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A classical calculation is carried out for the simplest model of an easy-axis antiferromagnet with 
Dzyaloshinski1 interaction of the form {3( mxly - mylx), for arbitrary orientation of the external 
magnetic field with respect to the axis of easy magnetization. It is shown that in the case HA 
<<. Hn «HE (where HA, Hn, and HE are the anisotropy, Dzyaloshinski1, and exchange fields, 
respectively), the boundary between the phases with lz f 0 and with lz = 0 ( l is the antiferromag
netic vector) in the ( Hx, Hz) plane is the circle (18a), whose centerposition and radius depend on 
the temperature. On this boundary, one of the antiferromagnetic resonance frequencies vanishes. 
In particular, for H 1 z the frequency ww = YHcll ( 1 - Hi/H~1)1/ 2 when Hx < Hc1 and Ww 

= yHcll (Hx/Hc1- 1)112 when Hx ~ Hc1, where Hell = ( 2HAHE - Hb) 112 and Hc1 
= ( 2HAHE - H0)/{HA_ + HI:,) 112. An experimental verification of the relations obtained has been 
undertaken by studying antiferromagnetic resonance in an artificial monocrystal of hematite 
( a - Fe203) at T = 77 "K at wavelengths 4, 6, and 8 mm. Satisfactory agreement with the calcula
tion is obtained with2HA = 0.54 kOe, Hn = 30 ± 4 kOe, and~HE = 4500 kOe. 

1. INTRODUCTION 

FoR a description of the fundamental properties of a 
classical two-sublattice antiferromagnet with aniso
tropy of the "easy axis" (EA) type, for example MnF2, 
knowledge of two of its numerical properties is suffi
cient in a first approximation: the exchange field HE 
and the anisotropy field HA. With their aid there fol
lows from a simple phenomenological theory, as a rule, 
satisfactory agreement with experiment, at T <<TN, 
for the magnetization curves m {H) and for the fre
quency spectrum wno(H), n = 1 and 2, of antiferro
magnetic resonance (AFMR) for parallel and perpen
dicular orientation of the external magnetic field H 
with respect to the axis of easy magnetization (see, for 
example,ClJ). Furthermore, in principle a calculation 
of the equilibrium configuration of the sublattice mo
ments is possible for arbitrary orientation of H with 
respect to the EA [2]. Allowance for interactions of 
higher order-biquadratic exchange, anisotropy in the 
basal plane, etc.-is necessary in order to describe 
finer details of the magnetic behavior of an antiferro
magnet, for example hysteresis by "collapse" of the 
sublattices [3J, small splitting of the AFMR frequencies, 
etc. 

At the same time, the well-known Dzyaloshinski1 
interaction {DI) has as a rule not been taken into ac
count in the description of easy-axis antiferromagnets 
(even if it is allowed by the crystal symmetry), al
though in order of magnitude its energy is comparable 
with the anisotropy energy. This is due to the fact that, 
for example, a DI of the form {3 ( mxly ± mylx) (in the 
generally accepted symbols), with lz = 1 ( z II EA), 
does not manifest itself clearly in small magnetic 
fields. The necessity for taking it into account in order 
to describe the behavior of an antiferromagnet in large 
fields, perpendicular to the EA, was noticed by one of 
the authorsC4,sJ in a study of the properties of CoF2. In 
particular, it was shown that when 
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(1) 

(Hn is the Dzyaloshinski1 field), there occurs in CoF2 
a phase transition, connected with the sudden (though 
still continuous) disappearance of the z component of 
the antiferromagnetic vector l. 

A similar anomaly was detected[s-sJ in investiga
tion of the magnetization curves of low-temperature 
( T < TM, where TM is the Morin point) hematite, 
a-Fe203, with H 1 EA; in contrast to the high-temper
ature phase, it is an antiferromagnet with anisotropy 
of the "easy axis" type. In these researches, the in
vestigation was carried out in a temperature range 
close to TM (the point of spontaneous reorientation of 
the antiferromagnetic vector). In a phenomenological 
description of the phenomenon, besides the DI, parame
ters connected with a fourth-order interaction were in
troduced, and relative agreement with experiment was 
obtained by choice of their values [s,sJ. In an early 
stage of the calculation, some small quantities were 
neglected, and this led to definite disagreements with 
experiment (for example, to the prediction of an unob
served phase transition at fields larger than Hc1). 

In the first part of the present paper, a phenomeno
logical calculation is undertaken of the static and dy
namic behavior of the simplest of the conceivable anti
ferromagnetic systems with anisotropy of the "easy 
axis" type and with a nonvanishing DI. The case of 
arbitrary orientation of the external field with respect 
to the EA is considered. The system is described by 
only three numerical parameters: HE, HA, and Hn; 
the calculation, however, is carried out exactly-small 
quantities are neglected only in a special case and only 
in the final stage. 

In the second part, AFMR is investigated experi
mentally in an artificial monocrystal of a-Fe~3 at a 
temperature T << TM, with the aim of clarifying the 
possibility of describing this antiferromagnet within the 
framework of the exactly calculated simplest mode. 
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2. PHENOMENOLOGICAL THEORY 

1. We consider, from the point of view of classical 
theory, the simplest antiferromagnet with anisotropy of 
the "easy axis" type and with nonvanishing DI. We 
direct the z axis along the EA and the x axis along 
the projection of the external field H on the basal plane 
(this does not impair the generality, since we are 
neglecting anisotropy in the basal plane). 

We have in mind application of the results of the 
calculation to a-Fe203, which has, according to 
Turov's [l] terminology, an even antiferromagnetic 
structure with respect to the principal axis; we there
fore write the energy of the system in the form 

::Jf = (2M0)2('12Bm2 + 1/za(li + Zy2)- fl(mxly- mylx) (2) 
- mxhx - m,h,). 

Here and below we use the notation: M1 and M2 are 
the sublattice magnetizations, 

IMd =I M~l55 Mo; 

m = (Ml + M2)/2Mo is the ferromagnetic vector; 

(3) 

l = ( M1 - M2 )/2M0 is the antiferromagnetic vector; 
HE= BMo is the exchange field (B > O); HA = 2aMo 
is the anisotropy field ( a > 0 ) ; HD = 2J3Mo is the 
Dzyaloshinskii' field ( J3 > 0); H = 2Moh. For simplicity, 
anisotropy of the g-factor is ignored. 

In order to find both the resonance frequencies and 
the equilibrium orientation of the sublattices, we use 
the equations of motion: 

2Mo m = [mHml + [lHJ], 2Mo i = [mH,] +[IBm], (4)* 
'V 'V 

where Hm = -a::Jt/am, Hz = -a::Jtjal; y is the magneto
mechanical ratio. Furthermore, we shall take into ac
count that, in consequence of (3), 

lm = 0, I"+ rn' = 1. (5) 

2 .. We find the equilibrium state from (4) by setting 
m = l = 0. We get 

~mxlz ~ f:lm,lx - az.z, = myh, (6a) 
alxlz + flrnylz - flm,ly = nt,hx - mxhz, ( 6b) 

0 = myhx, (6c) 
[(B- a)m,- h,jly + flmxm 1 - ~lxlz -Bmylz = 0, (6d) 

(Bmx- hx)l,- [ (B- a)m,- h,]lx- fll,ly + flmym, = 0, (6e) 

[ (B- a)mx- hx]ly + fl(mx' + my2 - (,2 - y2) - (B- a)mylx = 0. 
(6f) 

Since we are considering the general case hx f 0, it 
follows from (6c) that my = 0. The remaining equations, 
with allowance for (5), permit two solutions. 

The first of these describes a state with a nonvanish
ing z component of the antiferromagnetic vector. 

my =0, 

ly = flm2 i amx (m'- 55 mx2 + m,2), 

z. = -m,l, I mx, 

m z flz 
Z,l=--=(1-mZ) --m•, 

mZ a2 

1 flz m,l) 
hx= B-~-a m4. mx, 

I fl2 mx') h. = B- a---;;+ a m' . m,. 

*[mHml =mX Hm. 

(7a) 

(7b) 
(7c) 

(7d) 

(7e) 

(7f) 

The second solution describes a state with lz = 0: 

my = lx = !, = 0, {Ba) 
ly' = 1 - m•, (Bb) 

hx = (B- a)mx- f:l(1- m2 - mx') IY1- m', (Be) 

h, = (B- a)m, + f:ltnxmz 1}"1- m 2• (8d) 

3. In order to visualize the range of realization of 
these states, we consider the simple case hz = 0. Then, 
in agreement with results obtained earlier Cs,loJ, we 
find that the phase with lz f 0 is characterized by the 
relations 

(9) 

where 

hcJ. = (aB - fl") f la2 + fl2• (1a) 

Substitution of these expressions into the formula 
(2) for the energy, and comparison of the resulting 
value ::ffJ with the corresponding value ::Jtn for the 
phase with lz = 0, show that the phase with lz f 0 oc
curs when hz < hcl· In field hx = hcl there occurs a 
continuous transition from one state to the other, 
during which 

mex =a I ya2 + f:l2, Icy= flly'a' + fl". (10) 

On increase of the field Hx from zero to Hcl• the 
equilibrium state of the M1 and M2 sublattices, as is 
easily seen from formula (9), changes in the following 
manner (see Fig. 1). The vectors M1 and M2 move in 
planes that make (when Hx < Hcl) a constant angle cp 
with the x axis: 

tg q> = Hn I HA. (11) 

Meanwhile the angle 8 changes according to the law1> 

sin tl- = Hx / lleJ..· (12) 

In a field Hx = Hc1, the value of sin 8 is 1; and 
upon further increase of the field, the tips of the vectors 
M1 and M2 move along the arcs G1H12 and G~12, 
asymptotically approaching the point H12; that is, 
"collapse" of the sublattices does not occur even at 
very large fields. The usual "collapse" follows from 
(9)-(12) when HD = 0: cp = O, Hc1 = 2HE, mcx = 1, 
lc = 0. From the expression for hcl the deduction 
follows that a necessary condition for an "easy-axis" 
state of the antiferromagnet under consideration in the 

FIG. 1. Diagram illustrating the 
change of equilibrium configuration of 
the sublattices on increase of the field 
H, applied in a direction perpendicular 
to the EA (in an antiferromagnet with 
nonvanishing Dl). 

1>Similar results for the case HA < Hn <HE, which is realized in 

y 

hematite when T < TM, were obtained by Cinader and Shtrikman[ 11 ). ,. 
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absence of an external magnetic field, in addition to 
B > 0 and a> 0, is the inequality 

aB-13">0. (13) 

In general, substances are in principle possible in 
which hcl < 0. Then there exists a situation in which, 
thanks to the large value of {3, even when the constant 
a has a positive sign, the sublattices arrange them
selves in the absence of a magnetic field not along but 
perpendicular to the principal axis; that is, outwardly 
the material behaves like an antiferromagnet with 
anisotropy of the "easy plane" type. 

4. On going over to the general case hz f 0 and 
hx f 0, one can conclude that in the antiferromagnet 
under consideration in a field h < he (that is, hx 
<hex and hz < hcz), there is a state with lz f 0. 
Transition to the phase with lz = 0 occurs upon vanish
ing of the expression (7d). Hence from (7e) and (7f) it 
is possible to obtain a curve of the critical fields that 
separate the two phases. In parametric form it is 
given by the formulas 

(14a) 

(14b) 

(14c) 

where the role of parameters is played by mcx and 
mcz• which are related by equation (14c). These ex
pressions are sufficient for numerical construction of 
the function hcz (hex) for arbitrary values of a, {3, 
and B (satisfying, of course, the inequality (13)). Sub
stitution of the basic condition (14c), which determines 
the transition between phases, into formulas (Be) and 
(Bd) of the second solution gives the same result for 
hex and hcz· Furthermore, it can be shown that when 
hx = hex and hz = hcz, the values of the energies of 
the two phases (3£Ic and 3trrc) also coincide. This 
indicates that the transition between phases occurs in 
a continuous manner (we recall that we are considering 
the case hx f 0). 

The magnetization curves for the two phases (or 
more accurately, the relations inverse to these) can 
easily be constructed numerically according to formu
las (7e) and (7f) for the phase with lz f 0 and (Be) and 
(Bd) for the phase with lz = 0. Here it should be taken 
into account that the third term in (7e) and the fourth 
in (7f), proportional to the usually small quantity 
a<< B, gives a contribution that is not small in com
parison with the other terms at small values of the 
magnetization m. 

5. This calculation of the equilibrium configuration 
of the sublattices in a field h (hx, 0, hz) is completely 
applicable also to an easy-axis antiferromagnet with 
odd antiferromagnetic structure with respect to the 
principal axis (such as Co F 2), if the x axis is so 
chosen that the DI energy is described in the form 
-!3( mxly + mylx). With such an orientation of the ex
ternal field, the difference in the form of the DI energy 
has no effect, since by symmetry my = 0 for all fields 
(the behavior of CoF2 in a field H(Hx, 0, Hz) was 
considered in detail in [1aJ). 

6. As has already been mentioned, this calculation 
is applicable to the case of arbitrary values of a, /3, 

and B within the limits of the inequality (13). Its re
sults, however, are quite difficult to present graphically. 
Under certain special relations between these basic 
parameters of the theory, a number of relations are 
obtained in explicit form. Thus if 

a~fi~B, (15) 

then, as follows from (7e) and (7f) and from (Be) and 
(8d), the transition from the first to the second phase 
occurs for all directions of the field at very small 
values of the magnetization. For example, when hz 
= 0 we have mcx = a/,; a2 + {32 "" a/ f3 << 1, and when 
hx = 0 we get 

1/ a p• p 
mcz~ vB- B'~1. mcx~B~1. 

The presence of a small parameter m << 1 appreci
ably facilitates the calculation not only of the static, but 
also of the dynamic properties of an antiferromagnet of 
the type considered. This is all the more interesting, 
because the indicated relation between the parameters, 
as follows from our preliminary communication [1oJ, 

is satisfied for such a well-known antiferromagnet as 
a-Fe203:2HA = 0.54 kOe, Ho = 30 kOe~HE = 4500 kOe 
(at T = 77°K). 

In this case we have at the phase boundary in the 
(hx, hz) plane, from (14c), 

me'~ ; mcx; (16) 

on the other hand, it follows from (Be), (Bd), and (15) 
that 

P+hcx hcz () 
mcx~-8-, mcz~B. 17 

If we now substitute (16) and (17) into m~ = m~x 
+ m~z• we get the equation of the curve in the (hx, hz) 
plane that separates the phases with lz f 0 and with 
lz = 0: 

(1B) 

This curve is no other than a circle with center 
S = (aB - 2/32)/2(3 on the hx axis and radius R = aB/2!3 
(see curve T1 in Fig. 2). It cuts off intercepts on the 
z axis ±hell=± (aB- (32 ) 112, and intercepts on the x 
axis hcl = (aB - /32 )/ f3 and -ho = -{3. A physically 

L,=O 
I %-7 • 

FIG. 2. Phase diagrams in the (Hx, Hz) plane for an easy-axis anti
ferromagnet with DI at different temperatures T 1 < T 2 < T 3 and in the 
case HA <iii: Ho <iii: HE. The curve T1 was drawn for the value Hcl/Hcll = 
2.1 characterizing at-Fe20 3 at 77°K. 
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possible phase diagram in the (hx, hz) plane, con
structed with the symmetry of the system taken into 
account, must have the form shown by curve T1 in Fig. 
2. There are shown the fundamental characteristics of 
the phases in the different quadrants of the plane. 

The static magnetic properties of the ideal easy
axis antiferromagnet considered by us, in contrast to 
zero DI (ideal in the sense that other interactions are 
disregarded), are completely described, as has already 
been pointed out, by the expressions (7e), (7f), (Be), and 
(Bd). A numerical calculation of the curves mx ( h, ()) 
and mz (h, () ), where h = (h~ + h~Y12 and where () is 
the angle between the principal axis and the external 
magnetic field, was made (see Fig. 3a and Fig. 3b) for 
an antiferromagnet characterized by the values of the 
parameters HA, HD, and HE (see above) determined 
by us for a-Fe203 at T = 77°K from resonance meas
urements [wJ. These curves permit the easy construe
tion both of magnetization curves and of torque curves. 
The question of their applicability of a real easy-axis 
modification of the antiferromagnet a-Fe~3 is dis
cussed below. 

7. It is of great interest to study the dynamics of the 
antiferromagnetic system described, and first of all the 
frequency spectrum of AFMR, ww{h) and w20 (h). For 
arbitrary a, [3, and B this can be done in explicit form 
only for fields oriented along the principal directions 
of the crystal: parallel to the principal axis and per
pendicular to it (for a system of CoF2 type, the results 

mz 
0.02~ 

I b i 

~t 
I 

a~oo 
5.7' 
!5° 

JOo 
t-----+.79'----"'1 

90° 

FIG. 3. Calculated dependence of the (a) transverse and (b) longi
tudinal components, with respect to the EA, of the total magnetization 
upon the magnitude of the field, for different orientations of the latter 
with respect to the EA (8 is the angle between H and the EA). The cal
culation was made for the valuesZHA = 0.54 kOe, Hn = 30 kOe, and 
~HE= 4500 kOe, which follow from resonance measurements for 
a-Fe20 3 (T = 77°K). 

of the calculation were given in[12J). When a<..< [3 <<.. B, 
the calculations in a number of cases are simpler. 
Thus by solving the system (4) for small deviations 
from the equilibrium state, which is determined for the 
different phases by the expressions (7a)-{7f) and (Ba)
(Bd), one can obtain the functions w1 2(h, e). Construc
tion of them for arbitrary e in the phase with lz f 0 
is, as usual, complicated (therefore the corresponding 
curves in Fig. 4 are shown approximately by dotted 
lines). In the remaining cases, however, explicit ex
pressions are obtained. 

Phase with lz f 0 (that is, h < he): 

a= o: n~.z = (1 + p) 2, (19) 
a = n: /2: g,z = 1 - 1"2p2, Q22 = 1 + pl. (20) 

Phase with lz = 0 (that is, h >he): 

Ql.l = tfz[pl + 2-rp Sin a -1 =!= "J'(p2 -1)2 + 4pZsjnla]. (21) 

Here, for convenience, the relative quantities have 
been introduced: 

On == Wno I roo (n = 1, 2), Wo I 2Moy ""' ho""' hell = faB- ~2, 
P == h I h0, 1" == 11 I ho. 

The curves of Fig. 4 are drawn for the value T = 0.476, 
which follows from[Io] for a-Fe203 at T = 77°K. 

3. EXPERIMENT 

1. As we have already reported, the resonance ab
sorption near Hcl at frequencies w <..<.. Hell• predicted 
by formulas (20) and (21) with e = rr/ 22>, was actually 
observed in a-Fez03 at T << TM. The measurements 
were made with the aid of a simple reflection radio
spectrometer with a pulsed magnetic field. The latter 
was produced by discharge of a battery of condensers 

,~------~,f-~~f-~~~---L--~3 

Hell Hcf5,7' HcfJffJH,m"J 1/CJ. H/11&11 

FIG. 4. AFMR spectrum for the simplest easy-axis antiferromag
net with nonvanishing Dl. The calculation was made for the values of 
HA, Ho, and HE that occur in a-Fe2 0 3 at 77°K. The heavy lines are 
plotted according to formulas (20) and (21 ). The dotted lines give an 
approximate representation of the dependence w(H, 8) for arbitrary 
IJ in the phase with [z t=O; the point-and-dash lines represent the non
physical continuation of the dependences (21) into the phase with 
lz t= 0. 

2) A similar prediction for the case of a perpendicular field was made 
independently by Cinader(13]. 
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of capacity C = 5700 1J. F through a solenoid, wound 
with rectangular copper wire of cross section 
1.68 x 2.83 mm2 • The internal diameter of the solenoid 
was 19 mm, the external diameter 70 mm, and the 
height 70 mm. The solenoid was submerged in liquid 
nitrogen. The largest field that we could use without 
risk of destroying the solenoid was reached at con
denser voltage Umax = 3.5 kV and was Hmax 
= 250 kOe. The duration of the pulsed field from zero 
to zero was Too i>:J 10 msec. 

The field was measured by means of a Rogowski 
belt, the signal from which was integrated with a semi
conductor integrator and fed to one of the inputs of a 
two-beam oscillograph OK-24 (see Fig. 5a). The field 
signal was calibrated with the aid of AFMR in a 
monocrystal of Crz03 with H 11 C3 and T = 77°K; it 
was assumed, in accordance with Foner [zJ, that Hres 
= 46.5 kOe at v = 37.7 GHz (see Fig. 5b). The error in 
the field measurement was ±3%. 

The specimen under investigation was clamped near 
the bottom of a shorted section of an 8-millimeter-band 
waveguide, on its narrow side or bottom, depending on 
which polarization of the microwave field was needed 
for observation of resonance. The part of the wave
guide with the specimen was placed in the center of the 
solenoid, where the extent of 1% field uniformity was 
about 7 mm. The microwave power reflected from the 
measurement cell was fed through a directional coupler 
to a crystal detector, the signal from which was re
corded by the second channel of the oscillograph (with 
sensitivity 1 mm/mV). This same measurement cell 
was used for measurement in wavelength band 4 and 
6 mm. 

2. The specimen of monocrystalline a-Fez03 on 
which the fundamental measurements were made31 was 
a parallelopiped of dimensions 1 x 3 x 4 mm, so cut 
that the C3 axis was directed along the edge of length 2 
[sic!]mm. 

Control experiments (at wavelengths 8 and 4 mm, 
with H 1 C3) were performed on specimens cut from a 
monocrystal grown by R. A. Voskanyan (Institute of 
Crystallography, Academy of Sciences, USSR) and gave 
(to within the limits of accuracy) the same results. 

3. To study the angular dependence of the resonance 
field, a very simple device was used which made it 
possible to change the orientation of the specimen within 
the waveguide. The specimen was glued with Bf glue 
on a surface of 3 x 4 mm to the end of a rod of antelope 
bone, which passed through the wide wall of the wave
guide. The angle between the field and the C3 axis was 
set manually with an accuracy of ±2°; the absence of 
disturbance to the angular setting was checked visually 
on the dial after each pulse of the field. Because of the 
appreciable size of the specimen, it was assumed that 
in one or another part of the specimen, for any angle of 
rotation, the microwave magnetic field necessary for 
excitation of the AFMR polarization was present. To 
prevent condensation of water and carbon dioxide 
vapors on the surface of the specimen, the interior of 

l)The single crystal was grown by V. M. Skorikov (Institute of 
General and Inorganic Chemistry, Academy of Sciences, USSR) and 
was kindly given to us by E. G. Rudashevskil. 

FIG. 5. Antiferromagnetic resonance in synthetic a-Fe2 0 3 at liquid
nitrogen temperature, observed by means of a reflection radiospectrom
eter with a pulsed magnetic field. Oscillogram a, dependence of the 
magnitude of the magnetic field on time. Duration of the pulsed field, 
from zero to zero, r 00 = 9.5 msec. Oscillograms b, c, and d, microwave 
detector signals, proportional to the power reflected from the measure
ment cell and recorded as functions of the time: b, frequency v = 37.7 
GHz, external field H parallel to the basal plane of the a-Fe 20 3 crystal, 
hmicrowave II H. The narrow peak at the end is ordinary resonance in 
Cr20 3 with H II C3 and hmicrowave lH (T = 77°K), used for calibration 
of the field signal (Hres = 46.5 kOe). c, v = 73 GHz, H 1 C3, hmicrowave 
II H. d, v = 37.7 GHz, H almost parallel to the easy axis of the a-Fe 20 3 
specimen (to within an accuracy of 2° ). Besides the ordinary resonance 
observed earlier by Foner and Williamson[ 14 ] (narrow peaks), a broad 
maximum is visible at large fields. 

the measuring cell was separated from the rest of the 
waveguide circuit by a thin layer of mica and was 
filled with gaseous helium with a slight excess of pres
sure. 

4. The basic results obtained on the specimen from 
the monocrystal of V. M. Skorikov are shown in Figs. 
5-7. Figure 6 shows satisfactory agreement of the ex
perimental data with the calculated curve ww ( Hx) 
plotted according to formulas (20) and (21) for 8 = rr/2 
with Hell = 63 ± 3 kOe and Hcl = 128 ± 4 kOe (the 
slight difference from the value of Hc1 given in CwJ is 
within the limits of error of the measurement) and with 
g-factor equal to 2. 

A curious dependence of the resonance fields of 
hematite in the easy-axis phase is disclosed in Fig. 7. 

Uno/ THeil 

Ap-f.lmm 
!;Jmm 
8mm 

FIG. 6. Dependence of AFMR frequency on magnitude of the field, 
perpendicular to the easy axis of a-Fe20 3. The curves n = I and 2 are 
plotted according to formulas (20) and (21) with() = w/2 and with the 
values Hell = 63 ± 3 kOe, Hcl = 128 ± 4 kOe (Xp is the operating wave
length of the microwave spectrometer. 
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10° 
t zo• 

I 30° 
I q.o• 

" 

FIG. 7. Change of the magnitude of the resonance fields in hema
tite with the angle between the EA and the field H; T = 77°K, p = 
37.7 GHz, Z II C3• The side of the experimental points corresponds to 
the errors of measurement. Curve 1 is plotted from the experimental 
points. Curve 2 is calculated by formula (22) with%HA = 0.54 kOe, 
Ho = 30 kOe¥!E = 4500 kOe. The dotted curve is calculated by for
mula (18a) and corresponds to the boundary between the phases with 
lz =I= 0 and with lz = 0 in the (Hx, Hz) plane; the dash-dot curve is a 
nonphysical continuation of the dotted curve. 

Displacement of the resonance (curve 2 in Fig. 7) 
toward the high-field region can be expected from a 
qualitative analysis of the AFMR spectrum (see Fig. 4). 
In fact, in observation of resonance at a frequency 
w « Wo by scanning of a field oriented at a small (for 
example,()= 5.7°) angle to the EA, besides the usual 
AFMR at h <he ( ()) (Foner and Williamson [14J), there 
should occur a broad absorption peak at fields larger 
than he ( () ) . This circumstance is illustrated by the 
oscillogram of Fig. 5d. 

The dependence of the resonance (curve 2 of Fig. 7) 
on orientation can be described analytically. Thus from 
formula (21) for Ww (minus sign on the right), we 
easily find for the field Ha of the second resonance 
peak: 

H2 _ (H"HE)2 (Cilto)2 (n _H_A_H-cF.=--_Hn2)2 
2z- , __ + - - 2x-

\ Hn 'Y Hn 

+ f Cilto )2 Hc.l.H2x (22) 
\ V HnH•x-(ww/y)2 · 

This expression shows that the curve Haz ( Hax) with 
ww = const has a singularity at H~ = ( ww!Y )2/HD. As 
is seen from Fig. 7, the experimental points agree well 
with curve 2, plotted from formula (22) with2HA= 
= 0.54 kOe, HD = 30 kOe, and!HE = 4500 kOe. 

4. DISCUSSION OF RESULTS 

As follows from what has been stated, the simplest 
classical model of an easy-axis antiferromagnet with 
DI describes rather well the dynamics of the low
temperature phase of hematite for T << TM. Further
more, it predicts the existence at each given tempera
ture of two phases, with lz f 0 and with lz = 0, sep
arated in the ( Hx, Hz) plane by the circle 

2 ( _ HARE- Hn• ) 2 _ (HARE)' (1Ba) He.+ Hex - • 
Hn Hn 

The existence of such a boundary is actually shown al
ready by Fig. 7: the dotted curve is drawn according 

to formula (18a). It is of considerable interest, how
ever, to construct the boundary line from static data; 
that is, for w = 0. Similar measurements for temper
atures not too far from the Morin point TM have al
ready been undertakenCa,9 J. Their results can be ex
plained, without forcing, within the framework of the 
model developed. 

Actually, the coefficients of ( 18a) naturally depend 
on the temperature T. The quantity that changes most 
rapidly with T, as follows from [15•16J, is the anisotropy 
field HA ( T). The field HD varies insignificantly with 
temperature: it follows from our measurements that 
HD ( 77°K) = 30 ± 4 kOe, and from the resonance meas
urements of Rudashevski1 and Shal'nikovaC17J that 
HD ( 295°K) = 22 ± 0.2 kOe. And apparently HE ( T) 
changes very little (because of the high value of TN 
~ 948°K). In one way or another, the boundary curve 
Hcz (Hex), while remaining a circle, should become 
strongly modified with temperature (see curves T1, 
Tz, and T3 in Fig. 2). In particular, when T is very 
close to TM, the boundary curve in the first quadrant 
of the ( Hx, Hz) plane suggests very much in its char
acter the experimental curve obtained by Kaczer and 
Shalnikova for TM- T ~ 2o (see Fig. 4 inCsJ). So that 
if we consider only the form of the dependence 
Hcz (Hex), it is entirely possible to interpret these 
results without introducing interactions of higher order. 

One difficulty, none the less, remains. The curves 
mx ( Hx), as is confirmed in [gJ, are not continuous at 
Hx = Hcl• as they should be if there were full equiva
lence of the simplest model to the case of a-Fez03 at 
T < TM (see formulas {9) and (10)). It is therefore 
possible that inclusion of higher-order interactions is 
still necessary for a description of a-Fez03; this 
should be carried out, however, within the framework 
of the calculation of the problem that we have pre
sented above. 

In addition, it would be of unquestionable interest to 
measure carefully the orientational dependence of the 
magnetization curves of a-Fez03 in fields encompass
ing the critical field, at nitrogen temperature. Another 
very interesting problem is the investigation of the 
thermodynamics of the transition upon crossing the 
boundary curve along different trajectories in the 
(Hx, Hz) curve. 

5. CONCLUSION 

The good agreement of the results of a calculation 
of the dynamics of an easy-axis antiferromagnetic 
system with nonvanishing DI and of the experimental 
data on AFMR for low-temperature a-Fe20 3 leads to 
the conclusion that consistent allowance for DI is 
necessary for description of any easy-axis antiferro
magnetic systems-especially of their behavior in 
large fields. The expression {1) and the relations (7e), 
(7f), (Be), and {Bd) apparently have a very general 
character, in particular for systems with arbitrary 
HA, HD, and HE· Inclusion of DI in the calculation 
allows us to consider the processes of "flipping" and 
"collapse" (now relative) of the sublattice moments 
from a unified point of view-as field-induced transi
tions from the phase with lz f 0 to the phase with lz 
= 0, which should also take place for arbitrary orienta-
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tion of the external field with respect to the principal 
axis. 

We are deeply grateful to !. K. Kikoin for his con
stant interest in this work and for interesting metho
dological hints. 
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