium in which the long-range 
Coulomb forces are rapidly screened, say an electro­
lyte solution, corresponding to a = 0, the equality (17b) 
holds. In the case of emission into a dielectric with 
high electron polarizability, the following situation may 
be realized: the photocurrent has a "Coulomb" form 
(17a) in the immediate vicinity of the threshold, but 
with increasing w the Coulomb interaction becomes 
negligibly small, and even inside the threshold region, 
in accordance with ( 16) a transition to ( 17b) character­
istic of the short-range forces takes place. 

Expressions having a similar dependence on p can 
be written also for the multiphoton component of the 
photocurrent density. 

4. FREQUENCY DEPENDENCE OF THE THRESHOLD 
PHOTOCURRENT 

In the preceding section we obtained in general form 
the threshold dependence of the photocurrent density 
j ( p, w) on p. We now find also the character of the 
explicit dependence of j ( p, w) on w. To this end we 
consider in great detail the previously introduced 
matrix element M< 1 > ( p, w), which can be written in 
the form 6 > 

~ 

M<!)(p,w) = ~ tiJ-UA1Jlodz 

., {) {) J = ~ ljJ-[i-A,+iA,-+2m(z)A0 (z) 1j)odz. 
_., {)z {)z 

(18) 

Here <j!-(z) is a solution of (5) in which the initial en­
ergy E is replaced by the final energy E + w; when 
z - co this solution is a traveling plane wave propagat­
ing in the direction of negative z, and its normalization 
is chosen such that the coefficient in front of exp ( -ipz) 
is equal to unity in the asymptotic expression when 
z - co (when any solution of the equation under consid­
eration is a linear combination of the solutions 
exp ( ipz) and exp ( -ipz), see p. 604 of [22]). 

We note that all of the foregoing results can be ob-

6lThe corresponding expression can be obtained rigorously by solv­
ing the nonstationary problem with adiabatic application of the inter­
action at t = -=[24]. In this case it is most convenient to use the formal­
ism that employs a retarded Green's function. 

tained in principle from an analysis of ( 18); we have 
preferred to follow, however, a different path in Sec. 
3, since the physical meaning of the main premises is 
clearer there. 

Expression (18) for M< 1 > ( p, w) is best transformed 
with the aid of double integration by parts into 

., a - a 
M<'l(p,ffi)= l { A,(z)i(- 0~ t!Jo+¢- 0~')+2m(z)A0 (z)tiJ-IjJo}dz 

=I {( _LA,(z')dz} [ {j~~ljlo- t!J- ~:~0 ] 

(19) 

As can readily be obtained from the expressions for 
1J!- and <)!0 , the expression in the square brackets of 
(19) is equal to -2m ( z) w<j!- 1/!o, whence we get finally 

M<11(p,ffi)= -216(z)m(z)¢-ljl0 dz, (20) 

where 

• . oA ( ') ' 
6(z)""' S ( iffiA,(z')-~ )az' = S lt,(z')dz' (20') 

( ~ 2 ( z) is the z -component of the electric field of the 
wave )7 >. 

The choice of the limit in the integral (20'), which 
determines ~ ( z), is based on considerations of con­
venience in calculation, since it follows from the equa­
tions satisfied by the functions 1/J- and 1/Jo that 

~ [m(z)¢-(z)t!Jo(z))dz = 0. 

It is also useful to use a somewhat different form of 
(20). Namely, bearing in mind that 1/J- satisfies the 
same equation as 1/!o except that E is replaced by 
E + w, and writing the equation for </!- in the form 
s¢- = 0, we readily get from (5) 

1 ~ 
ljlo =- . St!Jo. 

2m(z)ffi 
(21) 

Using now in (20) this substitution ~swell as the 
Hermitian character of the operator S, we can rewrite 
(20) in the form 

(22) 

Attention is called to the evident gauge invariance of 
the expressions (20) and (22). 

If we assume, as is customarily done [ 13 ' 17 ' 18 J, that 
IS ( z) is described in all of space by a plane wave and 

&,(z) = &osin8sin<1Jei~<eose, 

where /Co is the amplitude of the incident wave, iJ is 
the angle of incidence, and <I> is the angle between the 
plane of polarization and plane of incidence) then the 
second term of (22) can be omitted at the wavelengths 
under consideration, and in the first term lz ( z) can 

7lWhen we write Hz) in the form of an integral of lffz(z), we make 
use of the fact that a nonvanishing contribution to the probability of 
the transition under consideration can be made only by the first terms 
in the expressions for the potentials ( 4). 
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be replaced by I o sin (} sin ci> (dipole approximation). 
Transforming (22) once more by means of the substitu­
tion (21) with allowance for (14), we obtain 

I 02 sin2 8 sin2 <I> 
jM('l(p, w) 12 = w• 

X I r [!!.~-(U+V)-1- dm(z)]'i'-'i'odzj'. 
-oo dz m(z) dz 

(23) 

As seen from (23), the integrand differs from zero only 
in a narrow region ~a near the surface and does not 
depend explicitly on w. 

Bearing in mind that the energy flux in the incident 
wave is J ~ ~~ cos e, we obtain for the quantum yield 
Y, i.e., the number of photoelectrons per incident pho­
ton, 

y - (J)-3 tg 8 sine sin2 <I>. (24) 

This result (under the additional assumption 
ci> = rr/2) was obtained in the model of an ideal electron 
gas in a square box[t?J. As seen from the foregoing, 
however, it is not at all connected with the choice of 
the form of the potential barrier, and it follows only 
from the assumption that the z-component of the elec­
tromagnetic wave does not attenuate in the metal over 
distances that are significant for the surface photoef­
fect. 

It is more reasonable, however, to use for l2 the 
expression obtained by considering the reflection of an 
electromagnetic wave in a medium having a real die­
lectric constant that varies continuously to negative 
values [25], since real negative values of the dielectric 
constant are characteristic of metals in the frequency 
region under consideration [2SJ. This case is to a cer­
tain degree the reverse of that considered earlier, 
since the wave field attenuates here very rapidly inside 
the metal. 

Since the effective dielectric constant Ew is larger 
than zero outside the metal and is negative inside the 
metal, it goes through zero at a certain point z0 within 
a region o near the surface. In accordance with [25J, 
the electric field in the vicinity of zo is determined by 
the expression 

2ft 0 sine sin <I> 
&,(z)=- a(~-zo)+ix' (25) 

where a ( w) > 0 is the coefficient of expansion of the 
function Ew ( z) = a ( w) ( z - zo) + . • • The appearance 
of an imaginary increment K ( K > 0) is connected with 
the presence in the general case of a small positive 
imaginary component of the quantity Ew[25J. 

Integrating (20) once by parts and using (2 5) we get81 

j ~ J I a ( w) l-2 • Since a ( w) usually depends weakly on 
w for metals at frequencies that are sufficiently close 
to the threshold frequency Wo 91 , we get for the quantum 
yield 

8lThe possible below-threshold Coulomb "beats" are of no signifi­
cance here in view of the further averaging over the continuous spec­
trum of the electrons in the metal. 

9>In the "free" electron approximation, when ew(z) = I -
[w*(z)/w]2(here ew(z) = 47re2N"(z)m0, where N(z) is the electron den­
sity), bearing in mind that w*(z0) = w, we get 

ae.J d 
a(ro)=- =-2-(lnro'(z)),~,,, 

iJz 1 .:=zo dz 

where a(w) does not depend on w when N(z)/m0 - exp(-kz). 

Y- w tg 8 sin 8 sin2 <I>. (26) 

In the general case the explicit dependence of Y on 
w can lie between (24) and (26), and can be determined 
only by solving the separate problem of the damping of 
the normal component of the electric field of the light 
wave on the boundary. 

5. EXPRESSION FOR THE INTEGRAL DENSITY OF 
THE PHOTOCURRENT 

Substituting ( 16) in (1) we obtain for the integral 
density of the photocurrent I, in the single-photon ap­
proximation, 101 

iZm(E+V+w) r dE i Pa. 
l= -l-v1+exp{{E-J1)/kT} Jo ~-;;:;-[1-exp(-pa./p)]-' 

(27) 

The quantity J..L in (27) is expressed in terms of the 
threshold frequency of the single -photon photoeffect 
(red boundary), defined by the condition Wo = W, where 
W is the work function of the electron from the Fermi 
The quantity J..L in (27) is expressed in terms of the 
threshold frequency of the single-photon photoeffect 
(red boundary), defined by the condition Wo = W, where 
W is the work function of the electron from the Fermi 
surface of the metal into the surrounding medium. In 
the case under consideration W = - ( J..L + V) and there­
fore 

roo= -(11 + V). (28) 

Substitution of the threshold expression (16) in (27) is 
obviously justified if the conditions 

lro- roo I< EF, lro- wol < 1 I 2m62 (29) 

which follow from (12) and (14), are satisfied, in view 
of the presence in the distribution factor of a cutoff 
factor. The quantity EF in (29), EF = IU + V + Wo I, 
is the Fermi energy in the metal, reckoned from the 
bottom of the conduction band. 

The factor p ( E, pu) in (27) varies little in the inte­
gration region if the conditions (29) are satisfied, and 
can be taken outside the integral sign at a certain 
average point. Then, integrating with respect to I PII I, 
we obtain for the two limiting cases (17a) and (17b), 
after simple transformations, 

00 

I = .Aoxa.T2 } __ x_ dx, 
o ex-~+ 1 

(30a) 

(30b) 

Here .A0 is the Sommerfeld constant, given in dimen­
sional units by .Ao = 4rrek2me/(21rli) 3 = 120 A/cm2-det; 
Xa and x are certain functions determined by the 
properties of the metal and of the interface, and do not 
depend explicitly on T; {3 = ( w - Wo )/kT. 

Thus the main laws governing the surface photo­
effect in the near-threshold region of frequencies are 

10lit is assumed that the projections of the Fermi surface E = 1J and 
of the equal-energy surfaces E +won the plane (PxPy) includes a suffi­
cient vicinity of the origin (see also the remarks concerning surface reso­
nant levels at the end of the article). 
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determined respectively by the behavior of the func­
tions that depend only on {3 = ( w - Wo)/kT 

B,(~)= r--x-dx, 
o ex-~+ 1 

r x% 
B•;,W) = .) ex-B + 1 dx. (31) 

0 

Expression (30a) coincides with the final formula for 
the photocurrent density in Fowler's theory [15J. ll) 

Expression (30b), which is obtained if the long-range 
Coulomb forces are insignificant, has an entirely dif­
ferent character12>. In particular, when (w- w0 ) 

» kT, when the Fermi distribution can be replaced by 
the e -function e ( {3 - X), We get from ( 30) 

(w- wo)2 
I= .Aoxa Zk' , ~ ~ 1, 

4 }'2m , 
I= .Aoxa----(w-wo) ;, ~~1. 

15 Pa. k2 ' 

(32a) 

(32b) 

Thus, in the case of photoemission into va·cuum or into 
a dielectric with E close to unity, the "parabolic" 
Fowler's law I ~ ( w - w 0 ) 2 holds in the region {3 >> 1. 
To the contrary, in the case of photoemission into a 
medium in which "screening" of the surface takes 
place (say into an electrolyte solution), the laws (30b)­
(32b) should hold directly in the threshold region, for 
in this case Pa = 0; when {3 >> 1 we get" l'z law" 
I ~ ( w - Wo) 512 • 

In the reduction of the experimental results with the 
aid of the theory of [1 sJ it is customary to use the func­
tion f({3) =log B1({3), called the universal Fowler 
function [19 • 20 ] 13), obviously, when comparing (30b) with 
experiment it may be convenient to use the universal 
function 

oo 'I 
b(~) == lg ( \--. x_'_ dx ), 

•0 ex-P + 1 . 
(33) 

a plot of which is shown in Fig. 1. For comparison, we 
also show there a plot of the function 

f(~) == lg(1-x -dx). 
o ex·-~+ 1 

(33') 

Let us see how the transition from the parabolic 
Fowler's law to the " 7'2 law" is effected. A transition 
of this kind can be observed experimentally in photo­
emission into a dielectric with sufficiently large values 
of E 14>. In the case when {3 >> 1 the Fermi distribution 

11lThe well known function J In( I + et)dt (from the final formula 
-00 

of the theory of[ 1SJ) is obtained from B1({3) by a single integration by 
parts and subsequent changes of variable {3- x = t. 

12lWe note that the function B 312 ({3) was investigated earlier in con­
nection with a different problem, that of calculating the average energy 
of an ideal electron gas, and was tabulated in [27 ). 

13>For example, in the so-called "isothermal method" the experi­
mental plot of Jog(Y /P) is made to coincide with the theoretical f({3) 
curve, and Xa and w 0 are determined from the shift relative to the origin. 

14lWe note that in all the foregoing relations it is necessary to sub­
stitute not the static value of E, but that corresponding to the spectrum 
of the photoelectron velocities. 

FIG. I. Plots of the functions b({3) and f({3), given by formulas (33) 
and (33') and describing the photocurrents in a medium with De bye 
screening electrolyte) and in vacuum, respectively. 

in (27) can be replaced by a e-function. Going over to 
new variables, we obtain after integrating once 

I = .AoXa £(()- : 0)
2 

( _3_{_1_-X~ 
2k "1-oxp[-(yxri·J 

_ A (w- w0) 8 ? -
2 f 1 + 8ye-llvv + ... ·. y "'-~· 1 

- • oXa 2k' f5 fy + -~ + -~):y+· .. y~1. (34) 

Here y = ( w - w0 )/Ea. It is easy to see that formulas 
(32a) and (32b) are obtained from (34) when y « 1 and 
y >> 1 respectively. A plot of the function 

( r 2(1-x)dx ) 
g(y)""' lg ~ 1- exp {- (yx)-'1•} 

is shown in Fig. 2. We call attention to the fact that 
g ( y) has an inflection point. 

(3 5) 

As follows from (34), an experimentally observable 
deviation from Fowler's formula (on the order of sev­
eral percent) should occur already when 

( w - wo) ~ 10m/ m,e2 (eV). 

The energy distribution of the photoemission elec­
trons differs in the general threshold case from that 
obtained when Fowler's formula is used, and is deter­
mined by integrating (17) with respect to IP11i· In the 
two limiting cases under consideration we obtain for 
the probability of the distribution of the final kinetic 
energy of the electrons p2/2m, in units of kT, 

!.8 
~I' 

tourrJ "" / 
!.If 

// 

'/ 
v 

v I 
/ 0.6 

o.z 
1/ 

0 O.lf 0,8 f.Z 1,6 Z Z.lf 2.8 3.2 r 
FIG. 2. Plot of the function g('y), given by formula (35) and show­

ing, in a logarithmic scale, the transition from Fowler's law to the "5/2 
law." 
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dw(u)= : 2 eu-Pu+ 1 du (f3~1, y~1), (36a) 

5 u'l• 
dw(u)= 213,1, eu-P+idu (f3~1, y~1). (36b) 

Here u = p2/2mkT. We call attention to the fact that in 
the second case the most probable final energy is 
larger than in the first, and consequently the number of 
slow electrons is smaller. 

We emphasize once more that all the foregoing re­
sults were obtained without any specific assumptions 
concerning the form of the potential barrier or the 
properties of the Fermi surface of the metal (unlike 
in [13-18]). 

We note also the singularities of the external photo­
effect on the interface between the metal and the elec­
trolyte solution. The external potential difference ap­
plied between the metal and the solution falls off es­
sentially within very short distances from the surface 
of the metal. Therefore, when a potential cp is applied 
(polarization of the electrode), a change takes place in 
the depth of the potential well by an amount ecp. Ac­
cordingly, in agreement with (28), the red edge of the 
photoeffect should also shift, 

wo(cp) = wo(O) + ecp, (37) 

where Wo ( 0) is its value in the absence of polarization 
(the potential cp is best reckoned from the so-called 
zero-change potential C12J). 

The relations obtained for I determine, with allow­
ance for (37), the current-voltage characteristic of the 
metal-electrolyte system under the conditions of the 
external photoeffect. 

If (29) is violated and the photon energy is already 
much above the threshold, the photocurrent should 
start decreasing. This is seen, for example, from (18), 
if at relatively large energies we replace in it the func­
tion 1/J- by a plane wave; in this case, in accordance 
with the known properties of the Fourier transforma­
tion, the quantity 1/if, and with it also j, will decrease 
with increasing p (with j - 0 as p - ""). This means 
that if w increases and (29) is violated, the deviations 
from (32a) and (32b) should be in the direction of de­
creasing current I. It also follows from the latter con­
siderations that the point of deviation can be used to 
determine experimentally a very important character­
istic of the metal, namely the quantity li. 

With further increase of the frequency, however, the 
decrease of the surface photoemission current can be 
masked by the incipient volume photoeffect. 

6. COMPARISON WITH EXPERIMENT. CONCLUSION 

Greatest interest attaches to a verification of the 
" 51 1 " di t d 12 aw pre c e by the theory developed here. This 
can be done by directly measuring the dependence of 
the photocurrent on the interface between a metal and 
an electrolyte solution as a function of the applied po­
tential difference when illuminated with monochro­
matic light. A number of such investigations were per­
formed recently [a-lOJ. Barker, Gardner and SammonC8J 
obtained data on the surface photoeffect on the boundary 
between liquid mercury and aqueous solutions of elec­
trolytes of different compositions. They attempted to 
interpret the results with the aid of a quadratic depend-

7 11/' 

6 

5 

-U -0.6 -8.4 0 O.Q D.6 I.Z -'f 

FIG. 3. Reduction of the experimental results of[ 8 ] with the aid of 
formulas (32b) and (37). The ordinates represent the photocurrent 
raised to the 2/5 power (in relative units) as a function of the electrode 
potential with the sign reversed (in volts); zero corresponds to the po­
tential of a standard calomel electrode. l-0.2M solution of KCl satu­
rated N20; 2-0.2M solution ofNaF, saturated N20; 3-0.2M soiution 
of KCl + 3.3 X I0-3 M solution of N20. Wavelength of light 2537 Jl.... 

ence of the photocurrent on the applied potential differ­
ence, in accordance with Fowler's law [ (32a) with (37) 
taken into account]. However, the experimental points 
did not fit on straight lines, making it necessary to 
construct graphs consisting of two straight lines. 

The same experimental data were reduced by us 
with the aid of formulas (32b) and (37). As seen from 
Fig. 3, we obtained, in good agreement with the theory, 
for a fixed light frequency and for solutions of different 
compositions, a family of straight lines emerging from 
a single point. Knowing the potential at the point of 
intersection and the energy of the radiation quantum, it 
is possible to determine with the aid of (37) the work 
function of a fast electron from mercury into water at 
the zero-charge potential. This quantity turns out to 
be WHp = 3.3 eV .151 The difference between this value 
and the work function in vacuum (Wy = 4.5 eV) charac­
terizes the energy of interaction between the epithermal 
electron and the water. 

An agreement with the " % law" in the case of the 
photocurrent on the interface between mercury and an 
electrolyte solution is obtained also when other data 
are used C9J. · 

We emphasize that the above-described use of 
relations (32b) and (37) to determine the work function 
is essentially a new method of experimentally measuring 
this quantity, differing from the hitherto employed iso­
thermal and isochoric methods C19J, in which one varies 
the radiation frequency and the temperature of the 
metal respectively. 

In the proposed "method of varying the electrode 
potential" the measurements can be performed at a 
fixed electrode temperature and using only one emis­
sion frequency. It is very important that besides the 
potential of the electrode, it is possible also to vary 
the concentration and the composition of the solution, 
the structure of the solvent, etc. 161 

151The obtained value agrees with general thermodynamic esti­
mates[28], according to which WH 0 should be "somewhat larger than 
3 eV." 2 

16>We note that the Xa(w) dependence cannot distort the results of 
measurements by the method of varying the potential, unlike the results 
of the isothermal method, where it is tacitly assumed that Xa = const. 
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Experiments on photoemission into vacuum, as al­
ready indicated, confirm well Fowler's theory, and by 
the same token formula (32a). We emphasize here that 
the agreement with experiment was obtained under the 
assumption that Xa depends weakly on the frequency. 
This may prove, in accordance with the results of Sec. 
4, that the z-component of the light wave practically 
does not penetrate into the metal. In this connection, 
it is of particular interest to determine experimentally 
with greater accuracy the explicit dependence of the 
photocurrent on the frequency. 

Let us stop to discuss further the results of the ex­
periments on the photoeffect on a metal-dielectric in­
terface in which are included such secondary effects as 
the influence of the field of the resultant electron cloud. 
Goodman [6 J investigated the photoemission from gold 
into the conduction band of silicon oxide. He observed 
deviations from Fowler's law in that the photocurrent 
started to increase at ( w - Wo) ~ 0.5 eV, in agreement 
with formula (34) at a reasonable value of the dielectric 
constant E. 

We emphasize that, in accordance with the state­
ments at the end of Sec. 5, the deviations from Fowler's 
law due to the violation of (29) should lead, to the con­
trary, to a decrease of the photocurrent with increas­
ing w. The inadequacy of Fowler's theory in describing 
photoemission into dielectrics was noted also by other 
workersC4 • 5J, but owing to the limited amount of pre­
sented data it is impossible to perform a full quantita­
tive comparison with the theory. 

Special notice should be taken of one particular 
cause of the possible deviation from the foregoing laws 
at low values of w - w0 inside the threshold region. 
Besides the incipient influence of the structure of the 
liquid or the dielectric, as well as of thermal fluctua­
tions which assume an important role when I w - Wo I 
~ kT, the deviation may be due to the appearance of 
resonant surface electron levels, which lead to a 
strong dependence of the wave function on the energy 
when the quantity w - Wo is close to the resonant value 
(usually on the order of several tenths of an electron 
volt). The formation of such levels can be for example, 
the consequence of the existence of complexes with 
charge transport or other forms of chemical bonds on 
the surface of the metal [ w]. An important method of 
verifying the foregoing considerations may be also the 
analysis of the energy distribution of the photoelectrons. 

In conclusion, it should be noted that the general 
approach used in this paper can be used also in many 
other cases, particularly in an analysis of the different 
forms of secondary emission in the region of low ener­
gies, the internal photoeffect, thermal desorption, etc. 

The authors are grateful to V. G. Levich and A. N. 
Frumkin for a discussion and valuable hints, and 
E. German for help with the numerical calculations. 
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