
SOVIET PHYSICS JETP VOLUME 2 7, NUMBER 1 JULY, 1968 

PROPAGATION OF RADIATION IN A RESONANT MEDIUM 

Yu. A. VDOVIN and V. M. ERMACHENKO 

Moscow Engineering-physics Institute 

Submitted May 29, 1967 

Zh. Eksp. Teor. Fiz. 54, 148-158 (January, 1968) 

A graph technique is developed for studying kinetic problems connected with the propagation of radiation 
in a resonant medium with n11:3 « 1. A kinetic equation is set up for the density matrix of excited atoms, 
assuming an arbitrary relation between the Doppler and natural line widths. The shape of the spectral 
line due to radiation diffusion is investigated. 

IN the present paper we investigate the propagation of 
electromagnetic excitations in a gaseous resonant me­
dium. In a previous paper of one of the authorsl11 the 
spatial distribution of the excited atoms was considered, 
neglecting their thermal motion. In the present paper 
we consider a gaseous medium consisting of a set of 
two-level atoms (molecules). The medium is assumed 
to be sufficiently dilute so that the condition n7(3 « 1 is 
fulfilled, where n is the density of atoms, and X is the 
wavelength of the resonance radiation (.11: = c/w0 , where 
w0 is the energy difference of the levels of the atoms). 
Under these conditions one can neglect the resonant 
dipole-dipole interaction between the atoms. l21 Then 
the interaction between the atoms reduces to-the ab­
sorption andre-emission of quanta, and the propagation 
of an excitation in the medium can be treated in terms 
of the density of excited atoms. 

The term "radiation diffusion" which is commonly 
used in the description of the propagation of such a 
"captive" radiation does not truly reflect the essence 
of the process, since the diffusion approximationl31 is 
insufficient. This was first pointed out by Biber man l41 

and Holstein. lSJ In these papers a phenomenological 
formulation of the kinetic equation for the density of 
excited atoms was given. The kinetic equation for the 
density of excited atoms was obtained by a quantum me­
chanical approach by D'yakonov and Perel',l61 using a 
graph technique developed earlier by Konstantinov and 
Perel'. l71 

In Sec. 1 of the present paper we develop a graph 
technique particularly adapted to the consideration of 
kinetic problems connected with the propagation of an 
excitation in a resonant medium. In Sec. 2, the rules of 
this technique are used to set up a kinetic equation for 
the density matrix for the excited atoms fmm' (r, p, t), 
where m and m' are the quantum numbers for the 
projection of the total angular momentum of the upper 
level on an arbitrarily oriented axis. The kinetic equa­
tion is obtained for an arbitrary relation between y (the 
natural line width) and {3 (the Doppler width), taking ac­
count of the retardation, in contrast to the case con­
sidered in lSJ ( {3 » y, retardation neglected). In Sec. 3 
a kinetic equation is constructed for the density of 
quanta in such a medium, and the shape of the line is 
found which results when the radiation is adiabatically 
emitted from the volume. The results obtained for the 
shape and width of the spectral line are compared with 
the experimental data of Tomiser. lBJ 
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1. GRAPH TECHNIQUE FOR PROBLEMS CON­
NECTED WITH THE PROPAGATION OF AN 
EXCITATION IN A RESONANT MEDIUM 

The Hamiltonian for the medium and the radiation 
field in the volume V is written in the form 

H=~:;aptap~+ ~ (:~+wo)b:mbPm+ ~w,c:ACkA 
w ~ ~ 

+ ~ [Qk';:~ CI<A bp-;,. aP-k~ + o;.:• Ckt bpm a:-k~). 
~~ 
kA (1) 

Here the indices J.J. and m characterize the projec­
tions of the total angular momentum of the lower and 
upper levels (the angular momentum of the lower level 
is j0 , that of the upper level, j 1; we assume that a di­
pole transition is allowed between these levels); the 
operators aPJ.J.• apJ.J. and bpm, bpm are creation and an­
nihilation operators for the unexcited and excited at­
oms; the operators ciA, ckA are creation and annihila­
tion operators for quanta with the momentum k and po­
larization A (A = 1, 2); w k = c2k2; 

(2) 

where Mrrf is the matrix element for a dipole transition 
in an isolated atom from the lower level characterized 
by the index J.J. to the upper level (index m) accom­
parried by the absorption of a quantum; l~ is the polari­
zation vector of the quantum (ti = 1 ). 

In the following we consider the case of weakly ex­
cited states, where the density of excited atoms is 
much smaller than the density of unexcited atoms. Then 
the state of the unexcited atoms remains practically 
unchanged, and the average number of unexcited atoms 
with projection of total angular momentum J.1. is 

n 
n~(p) = (2jo + 1) cp(p)' (3) 

where n = N/V is the average density of atoms and 
cp(p) is the Maxwell distribution function. The gas is 
assumed to be nondegenerate, i.e., the average occupa­
tion numbers n(p) « 1. For definiteness, we assume 
that the operators aPJ.J. and bpm are boson operators, 
although this is of no significance in the present cir­
cumstances. 

We denote a state where no excited atoms or quanta 
are present by I 0, 0, s), where s is the state of unex-



82 Yu. A. VDOVIN and V. M. ERMACHENKO 

cited atoms. The derivation of the rules for the con­
struction of graphs will be illustrated by a concrete ex­
ample, where a molecule with momentum p0 and polar­
ization m0 is excited at the initial moment t = 0, The 
state vector of the system at t = 0 has the form 

lll(t = 0)= b!,m,IO,O,s). 

Then the formal solution of the Schrodinger equation 
with the Hamiltonian (1) is 

<D(t) = e-iHt b!,m,IO, 0, s). 

(4) 

Let us ask for the probability of observing at time t 
an excited molecule with momentum p and polarization 
m. Since the Hamiltonian (1) conserves the total number 
of excitations, the amplitude for this probability is given 
by the expression 

For the probability summed over the final states of the 
unexcited atoms and averaged over their initial states 
with the density matrix 

p= exp [~ (D+ f.tN -Hav) J, (5) 

we then obtain 

fm(P, Po, mo, t) = L; exp[ ~ (D + f.tN- Hcp)] · 
S8' 

Let us go over to Heisenberg operators in (6) and in­
troduce the single-particle Green's functions 

Gmw(p,p', t- t') = -i (0, Oj T {bpm(t) bt•m•(t')} jO, 0), (7) 

which are operators in the variables of the unexcited 
atoms. Analogous operator Green's functions were in­
troduced by Galitskii and Yakimets. [9 J Then we obtain 
for fm (p, p0, fie, t) 

/m(P,Po,mo,t)= {(sjG;.m,(P,Po,t)Gmmo(P,Po,t) js)}., (8) 

where { ... }s denotes the average over the states of the 
unexcited atoms with the density matrix 5). We note 
that Gmm'(p, p', t) = 0 for t < 0, so that the distribution 
function (8) has meaning only for positive times. This 
property of the Green's functions allows one to apply a 
Laplace transformation in the time. In the following, 
we denote the Laplace variable by w (w = ip, where p 
is the usual Laplace variable). The rules of the graph 
technique for the distribution function are obtained by 
the usual procedure, i.e., by going over to the interac­
tion picture and expanding the S matrix in a series in 
Hint· The interaction Hamiltonian Hint is the expres­
sion inside the square brackets in (1). As a result we 
obtain the following rules for writing down analytic ex­
pressions for the graphs and for the construction of the 
graphs. 

Three lines enter at each vertex: a solid line, de­
picting the propagation of excited atoms, a wavy line, 
depicting the propagation of quanta, and a dotted line, 
depicting the propagation of unexcited atoms. The solid 
and wavy lines have a definite direction: in the graphs 
for the Green's function Gmm' they are directed from 
left to right in the direction of increasing time; for the 

function G~m'• they are directed from right to le!t. 
Some~graphs referring to the operator functions Gmm' 
and G~m' have the form 

I t I t 

~ 

FIG. I. 

In these functions we have not yet averaged over the 
operators aPJ.I.• apJ.I." This averaging is carried out when 
the distribution function (8) is calculated, and leads to 
the appearance of dotted lines connecting two vertices 
at the ends of the same or different lines. An "upper 
line" is a line going from left to right and consisting of 
solid and wavy lines, i.e., a line characterizing the func­
tion Gmm'· Analogously, a "lower line" is a line char­
acterizing the function Gillm'· 

The solid and wavy lines 

m m' -p,w 
a 

FIG. 2. 

.f!___!!!.' 
p,w 

c 

1.. ,;. 
~ 

K,W 

d 

correspond to the following analytic expressions: 

a) G~%·(p,ro)= llmm>(ro- roo- Bp)-1; 

b) D~·(k, ro) = ~~~~·(ro- rok)-1; 

c) G~(p,ro)=-llmm•(ro+roo+ep)-1 ; 

d) Di~(k,ro)= -<'h~·(ro+rok)-•. 

Each dotted line is characterized by a momentum p, 
an energy f:p = p2 /2M and polarizations J.1. and J.l. '. If 
this line connects vertices belonging either only to an 
upper or a lower line, and is "regular," i.e., its direc­
tion coincides with the direction of the corresponding 
solid and wavy lines, then it corresponds to the factor 
61-':J.I.'. If it is "irregular," i.e., its direction is oppo­
site to the direction of the corresponding solid and 
wavy lines, then it corresponds to the factor 

n 
(2jo + 1) cp(p)6""'· 

(9) 

The dotted lines which run from an upper line to a lower 
line are regarded as "regular" and those running from 
a lower to an ufper line as "irregular." In the vertex 
we write Q~ if a wavy line leaves from it, and Q~ 

if a wavy line enters in it. There are in all four types 
of vertices. At each vertex momentum is conserved: 
the momentum of the solid line is equal to the sum of 
the momenta of the wavy and dotted lines. At each ver­
tex the frequency is conserved (for a dotted line, the 
role of frequency is played by the energy f: ). In the 
vertices of an upper line the frequency of tlfe solid line 
is equal to the sum of the frequencies of the wavy and 
dotted lines, and in the vertices of the lower lines the 
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frequency of the solid line is equal to the difference of 
the frequencies of the wavy and dotted lines. We sum 
over all intermediate values p, k, A., m, and /J- and in-

tegrate over the intermediate frequencies (f_: dw ... ) • 

2. KINETIC EQUATION FOR THE DENSITY OF 
EXCITED ATOMS 

We consider a function describing the space -momen­
tum distribution of the excited atoms for given initial 
conditions. The graphical form of this distribution func­
tion fmm1(p, K, w, w) is shown in Fig. 3. 

FIG. 3. 

For brevity of writing we have here omitted the de­
pendence of the function fmm 1 on the initial values p0 , 

m0 , m~, and WH· The distribution function in the vari­
ables r, tis related to fmm'(p, K, w, w) by 

I ( ) :1 . ~ d:, . ~ 
mm! p, r, f =) elXr \ -e-lwi 

L.l J 2n• 
Y. -eo • 

dw -
""21( fmm' (p, X, co, W). (10) 

The diagonal elements of the matrix fmm' describe the 
population of the sublevels with a given projection of the 
angular momentum. Therefore the total density of ex­
cited atoms, which must be compared with the function 
introduced by Holstein,l5 l is given by the sum of the di­
agonal elements of this matrix: 

11 (r, p, t) = Sp /mw(P, r, t). (11) 

For definiteness, we assume j0 = 0, j 1 = 1 in the 
further calculations. Analogous computations can be 
carried out for other values of the angular momenta; 
for example, in Sec. 3 we consider transitions with j0 = 0, 
j 1 = 1!2, and h = 3/ 2 • The last case corresponds to the 
doublets in alkaline metals. 

We now write down an equation for the function 
fmm 1(p, K, w, w ). Its graphical form is shown in Fig. 4. 

Analytically, it can be written in the following form: 
- + -

lmm•(p,~, w, w) = Gmm.(P + ~/2, w)Gm'mo'(P- ~/2, (jJ- w)l\p, Po 

+ Gmm,(P + ~/2, w)G,;;,m,•(P- ~/2,~l- w) · 

~ ~ dw1V;;:;;;:;: (p, p1, ~. w, w., ~)fm,m,•(p,, ~. w"7u). (12) 
p, 

Here a summation over identical indices m is implied. 
All solid lines in this equation are "heavy," i.e., 

correspond to non-operator Green's functions which ap­
pear through connecting the operators of the unexcited 
atoms at the ends of the same line. The Dyson equa­
tion for the function Gmm 1 ( p, w) with the simplest 
self-energy part Lm ml (p, w) is shown in Fig. 5. 

1 1 

+ 

FIG. 4. 

p-K 
m' m m' 

--- -+ p,w 
~ 

p,w K,w-cp-K p,w 
m 

p,w 

FIG. 5. 

All corrections connected with "converting the in­
termediate photon line into a heavy line" and with the 
inclusion of more complicated irreducible graphs for 
the self-energy part Lmml are proportional to the 
small parameter nX3 • Taking only the imaginary part 
of Lmm' into account (we neglect the radiation shift), 
we therefore obtain for the function Gmm1(p, w) 

Cmm' (p, w) = t'imm•[w- ,,,,- Ep + iy /2]-', (13) 

where y is the natural line width of the level, which is 
related to Mr:£ by 

Analogously, we have for the function G~m1(p, w) 

G;!;m•(p, w) = -6mm•[w- Wo + Ep + iy/2]-1. 

(14) 

(15) 

In lowest approximation in the parameter nX3 we ob­

tain for the kernel Um1m} an expression which corre­
m2m2 

sponds to the graph of Fig. 6. 

FIG. 6. 

I 

The wavy lines in the kernel Um1m} are heavy, i.e., 
m2m2 

describe the propagation of a quantum in the medium 
(not in the vacuum). The Dyson equation for the function 
Du1(k, w) with a polarization operator with the sim­
plest dependence on the parameter n~3 is shown in 
Fig. 7. 

FIG. 7. 

Solving this graphical equation, we obtain 

D~~~(k, w) = I\•~·[W-Wk-TI(ro-wo)]-1 , 

where in the present approximation 

n( ) - 3qi;;:f 1 .nfv/2-iw)} [ (y/2-iw)z] 
w -- 4Tz~-l - ...,\ --~ -- exp ~' . 

Here <I>(x) is the usual probability integral, [1ol (3 
= v0 w0 /c is the Doppler width, v0 = (2T /M)l/2 , and T 

(16) 

(17) 
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is a characteristic time for electromagnetic processes 
in a resonant medium, introduced earlier:luJ 

(18) 

Up to a factor 3/ 4 T 2 the function II(w) agrees with the 
function D(/3, w) introduced in l1 J. 

Analogously we calculate the function D~;\.'(k, w) 
corresponding to a quantum belonging to a lower line: 

DJ·(k, w) = -lhdw + w,- II(w + roo)J-1• (19) 

Let us write down the analytic expression corre­
sponding to Fig. 6. Since Gmm' and G~m' are pro­
portional to omm'• we have 

~mm~()m'm/ u::::: (p, Ptt X, W, Wtt {;;) = 
~ m m1"' m''" m/ k 

= :8 Qk+X/2,A Qk+X'2,A Qk~X'2,A' Qk~X/2,,J.•Ucp(p- )· 
),0,).' 

· [ w- wk+></2- ep::).;- 11 (cu- wJ- ep~.)r1 .' 
' [-;;;-CO+ COk~x/2 + Bp~k- fi (;;;- (J) +COo+ 8p~k))~1 . (20) 

To evaluate the sum z;k further we make the follow­
ing simplifications. We use again the effective small­
ness of the ratio K !k, l1J in particular, wk ±K /2 "'=' wk 
± cKq/2, where q = k/k. Since, effectively, the momen­
tum of the quantum is small compared to the thermal 
momentum, cp(p- k) "'=' cp(p). The sums over k and p 
are replaced by integrals in the usual way: 

~--+ (2:)3 ~ dk. 

Since the D functions are sharp functions of wk, we re­
place the other functions under the integral by their 
values for wk = w0 in the integration over wk, and in­
troduce a function similar to the one introduced in l6 l: 

PJ~~~~'(woq) = V2] Qk,._mQ':_( o::.~ Q';~:. 
),Jf (21) 

In the following, the vector k will always be inter­
preted as k = w0 q/c. The product of G functions (with­
out omm') appearing tn the inhomogeneous term in (12) 
and in the integral is written in the following way: 

[w- wo- eP+•/2 + iv I 2]-•[;;}'- w +coo+ ep-xf• + iv I 2]-• 
= ({;;- pxl M + iy)B(p, w, ;;;), (22) 

where 

- [ (J) (J) + iy]-1 B(p,co,w)= w-wo-ep- 2 + - 2-

- [ {J)- COo- Bp - -i-- ~ ~ iy r. (23) 

The function B(p, w, w) is a sharp function of the vari­
able w near the point w = w0 + £p· In particular, if we 
disregard the quantum indeterminacy between energy 
and time, i.e., set w = 0 in this function, then the width 
of the distribution in w near the point w0 + £p is equal 
to the natural line width y. The widths of the other func­
tions entering in the kernel of the equation are consid­
erably larger than y owing to the integration over p. 
Therefore the distribution function fmm'(p, K, w, w) 
can be written in the form 

fmm•(p, X, W, .;;) = B(p, W, ~)'Pmm•(p, X, ~), (24) 

where the function 'Pmm' is independent of w (strictly 
speaking, 'Pmm' is a slowly varying function of w, so 
that it can be set equal to its value at the point w = w0 

+ £p in the integration over w). According to (24) we 
can interpret the frequency w as the energy of the ex­
cited atom. Therefore the function fmm'(p,K, "-', W) 
describes not only the time variation of the space­
momentum distribution of the excited atoms but also 
their energy distribution. The usual distribution func­
tion with respect to r and PP' 6 J which we denote by 
fmm'(p, K, w), is obtained from the function 
fmm'(p, K, w, w) by integration over w. Multiplying 
both sides of (12) by -i(w- pK/M + iy) and going over 
to the variables r and t with the help of (10), we ob­
tain the following equation for the distribution function 
of the excited atoms: 

{}fmm•(p, r, t) 
----'-"=---{)~t:._ + Vp V rfmw(P, r, t) + Yfmm•(p, r, t) 

~ 

= y \ dt' ~ dp1 ~ dr' ~ K;;:;::!' (r- r', p, p,, t- t')fm,m>(P., r', t'). (25) 
0 m1m!' 

The kernel of the equation has the form 

m,m> COo2nrp (p) m,m> ( ) 
Kmm' (r,p,p.,t)=- (2 )' 4 2 Pmm' WoQ · 

n "c yr 

00
\" a;;; - ~~ dw -· -exp{-ico(t-r/c)} -B(p,co,co)B(p.,w+ep,-k 
· 2n · 2n 
-~ -00 

where 

-ep-k,;;;)exp{- i:[II(w-wo-ep-k)+ 

+II(~- w +coo+ Bp-k)] }, 

k = woq I c, q = r I r, Vp = pI M. 

(26) 

It follows at once from the known properties of the 
mm' 

Laplace transformation that K 1 ,1 = 0 for t = r /c 
mm 

< 0. Let us obtain an expression for the kernel K in 
the two limiting cases where i3 » y and i3 « y. If 
i3 » y and if we are not interested in the rapid oscilla­
tions of the kernel with the characteristic period of 
order T ,PJ we can simplify (26) considerably. The 
neglect of the oscillations implies that w in the func­
tion n (w) must be set equal to zero. The same limit 
must also be taken in the functions B(p, w, w) (neglect 
of the quantum indeterminacy between energy and 
time). Then the integration over w in (26) leads to the 
appearance of the o function o (t - rIc) which guaran­
tees the usual retardation, and the function B has the 
form 

B(p, w, w--+0) = -2nib,(w-co0 -ep). (27) 

The index y of the o function indicates that this func­
tion was obtained in the limit y- 0. Using further 

ll(<u- coo)+ II(--w + wo) = -ick(w), (28) 

where k(w) is the usual absorption coefficient, l121 we 
have 

m,m,• Woncp(p) 
Kmm• (r,p,p1,t)= b(t-r/c)b(vpq-vp,q),--------(2 )' ;-3 - · 

rr rcy 

p;;:;,n;·· ( WoQ) exp{- rk ( wo + VpQwo/ c)}. (29) 

When the retardation is neglected, expression (29) coin­
cides with the result obtained in l61 if y = 0 in the ex­
pression for k(w). 

In the other limiting case, y » !3, an expression for 
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the kernel was obtained in [1 J, where the spatial distri­
bution of fixed excited atoms was investigated. The re­
sults of [1 J follow from (26) in the limit of infinitely 
heavy atoms. 

3. SHAPE OF THE LINE OF EMISSION FOR ADIA­
BATIC EMISSION OF THE QUANTA FROM THE 
SYSTEM 

The behavior of the quanta in a medium of two-level 
atoms has been investigated repeatedly in recent times. 
Our method permits a generalization of the results of a 
number of papers[u, 13 - 15 l taking account of the heat 
motion of the atoms and of the degeneracy of the upper 
as well as lower levels. Let us consider the problem of 
the shape of the spectral line of the quantum caused by 
the radiation diffusion in a system in which the radiation 
is emitted adiabatically, i.e., at t- oo, We emphasize 
that the entire discussion rests on the assumption n'X3 

« 1, so that the resonant dipole -dipole interaction plays 
practically no role and the width (which turns to be 
~ 1/T » {3, y) is the collective width due to the numerous 
absorption and re -emission processes. As is known, [12• 
161 the shape of the line of emission depends on the 
character of the excitation; we therefore investigated 
the cases where there is an excited molecule or quan­
tum in the system at t = 0. The graphical equations for 
the density function of the quanta fAA'(k, K, w, w) are 
shown in Fig. 8. 

~==+ 
a 

~=I+IIJ: 
b 

FIG. 8. 

The solution of the analytic equations corresponding 
to Fig. 8 was found with the same simplifications which 
were used in Sec. 2. Moreover, we have neglected the 
Doppler broadening. Because of this last simplification, 
the solution with the quantum in the initial state 
(Fig. 8, a) is evidently not very interesting, since in 
this case we obtain two narrow lines displaced from w0 

by a distance of the order ± 1/T, with a width of order 
y (the shift and the width depend on D. = wk - w0). In 

0 

the case where there is an excited molecule in the ini-
tial state or where the irradiation is done with a broad 
spectral beam, we obtain the following line shape: 

[ 2 v• 1 (2it + 1) J-1 

/({)))~ (ro-roo) +4+ 4-r" (2io+1) · (30) 

An analogous result without account of the degeneracy 
of the levels was obtained by Alekseev[14J and one of 
the authors. [15 J 

Thus the spectral line due to the diffusion radiation 
has a Lorentzian shape with the width 

r = ~( 2it + 1 )"'. 
T 2io+ 1 . 

(31) 

It follows from (18) that r ~ rn (r » y ). It is possible 
that the large widths obtained in the experiments of 
Tomiser[81 and Moser and Schulz[17 l are due precisely 
to the effect of the diffusion stage of the process. The 
widths observed in these works are about 103 times 
larger than the values which follow from the shock and 
statistical theories. We note that in earlier works[1B-20J 

such anomalously large widths have not been observed. 
In [a, 17 J the resonance lines of the doublets of alkaline 
metals have been investigated, for which j0 = 1/ 2, 
h = 1/2 and %; therefore 

r';, I f•o = i2-r.,, I -r';., 

where r3/2• T3;2 refer to the line with j 1 = %, and 
r1;2, T1;2 refer to the line with h = Yz. Since for both 
lines of the doublet the lifetimes and the frequencies of 
the transitions do not differ strongly, [12J we have 
rs;dr1/2 ~ ../2. 

The data quoted in the review paper of Chen and 
Takeo[ 21 J show that this ratio is indeed close to ../2. 
There it is also noted that for small pressures the 
broadening is symmetric and is well described by a 
Lorentzian formula. An analogous dependence of the 
width on the statistical weights of the levels in the form 
[(2h + 1)/(2j0 + 1)]112 , but with a linear dependence on 
the density, was obtained by Foley.[22 J We note that the 
result of Foley is based on the assumption that the 
broadening is due to the resonant dipole -dipole inter­
action. This assumption seems questionable under con­
ditions where nil:s « 1. The experiments[a, 17 l were 
performed over a wide range of densities from nil:s « 1 
to n!ts > 1. The shape of the absorption line was ob­
served, so that one should not expect exact agreement 
with (31). For a comparison, we quote the widths taken 
from [BJ and calculated according to (31). These data 
refer to the resonance line of the sodium doublet with 
the wavelength A = 7665 A. For the density 
n = 1012 atoms/ems the experimental width is 
rs;z = 0.13A while (31) gives rs/2 = 0.14A. As the den­
sity increases, the agreement becomes somewhat 
worse, and for n = 1.45 x 1014 atoms/ems we have 
D.A8;2 = o.6 A and rs;2 = 1. 7 .A. 

In conclusion the authors express their gratitude to 
V. M. Galitskii for valuable comments on the results of 
the present paper. 

1V. M. Ermachenko, Zh. Eksp. Teor. Fiz. 51, 1833 
(1966) [Sov. Phys.-JETP 24, 1236 (1967)]. 

2 V. S. Fursov and A. A. Vlasov, Zh. Eksp. Teor. 
Fiz. 6, 750 (1936). 

sK. T. Compton, Phys. Rev. 20, 283 (1922), Phil. 
Mag. 45, 752 (1923). 

4L. M. Biberman, Zh. Eksp. Teor. Fiz. 17, 416 
(1947). 

5T. Holstein, Phys. Rev. 72, 1212 (1947). 
6 M. I. D'yakonov and V.I. Perel', Zh. Eksp. Teor. 

Fiz. 47, 1483 (1964) [Sov. Phys.-JETP 20, 997 (1965)]. 
7 0. V. Konstantinov and V. I. Perel', Zh. Eksp. Teor. 

Fiz. 39, 197 (1960) [Sov. Phys.-JETP 12, 142 (1960)]. 
8 J. Tomiser, Acta Phys. Austr. 8, 198 (1953), 8, 276 

(1954), 8, 323 (1954), and 9, 18 (1954). 
9 V. M. Galitskii and V. V. Yakimets, Zh. Eksp. Teor. 

Fiz. 51, 957 (1966) [Sov. Phys.-JETP 24, 637 (1967)] 



86 Yu. A. VDOVIN and V. M. ERMACHENKO 

101. S. Gradshtein and I. M. Ryzhik, Tablitsy integra­
lov, summ, ryadov i proizvedenii (Tables of Integrals, 
Sums, Series, and Products), Fizmatgiz, 1963. 

11 A. I. Alekseev, Yu. A. Vdovin, and V. M. Galitskii, 
Zh. Eksp. Teor. Fiz. 46, 320 (1964) [Sov. Phys.-JETP 
19, 220 (1964)]. 

12 C. G. Mitchell and M. W. Zemansky, Resonance 
Radiation and Excited Atoms, Macmillan, 1934. 

13 Yu. A. Vdovin and V. M. Galitskii, Zh. Eksp. Teor. 
Fiz. 48, 1352 (1965) [Sov. Phys.-JETP 21, 904 (1965)]. 

14 A. I. Alekseev, Zh. Eksp. Teor. Fiz. 48, 879 (1965) 
[Sov. Phys.-JETP 21, 587 (1965)]. 

15 Yu. A. Vdovin, Dokl. Akad. Nauk SSSR 163, 1344 

(1965) [Sov. Phys.-Dokl. 10, 758 (1966)]. 
16 W. Heitler, The Quantum Theory of Radiation, Ox-

ford, 1954; Russ. Trans!. IlL, 1956. 
17 H. Moser and H. Schulz, Ann. Physik 4, 243 (1959). 
18 C. Gregory, Phys. Rev. 61, 465 (1942). 
19 K. Watanabe, Phys. Rev. 59, 151 (1941). 
2°Ch'en Shang-Yi, Phys. Rev. 58, 884 (1940). 
21 Sh. Chen and M. Takeo, Revs. Modern Phys. 29, 20 

(1957). 
22 H. M. Foley, Phys. Rev. 69, 619 (1946). 

Translated by R. Lipperheide 
22 


