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We obtain equations that describe the motion of a cold plasma under the action of the pressure of a 
high-frequency electromagnetic wave propagating along a constant, uniform magnetic field. We study 
in detail the case of short wave lengths when the geometric optics approximation is applicable. We 
show that it is in that case possible that electrodynamical waves arise in the plasma; we also solve 
the problem of the self-similar spreading of a plasma through which an electromagnetic wave passes. 

INTRODUCTION 

WHEN considering the propagation of electromagnetic 
waves in a plasma, one usually assumes that the wave 
does not affect the motion of the plasma. nJ Such an as­
sumption is justified if the kinetic pressure of the plasma 
particles is larger than the pressure of the electromag­
netic wave. However, in investigations of the radiative 
acceleration of a plasma often such field intensities are 
produced that this condition is violated. In that case it 
is important to take the pressure of the electromagnetic 
wave into account. 1 > 

In the present paper we use the hydrodynamic equa­
tions for the electrons and ions and the Maxwell equa­
tions for the field to obtain equations which describe the 
motion of a cold plasma under the influence of a high­
frequency electromagnetic wave propagating along a 
constant, uniform magnetic field. Using these equations 
we consider the simplest case when in a transparent 
plasma an electromagnetic wave propagates with a wave­
length much shorter than the characteristic distance 
over which the plasma density changes. We show that in 
that case there exists a well-defined relation between the 
electromagnetic pressure and the plasma density (which 
is similar to an equation of state). We consider small 
perturbations in the plasma (electrodynamic waves) and 
also the problem of a self- similar spreading of the 
plasma under the action of the pressure of an electro­
magnetic wave passing through the plasma (stationary 
dilatation wave). 

1. PLASMA EQUATIONS OF MOTION 

We use the hydrodynamic equations for the electrons 
and ions and the Maxwell equations for the field as the 
basis for our description of the motion of a plasma in 
the field of an electromagnetic wave. We shall assume 
that all hydrodynamic variables and all fields depend on 
one spatial variable z and on the time t. The electro­
magnetic wave also propagates along the z axis which is 
parallel to a constant, unifor~ magnetic field Ba. The 
set of equations for electrons (a = e) and ions (a= i) and 
for the field has in the usual notation the form 

'lWe must note that the problem of the plasma equilibrium configu­
ration in the field of a high-frequency standing wave has been consid­
ered in a number of papers (e.g.,[2,3]). 
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We neglect fast-changing motions of the ions and 
electrons in the magnetic field and in the wave field. In 
that case Eq. (1. 3) for the longitudinal velocity of the 
ions takes the form 

(i) (i) 

!!:.:._-+ v(il ?'::_-~ E 
I Z. - :Z:• 

iJt iJz m, 
(1.10) 

Assuming that the phase velocity of the wave is much 
larger than the velocity of the electron longitudinal mo­
tion v(e), we can write Eqs. (1.1) and (1.2) for the trans­z 
verse electron velocities in the form 

(e) 
iJv+ e . (e) 
--- = --E+ + L!Jv+ , 

iJt m 

where v(e) = v(e) ± iv(e), E = E ± iE , n = eB0/mc is 
± X y ± X y 

the cyclotron frequency of the electrons. The solution 
of these equations has the form 

t 
(e) e (" 

v± (z,t)=- J dt'E±(z,t')exp(±iQ(t-t')). 
n~ 

(1.11) 

In order to describe the slow longitudinal motion of the 
electrons we average in Eq. (1.3) over a time large 
compared to the period over which the field of the wave 
changes. Using Eqs. (1.5), (1.6), and (1.11), we write 
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a (e) a (e) z t t BE ( t") 
-'-_'' + v~e) _17_ =!_E,--_!'_ < \ dt' \ dt"{cosQ(t- t') ( Ex(t')--x-_-
fit f}z m 2m2 • • ' f}z 

BE (t") ) BE (t") BE (t") \ +F,(t')~- +sinQ(t-t'J{ Fx(t')---ik-+E,(t')-i~ 1}) 
(1.12) 

where the brackets ( ... ) indicate averaging over the 
time. 

The fields in Eq. (1.12) satisfy, according to (1.7) to 
(1.9), the equations 

82 1 82 4ne2 a ! (1. 13) 
( -~---\E±=-_ .--{n<"l (' dt'E±(t')exp(±iQ(t-t'))}, 
. iJz2 c' iJt2 I me' iJt J 

iJE,/iJz = 4n(en(e) + e1n<il). (1.14) 

The set of Eqs. (1.4), (1.10), (1.12) to (1.14) describes 
the slow motion of the plasma under the action of the 
pressure of the electromagnetic wave. These equations 
can be simplified considerably if the condition for the 
quasi-ne.utrality of the plasma, en(e) + ein(i) = 0, 
v(e) = v(l) = v(z, t), is satisfied during the motion. As-
z z 

suming for the sake of simpli_city that lei! = lei and using 
the notation n(z, t) = n(e) = n(1), we get then 

iJu du e' < 1• r _ { ( _ DE (l") -- -j- 0 c- =- ;--- \ dl' \ dt" COS &J(t- t'), Ex(t') _2_ __ ut dz '.!.mmt • · · dz 

iJb' (t") · ( dE (t") iJE (t") )}' 
+Ey(i )_'_~z )+sin&J(t-t') Ex(t')Tz---+Ey(t')- ~z )• 

(1.15) 
f u' 1 0' \ 4ne2 iJ { ~ "l 

--,.-, Ec_= -;;-- n\dl'E±(t')oxp(±iQ(l--t'));• 
c2 Ot2 me Ot · 

iJn a 
at+ i)z (nv) = 0. 

(1.16) 
(1.17) 

The expression on the right-hand side of Eq. (1.15) 
describes the force acting upon the plasma in the field 
of a high-frequency wave. The dependence of the field 
of the wave on the plasma density is determined by Eq. 
(1.16). The set of Eqs. (1.15) to (1.17) determines thus 
at the same time the changes in time and space of the 
field in the plasma and of the density and velocity of the 
plasma. 

We note that when there is no magnetic field it is 
convenient to use a somewhat different set of equations. 
In that case Eqs. (1.1) and (1.2) have the form 

and Eqs. (1.5) and (1.6) enable us to obtain simple ex­
pressions for the magnetic field of the wave 

• mciJu~J 
Bx=- -­

e iJz (1.18) 

Equation (1. 3) for the longitudinal velocity of the elec­
trons then transforms to 

(e) (e) 

iJv, + (eJ Bv, e E 1 {} ( (e)z + <•lZ ) 
{it- u, ----;;:;:- = --;;;: z - Z {)z Vx Vy ' ( 1.19) 

and we get the equation to determine v(e) from Eqs. (1.7) 
and (1.8) x,y 

( i)Z 1 i)Z ) (e) - 4:rt 2 e (e) 
~--~- Vxy- -e n<·>vxy. 

' {)z2 c2 iJt2 ' me' ' (1.20) 

2. GEOMETRIC OPTICS APPROXIMATION 

We solve Eq. (1.15) assuming that the phase of the 
electromagnetic wave changes fast not only in time, but 
also in space. In other words, we consider sufficiently 
short wavelengths for which the geometric optics ap­
proximation is valid. We write the field of the wave in 
the form 

(2.1) 

where E~oJ and cp ± are real functions while the latter 
changes in space and time faster than the first one . 
Restricting ourselves to the largest terms we get from 
Eq. (1.16) for the field E. 

(2.2) 

(2.3) 

where wl., = 41Te2n/m, the prime indicates differentiation 
e 

with respect to z and the dot differentiation with respect 
to the time. The equations for E- have a similar form. 

We shall assume that the following inequalities are 
satisfied: 

ik±'I>,IE~o)" /Er:' J, w'pJEr:' /E~I!J J, ln/nl>l (E~I!) /w ± Q) /E~ wJ, 
(2.4) 

where k± = cp~, tf+ =if- =-w. Equation (2.2) and the 
analogous equation for E- take the form 

(2.5) 

where v± = 41Te2 /mw(w ±Q). 
When we assume that the velocity of the plasma mo­

tion is much smaller than the velocity of light, we get 
from Eq. (2.3) and the analogous equation for E-2 l 

(2.6) 

Equations (2.5) and (2.6) enable us to write down an ex­
pression for the field of the wave in the form 

c 
E±(z,t)= . ± exp{-iwt+ik±(z,t)z}. (2.7) 

Yk±(z, t) 

It is clear that the amplitude of the wave increases with 
increasing plasma density (apart from the case of the 
extraordinary wave for In I > w when the wave amplitude 
decreases with increasing density). 

Using Eq. (2.7) we find Ex and Ey and from Eq. (1.15) 
we gee) . 

iJV iJV CV+ {j 1 -+ v-= -C+2 -------,--.=-. 
{)t {)z - 16nm,w {)z "}'1- nv± (2.8) 

2lThe constants C± may in general depend on the time. However, in 
all problems considered by us there is a region where the properties of 
the medium are constant (either a vacuum or a plasma with a constant 
density). Since Eq. (2.6) is valid also in these regions, the constants C± 
are in those cases independent of the time. 

3lTo obtain Eq. (2.8) we assumed that the wave frequency is con­
stant. Taking the time-dependence of the frequency into account leads 
to corrections of the order of the ratio of the plasma velocity to the 
light velocity, which we neglect. 
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Equations (2.8) and (1.17) together form a set of equa­
tions describing the dynamics of the plasma in the field 
of a short-wavelength high-frequency electromagnetic 
wave propagating along the magnetic field. It is clear 
that n ..._ lv±l-1, for only in that case can the inequalities 
(2.4) be satisfied. 

We can write Eq. (2.8) also in the form 
av {)v 1 {)p 

at+ v {)z = --;:; {)z ' 

where the pressure is connected with particle number 
density through the relation 

C c 2-nv± 
p= ±'--- . 

16nm;w )'1- nv± 
(2.9) 

Equation (2.9) is similar to an equation of state and in 
the low density limit when nlv±l « 1 it transforms to 

(2.10) 

3. ELECTRODYNAMIC WAVES 

As the simplest example we use Eqs. (1.17) and (2.8) 
to consider low-frequency, long-wavelength oscillations 
which can propagate in a plasma through which a high­
frequency electromagnetic wave passes. We shall as­
sume that n(z, t) =no+ on(z, t) where no is the unper­
turbed particle number density in the plasma (no» on) 
and v(z, t) = ov(z, t). The linearized set of equations for 
on and ov has the form 

arm {){jv 
fit+no---;;;:=0, (3.1) 

aov c 1 {){jn 
-+C±2---v±2 ~-= 0 at 32nm;w ( 1 - nov±) 'I• {)z • 

(3.2) 

Assuming that on, ov ~ exp(-iwot + iKz) we get a disper­
sion law for the electrodynamic waves 

wo2 = x 2so2 == x2C+2--c-V±--n~ (3.3) 
- 32nm;w ( 1- nov±)'!• · 

It is convenient to express the constants C;: in terms 
of the wave amplitude in the unperturbed plasma. From 
Eqs. (2.6) and (2.5) for the phase velocity of the wave so 
we get 

1 ( eE±(O) 1 
so= --=-<DL. ) , wherewL = )'4ne2n0/m, (3 4) 

2)'2 ' mwlw±QI, (1-nov±)'i• i • • 

In the limit as nolv;;l « 1 and in the absence of a mag­
netic field we get from Eq. (3.4) the results from 
Volkov's paper[4 J for low-frequency, long-wavelength 
waves. 

4. SELF-SIMILAR MOTION 

We consider the problem of the self-similar spread­
ing of a rarefied plasma, through which an electromag­
netic wave passes, in a vacuum. We shall assume that 
the quantities n and v depend only on the combination 
~ = z/t of the variables and we write Eqs. (1.17) and 
(2.8) in the form 

dn dv 

v = s-s(n), (4.3) 

where 

(4.4) 

The sign of s in (4.3) is chosen in such a way that the 
leading edge of the dilatation wave moves in the direction 
of negative z-values (see[51 ). 

It is convenient to express s in terms of its values in 
the region where the plasma is not perturbed (in our 
case for z-oo) 

(4.5) 

where 

(4.6) 

As we should expect, Eq. (4.6) is the same as the square 
of the electrodynamic wave velocity (3.4). If we express 
the constants C± in terms of the wave amplitude in vacuo 
through Eq. (2.6) we get for so 

1 ( eE10) ) Wr r w' ]-'/, ( 4. 7) 
So=2Jf2 ~: jw~'Qjl1 -w(w~Q) · 

Using Eq. (4.3) we get from Eq. (4.1) 

v = ~ s(n) dn. 
n 

Using Eq. (4.5) and the condition that v = 0 when n = no 
we get when 0 < nv;: :s nov±< 1 

- (1- nov±)'i• r 1 '--- 1 ' 
v = 2)'2 s0 -'------'--1 F \ arccos )'1- nv±> --=) 

(nov±)'/, · )'2 

- F (arccos Y1 --no-V±, l'~) J , (4.8) 

where F(QI, cp) is an elliptical integral of the first kind. 
However, if nv± < 0, which is possible only for the ex­
traordinary wave (v-) in a strong magnetic field 
(In I >w), we have 

(4.9) 

Equations (4.8), (4.9), and (4.3) enable us to obtain a 
connection between the particle number density and the 
variable~ 

- 2)'2 F ( arccos ( 1 + n0 I v-I ) -'/•, 1_ ) } , 
' )'2 

nv-<0. (4.11) 

(v- s) ds + n ds = 0, 

dv c 1 dn 

(4.1) Determining n(~) from Eqs. (4.10) and (4.11) we can use 
Eqs. (4.8) and (4.9) to find the function v(~). 

(v-s)-+C±2---v±2 =0. 
ds 32nwm; (1- nv±)'f, d£ 

From this it follows that 

(4.2) The simplest expressions for n(~) and v(~) occur in 
the limit of a rarefied plasma n0 lv±l << 1. We get from 
Eqs. (4.8) to (4.11) 
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n 1 ( 5 )2 
-=-,-+2 ' 
no 9 \ so 

v = 2/a(s-so). 

(4.12) 

(4.13) 

We are interested in the value of~ for which the den­
sity vanishes, since it follows from Eq. (4.3) that this 
value of ~ is the same as the velocity of the leading edge, 
which has the maximum velocity. We get from Eqs. 
(4.10) and (4.11) when n = 0 

(1- nov±)''• ( 1 ) 
_ F arccos(1- nov±)''•, =-- • (4.14) 

"fnov± l'2 
0 <nov±< 1, 

Vm., =so= -2y2so 
(1 +no I v~i)''• ( , 1 ) 

F arccos(1 +nolv-j)-1•,--= , 
inol v-1 \ "f2. 

nv_ < 0. 
(4.15) 

1 1 eE~l \ WLi 
Vmax = -2so =----=- -- j ---. 

"f2 \ mw lw±QI 
(4.16) 

It follows in the general case from Eqs. (4.14) and 
(4.15) that Vmax may exceed the value (4.16) by approxi­
mately a factor two (the maximum value of the elliptical 
integral is 1.85). 

We must note that the magnetic field affects the 
velocity profile and the density in the dilatation wave, 
but does not affect the character of the self-similar mo­
tion itself. Independent of the polarization of the incom­
ing wave there is a spreading of the plasma and not a 
compression, both in a strong magnetic field (I fa I » w) 
and in a weak magnetic field (lfa I« w). 

CONCLUSIONS 

Allowance for the pressure of a high-frequency elec­
tromagnetic wave which passes through a plasma leads 
thus to a number of specific effects. In the short wave 
case considered by us a new branch of oscillations­
electrodynamic waves-turns out to be possible. More-

over, in the same case, a stationary dilatation wave ap­
pears when an electromagnetic wave passes through the 
boundary of a transparent plasma. The longitudinal 
magnetic field then changes the wave profile and the 
velocity with which the discontinuities move, but it does 
not affect the character of the self-similar spreading of 
the plasma itself. 

In the present paper we have assumed the plasma to 
be cold. It is clear that taking into account in the equa­
tions of motion of the plasma the thermal pressure does 
not present difficulties of principle. We indicate, how­
ever, the conditions when our considerations are valid 
and the thermal pressure can be neglected. In the case, 
considered by us, of short wavelengths and under the 
condition nlv!l « 1, we get by equating the thermal 
pressure and the pressure of the electromagnetic field 
the condition for the validity of our considerations 

1 eEr WLe 
--- >vT 
4 mw lw±QI •' 

where VTe is the electron thermal velocity. 
In conclusion I express my gratitude to v. P. Silin 

for his interest in the present paper. 
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