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By reducing the Dirac equation to a Riccati equation we construct a perturbation theory for it for the 
case of a central electrostatic potential. This enables us to accelerate considerably the procedure of 
finding successive approximations in the perturbation parameter. We express all corrections to the 
wave function and the bound state energy in terms of the unperturbed wave function and the energy of 
the same state. As an example we calculate the first approximation to the wave function and the second 
approximation to the energy of the K electron when we take as perturbation the difference between the 
atomic potential and the Coulomb potential. 

J. Zel'dovich [1J (see also C2J) has shown that one can 
formulate perturbation theory for the discrete spectrum 
of the Schrodinger equation in a central field in such a 
way that all corrections to the wave function and energy 
of a bound state can be expressed in terms not of the 
whole spectrum of eigenfunctions and eigenvalues of 
the unperturbed problem but only in terms of the wave 
function and eigenvalue of which we try to find the cor­
rections. 

In C2J a perturbation theory was constructed for the 
Riccati equation to which the radial Schrodinger equa­
tion was reduced. This makes it possible to evaluate in 
the n-th perturbation theory approximation the wave 
function of a bound state up to terms of order .\2n and 
the energy of this state to order .\2n+\ where .\ is the 
perturbation parameter. The aim of the present paper 
is to obtain the same results for the Dirac equation. 

It is well known (see, e.g.,C3 J) that the relativistic 
wave function of the discrete spectrum in the case of a 
central electrostatic potential has the form 

nr. _ 1 ( iG(r)QJ!m(r/r) ) 
TJlm-1 

- F(r)!Jwm(r/r) 
(1) 

where l' = 2j - l, S'lj[m is a spherical spinor, and the 
radial wave functions G and F are determined by the 
system of two first-order equations: 

dG " dr +rG- (E+m-V)F=O, 

dF x 
dr- 7 F+(E-m-V)G=0. (2) 

Here and henceforth :l'i = c = 1, K = 'f ( j + %) when 
j = l ± %, E and m are the energy and mass of the 
electron, V = V ( r) is the spherically symmetric po­
tential. The functions G and F are finite as r - 0 
and r- 00 • 

The set (2) could be reduced to the Schrodinger 
equation and the results from a paper by one of the 
authors C2J could be used. However, this method is not 
very useful as it would mean that we had to do our cal­
culations with a very complicated potential. We there­
fore proceed differently. In the set of coupled Eqs. (2) 
we put 

F =Gill. (3) 
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These equations then split up: 

Ill'- ~Ill+ B!IJZ + B- 2m= 0, 
r 

G' + ( : - B<D ) G = 0. 

(4) 

(5) 

Here and henceforth a prime indicates differentiation 
with respect to r and B = E + m - V. For G we find 
at once 

G = Cr-x exp ( ~ B<Ddr ), (6) 

where C is a constant (the integral in the exponent is 
an indefinite one) which is determined by the normali­
zation condition for the wave function. The problem is 
thus reduced to finding the function <I> defined by the 
Riccati equation (4). The boundary conditions imposed 
upon <I> follow from the boundary conditions imposed 
upon G and F, and (3): <I> must be such that the 
product G4l is finite as r - 0 and r - 00 • 

Let 
V(r) = Vo(r) + I.Vt(r), (7) 

where .\V1 is the perturbation while we know the solu­
tion for V0 (i.e., the quantities F 0 , G0 , <1> 0 , and E0 ) 

exactly. In accordance with ( 7) we put 

E=Eo+AE1(A), B=Bo+AB,(I.), <ll=lllo+t.lll,(t.); 

Using the zeroth approximation equation 

$ 0'-
2x <Do +Bo$o2 +Bo- 2m= 0 
r 

we then get from ( 4): 

(8) 

(9) 

$ 1' + 2 (B(f)- : )(f)t + Bt(1 +$a!)- "-B$t2 = 0. (10) 

If we discard in Eq. (10) terms ~.\ we can integrate 
itandfind <l>1=q;1+0(.\) and E1=€1+0(.\). Inac­
cordance with this we get 

E 1 = e, + I.E2(1.), Bt = ·~· + AE2(/.), 

(f)!= 'PI+ t.lll.(l.), ~· = 8t- Vt. 

The equations for f/J1 and <1> 2 have the form 

(11) 

<r•' + 2(Bolllo -xr-')<rt + ~.(1 + lllo2) = 0, (12) 
$ 2' + 2(Bill- xr1)lll2 + 2B,<p,lllo + B<pt2 + Ez(1 + lllo2) - 1.2Bill22 = 0. 

'(13) 
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Using (6) we get from (12) 
1 r 

cp1 =-- ~ (e1 - V1) (1 + «D.!)Go1dr. 
Go2 a 

Here 

(14) 

(14a) 

and Co is the zeroth approximation normalization con­
stant. 

In (14) occur two constants (a and E1) which we de­
termine from the condition 

since 
Gil> --+ 0, as r--+ 0 and r--+ oo, 

F--+ 0, G--+ 0, as r--+ 0, r--+ oo, 

The condition at the origin can be satisfied if we 
choose the lower limit of integration in (14) equal to 
zero. Then 

(15) 

(16) 

The condition at infinity will be satisfied if we require 
that .. 

) ( e,- V1) ( 1 + 11>02) G02dr = 0. 

Hence, if we use the normalization condition for the 
zeroth approximation 

(17) 

I (Go2+Fo2)dr= r(1+1l>o2)G,Idr=1. (18) 
0 0 

we find 

(19) 

This is the usual expression for the correction to 
the energy in first approximation. The difference in 
and the advantage of the present method appear when 
higher-order corrections are evaluated. We obtain in 
the first approximation still a closed expression for the 
wave function. Using (6) and (8) we can write G in the 
form 

G = C0(1 + I-C1 ('.))r-xexp {) B01l>odr+ 1- ~ ( B1<!10 

-i- Boll>!+ 1-B,!l>,)dr }= Go(1 + 1-C,(I-)) exp{'- ~ (B11l>o 

Putting 
C, (I-) = c1 + 1-C,(I-) 

and using (11) we get in first approximation 

(20) 

(21) 

G=Go(i+l-c,+A. ~ (~t«Do+BoqJt)dr) =Go+A.gt. (22) 

The constant c1 is determined from the normalization 
condition .. .. 

~ (GZ + F2)dr = ~ (1 + <lJZ)Gidr = 1, (23) 
0 0 

whence we find up to terms of order ~A .. 
c, =- ~ c.•[ll>o<p! + (1 + !llo2 ) ~ (~IIllo + Bocp!)dr]dr, (24) 

which together with (22), (16), (19), and (3) completely 

solves the problem of finding a closed expression for 
the first approximation to the wave function. 

To obtain the next approximation we turn to (13). If 
we drop here terms ~A 2 this equation can easily be 
integrated and we get <1?2 = cp2(A) + O(A2) and E2 
= E2(A) + 0(A2), where cp 2 (A) and E2(A) contain 
terms of zeroth and first order in A. We thus put 

E2 ('A) = e2 (1-) + 'A2£s(J.;), ll>2(f.) = (jl2(J.;) + 'A'!lla('A). (2 5) 

Using the boundary conditions (5) for the function <P 
and the normalization condition (23) we then get from 
(13): 

1 r 

q;, = - G' 5 (Bcp,' + 2~,cp,!llo + e2(1 + 11>2)] G2dr, 
0 

0 

(26) 

(27) 

In (26) and (27) G = Go + Ag1, <P = <Po + AC,01, B = Bo + A{31 
(see (22), (16), (8), and (11)) and when evaluating the 
integrals we must retain terms which are not higher 
than first order in A. 

Extending this procedure we find (we refer to 
paper C2J for details) 

00 00 

Ill= ll>o + ~ 'A2n-lq;n(l.), E =Eo+ h 1.2n-'-en(l.), 
n=i n=t 

00 

G= Go+~ 'A2n-! gn(t.), 
n=i 

(28) 

where C,On_{ A), En ( A), and gn (A) are polynomials of 
order (2n-1 - 1) in powers of the perturbation parame­
ter A. We conclude from (28) that the n-th approxima­
tion of the perturbation theory constructed in this way 
allows us to evaluate the wave function up to terms of 

~ nM order ~A and the energy up to terms A2 as the 
( n + 1) -st approximation to the energy can be ex­
pressed in terms of the n-th (and lower) approximation 
to the wave function. Dalgarno and Stewart C 4 J have 
shown, using the usual perturbation theory, that the 
energy can be estimated to order 2s + 1 is the wave 
function is known up to s-th order. 

We shall here not write down the general formulae 
which give the connection between consecutive approxi­
mations as these formulae are very complicated and in 
practice we hardly need know the wave function and 
energy with an accuracy better than the third order. 
This accuracy is just given by Eqs. (26) and (27). 

2. As an example we consider a K electron and we 
calculate its wave function and energy up to first and 
second order in the perturbation, respectively, taking 
the difference between the atomic and the Coulomb 
potential as perturbation. This difference is small at 
distances of the order of the radius of the K-shell and 
comparable with the Coulomb potential at distances of 
the order of the radius of the atom. The ratio r/ ra, 
where r is a characteristic length occurring in the 
problem and ra the radius of the atom, is a natural 
parameter for such a perturbation. For our example 
such a parameter will be rK/Ra ~ Z- 2 / 3 where rK is 
the radius of the K-shell and Z the atomic number of 
the element. The larger Z, the better this parameter . 

The Coulomb potential V o = - aZ/ r will determine 
the unperturbed solution which is well known (see, 
e.g.pJ): 
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Go= vfJ(1 +y) e~"'(2w)' aZ (29) <Do=---
f(1 + 2y) , 1+y' 

Here 
Eo= my. 

y = }'1 - a2Z", fJ =maZ, a = e2 = '/,,,, (30) 

m is the electron mass and r the gamma function. 
The potential produced by the electron cloud of the 

atom plays the role of the perturbation. We shall as­
sume that the electron charge is distributed isotrop­
ically in space with a density p ( r). When the distribu­
tion is isotropic the potential is given by the formula 

1 r ~ 

V,(r)=4naz(-; ~ p(r')r'2dr'+) p(r')r'dr'). (31) 
p 

We shall follow [sJ and apply a Laplace transforma­
tion to the density p: 

(32) 

We then get for (31) 

(33) 

where SJ..I. is the operator 
~ 

sM == ~ [x(f.l)-ll(f.l)ldf.L, (33a) 
0 

and o ( J-1.) the delta function. When deriving (33) we 
used the equation 

(34) 

which is a consequence of the normalization condition 
for p: 

~ 

} p (r) 4nr2dr = 1. 
0 

(35) 

We note still some relations which we need in the 
following. It follows from (32), (33a), and (34) that 

s.,.fln+2=4n{( _ _!_)nrp(r)} , 
\ ar r-----Jo-0 

s.,, = <r'>, 
s.1 = o; 

n;;;. 0, (36) 

(37) 

(38) 

(r-1 ) istheaverageva!ueof 1/r 
defined by 

for the atom and is 

~ 

(r-1) = 4n) p(r)rdr. 
0 

If V 1 is defined by (33), Eqs. (19) and (16) give 

(37a) 

aZ 
e1 =--· S!!(f+v)~2', (39) 

.v 
z 1 "II ( ) ljlt=--a-S.(i+v)~zv[-+2} ec-""(1+v) 2Y~1dvl. 40 

1+y v 0 j 

Here and henceforth 

v = f.l/2tJ, x = 2w. 

As the density of the electron cloud p ( r) decreases 
rapidly when r > r a' we conclude from (32) that X ( J..l.) 
is such that the main contribution to the integral which 
depends on J..1. comes from the region J..l. ~ 1/ ra· How­
ever, a characteristic distance in the problem is 

r ~ 1/TJ = rK (see (29)). It is thus convenient for ob­
taining the correction to the wave function and the 
second correction to the energy to expand the exponent 
in (33) in a power series ( J..l.r ~ rK/ ra « 1 for medium 
and large Z). We also expand (39) and (40) in power 
series in 11 ( 11 ~ rK/r'a_): 

00 

8 =- aZt] ~ (-1)J(2y+n) S n 
1 .W f(2 )n! .,.v V n~o V 

(41) 

aZ { 1 } aZx ljl1 =- 1 +y-S" -y-v2x+O(v3) = 1 +v S.,.v2 (1+0(v)). ( 42) 

We have used the property (38) of the operator SJ..I. in 
(41) and (42). 

From (22) and (24) we get 

c1 = - 1/ 2 (1 +v) (1 + 2y) {2- y)S.,.v2 {1 +O{v)), (43) 
G = Go{1 + S.,.v2 [ - 1/2(1 + y) {1 + 2y) {2- y) 

+ {1 - y) (3 + 2y) {w) + y(1v)2 + O{v)]}, (44) 

F = Fo{1 + SMv2 [ - 1/z (1 + v) (1 + 2y) (2- y) 
+ {1 + y) {1- 2y) (w) + y(w)2+ O(v) ]}, ( 45) 

Fo = Go<I>o, Go and <Po are defined in (29). 
Using (44) we can get from (27) the second and third 

corrections to the energy. If we restrict ourselves to 
only the second correction, we can put in (27) B = Bo 
= m ( 1 + y) + aZ/ r, G = Go. Then 

ez = -aZtJ (1 +v) (1 + 2y)S.,.,vt2 (1 + 0 {v,)) 

xs.,.,vz2 {1 + O(vz)), Vt,2 = f.lt,z/2tj. (46) 

The quantities SJ.L·f..l./21] and SjJ.(J..I./21]) 2 which are de­
fined in (36) and (37) occur in t41) to (46). If we give 
V 1 in (33) as a finite sum of Yukawa potentials (see 
inC6 J): 

where 

we get 

a,= 0,10, 

bt = 6,0, 
az = 0,55, 

bz = 1,20, 

a,= 0,35, 

ba = 0,30, 
a•= -1, 

b·= 0, 

11 •'Az 
S.,.v =-(-) = ~ az-= 0,77Z~';, 

2t] r z~t 2t] 

4n " f 'Az ) 2 
S.,.v2=-(2 )2 [rp(r)],....o= .~ a1\z = 1,42z~•;,_ 

f] , __ , f] 

(47) 

(47a) 

(47b) 

(48) 

In conclusion we make the following remark. InC 7J 
we looked for the correction to the relativistic photo­
effect in the K-shell caused by screening. This correc­
tion was evaluated in the first approximation in the 
perturbation V1 of (47) using the Coulomb Green func­
tion. We showed that if we restrict ourselves merely 
to terms of relative order in aZ not higher than first 
order (we used an expansion of the wave function and 
the Coulomb Green function in power series in aZ) ) 
the contribution to the screening is only given by the 
correction to the wave function of the discrete spectrum. 
It is true that from corrections to the wave function of 
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the continuous spectrum there occur in the amplitude 
terms 

where A.l is the screening parameter and p the elec­
tron momentum but these terms vanish from the cross­
section which indicates that they arise from the expan­
sion of the phase factor. For the amplitude of the 
photoeffect, Q, we obtained in the first approximation 
in the screening the formula (logarithmic terms have 
been omitted) 

(49) 

where Qc is the Coulomb amplitude of the photoeffect. 
This result is obtained at once from ( 44), ( 45), and 

( 1) if we bear in mind that the main contribution to the 
amplitude of the relativistic K-photoeffect is given by 
the region r ~ 1/ q, where q ~ m is the momentum 
transferred to the nucleus and if we drop in the correc­
tions to Go and F0 terms ~ciZ2 • In such an approxi­
mation we get 

G = G0[1- 3S~v2 (1 + O(v)) + O(a2Z"S~v2)], 

F = G(<Do + O(a2Z2S~v2)), 

Here \lt and \lto are the K-electron wave functions with 

and without account of screening. It is clear that the 
evaluation of the photoeffect amplitude with such func­
tions leads to (49). 

The authors are grateful to V. G. Gorshkov, V. N. 
Efimov, and L.A. Sliv for useful discussions of this 
paper. 
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