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It is shown that the contradictions that arise in calculation of the magnetization of a ferrodielectric in
the direction of an axis of difficult magnetization at low temperatures are due to an approximation
made in the calculation of the free energy. A somewhat different method of calculating the magnetiza-
tion is proposed; the magnetization, it turns out, is a continuous function of the field both in the case

of a positive and in the case of a negative anisotropy constant. The magnetic susceptibility has a
logarithmic singularity at a field equal to the anisotropy field in the case of a positive anisotropy
constant, and a finite discontinuity in the case of a negative anisotropy constant.

CALCULATION of the magnetization of a ferrodie-
lectric at low temperatures along a difficult direction,
by means of the thermodynamic relation M = —8%/0H
($ is the free energy per unit volume, H is the con-
stant magnetic field) leads to a contradictory result, if
% is determined in the spin-wave approximation. The
contradiction is connected with the fact that if the field
H increases, remaining less than the anisotropy field
Hp, then at a nonvanishing temperature the magnetiza-
tion becomes larger than the nominal value. Further-
more, the values of the magnetization at fields larger
and smaller than HA do not agree in the limit H — HA
(see, for example,t*d).

In the present paper, a somewhat different method
of calculating the magnetization is proposed; with this
method, the contradictions mentioned do not arise.

The point is that in finding the magnetization along
a difficult direction, because of the impossibility of an
exact solution of the problem, a semiclassical treat-
ment is used, in which the ground state is characterized
by a field-dependent direction of equilibrium of the
magnetization with respect to the easy axis. The be-
havior of the system near the ground state is con-
sidered in the approximation of small oscillations of
the vector magnetization about the equilibrium position.
In this connection there arises a necessity for a trans-
formation to a new system of coordinates, one of whose
axes coincides with the equilibrium direction of the
moment. As a result, there occurs a dependence of the
Hamiltonian on the field both explicitly and through the
angle of rotation. If rotation about the x axis occurs,
then the Hamiltonian #’ in the new system of coordi-
nates is connected with the original Hamiltonian # by
the relation

g«g _ e-isxe gz,e is,0 ,
where sy is the component of the total spin along the x
axis and 0 is the angle of rotation. On using for the
free energy the expression § = -T 1ln Sp e~*/7, we get

M= —Sp _z_i_t’ e %IT|Sp e~IT,

On taking account of the relation between % and 9?’,

we find .
o% . 8
oH ~ '9H

(551 _}_E-{;xo %”7;; KRy

Averaging of the first term, with a Gibbs distribution,
gives zero. Therefore

M=—Sp o0 %915 ei‘sxee—y}/T/sp e—ﬁt/rl (1)

In other words, in an exact treatment a transforma-
tion to a new system of coordinates does not lead to
any additional terms in the magnetization; this is as it
should be. If, however, the free energy is calculated in
the spin-wave approximation, then as a result of the
rotation there appear additional terms, which lead to
the contradictions mentioned..

The calculations made below, which make use of
formula (1) in the spin-wave approximation also, lead
to results that show that the magnetization is a con-
tinuous function of the field both for positive and for
negative anisotropy; the magnetic susceptibility, how-
ever, has in the case of a positive anisotropy constant
a logarithmic singularity at H = Ha, and in the nega-
tive case a finite discontinuity.

1. THE CASE OF A POSITIVE ANISOTROPY
CONSTANT (k > 0)

1. We choose the axis of easiest magnetization as
the z axis of the system of coordinates; as y axis, we
take the direction of the constant magnetic field H,
which coincides with a direction of difficult magnetiza-
tion.

We write the Hamiltonian of the system in the
form (2]

= =12 S S8l +KpE S (5 4 GO —pH S sY. (2)
L,m [ [
Here §; is the spin operator at the [-th site, and u is
the Bohr magneton.

The first term in (2) describes the exchange inter-
action (Jjy, is the exchange integral). The second
term is the magnetic-anisotropy energy (K ~ g/a’
where B is the dimensionless anisotropy constant and
a is the lattice constant). The third term is the energy
of interaction of the spin system with the constant
magnetic field. For simplicity, we take no account of
dipole-dipole interaction. (The results obtained below
are still valid qualitatively when account is taken of
dipole-dipole interaction.)
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By use of the relation
+ (572

the Hamiltonian can be written thus:

“12 = (‘;lx)z + (:911")2

b= —1, E v lnsp — R’ 2 (8,9 — p.HS‘ . (3)
I, m

For determination of the ground state of the Hamilton~

ian (3), we shall consider the spins to be c-numbers;

this is justified for sufficiently large spins. Then the

equilibrium value so of a spin s makes some angle 6

with the axis of easiest magnetization (s, lies in the

zy plane). This angle is determined by minimization
of the energy
Eo= —1/5 O\ Jms? — Kp2s?N cos? 0 — pHsN sin 6, (4)

Lm
which corresponds to a uniform magnetization s/
= s (N is the total number of spins in the system).
As a result we get
sin@ = H/H, for H << Ha, (5)
cos 0 = 0 for H = Ha. (6)

Here the anisotropy field Hp = 2Kus.

2. We consider the range of fields H = Hp. We in-
troduce a primed system of coordinates, such that the
z' axis is directed along s, and the y’ axis lies in the
zy plane. Then the connection between the spin-projec-
tion operators in these systems will be given by the
relations

st =",
s = 5, sin 0 - Y cos®, (mn
glz = ;,” cos0— §1y’sin 0.

Following Holstein and Primakoff 13- , we introduce
the Bose operators 4; and 4;°, which satisfy the com-
mutation rules

0yl — Gy A = Oy,

(] = (3, 4] =0, (8)
and we express the operators §x, éy” and Sz’ in
terms of them, retaining only terms linear and quad-
ratic in the operators al and a.l

= Vs (@' +al)1
sly =i V“"/2 (“z —ay), (9)
s ;s—a, a,.

Then the operators s[ , Sl , and slZ take the following
form:
S:tx = VS/—%(‘;I? +ay),
sP = (s—a;a)sin 040 V52 (¢ — a) cos 9,
§F = (s—a;"a;) cos 0 — V52 (&, — ay) sin®.

(10)

After substitution of (10) in (2) and use of the com-
mutation rules (8), with subsequent introduction of the
Fourier components of the operators 4] and 3;, we
get % in the form (the terms linear in the Bose opera-
tors drop out because of the choice of the ground
state)’

DWe remark that in [!] the minimization with respect to the angle
0 is carried out on a thermodynamic potential £ (at a nonvanishing
temperature) calculated by means of the Hamiltonian (2.1), in which
linear terms are absent but the angle 0 has not yet been determined.
Since the terms linear in the operators 4 and a* drop out of the Hamil-
tonian only for a quite definite 0, such a procedure seems to us incor-
rect.
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9 = F— =2 HHA N( ) +Z(Ak11k ak+l/2Bak ax+Y2Baa. ),

where

B 1 ()] 4 s

B= pHA<H) (12)
2 Hy

We now diagonalize the Hamiltonian by means of the
u, v representation*:

N n N N N R
ax = UkCx + Ux’—x , ax’ = uly’ + Vel (13)

We get as a result

= Ho + E exlx O, (14)
X

where ¥, is the energy of the ground state, with al-
lowance for zero-point oscillations, and where

e = VA — B (15)
The coefficients of the u, v representation have the
following form:

Uk =— 'V(Ak + Bk) /281(,
Uk = —'Vi(Ak "E()TZSI
The mean value of the magnetization M in the
direction of the axis of difficult magnetization is deter-
mined by formula (1).

On using (10), (15), and (16), we get the following
result:

(16)

H Ego Ay —ex

o H > g
My (T) = My — b R k2 die
)
oo p A kedk (17
T H, 2w J e el __ 1’

where
=& = Nus
(1) = v<2, sy, My="E

At zero temperature, the last term in formula (17)
drops out, and as a result we get

Hy po T Ax—ex
—_—il— —k2dkY,
HA \\ 41‘[2Mo‘§ €k \ (18)

My(0)== M,
whence the magnetic susceptibility yat T =0 is
M, u

Ax—ex
oL U ST Wk L3 2 T
X(0> H,\ 43‘[2HA OS Ex \

— k2 dk.
(19)

) 2°§ (Ak—[—B
2
0

For H < HA, the susceptibility x(0) = M,/Hp;
that is, at zero field the value of x coincides with the
value obtained from a classical treatment. With in-
crease of H, the change of x with field, as is evident
from (19), is more complicated than the classical.

At H = Hp, the susceptibility has a logarithmic
singularity:
LYl oy gy ay, (20)

= Xreg T 162 ¥ Is ]s

where Xpeo is the part of the suscept1b111ty that is
finite at H = HA.

3. We consider the range of fields H = Hp. The
equilibrium value of 6 is now determined by the condi-
tion (6), which gives 6 = n/2.

We again introduce a primed system of coordinates,
with the z’ axis directed along so (s, in the unprimed
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system of coordinates is directed along the y axis,
over the whole range of fields now under consideration).
The relation between quantities in the primed and the
unprimed systems will be the following:

o= Bmhe b= —iy (21)
By a procedure analogous to the case H = Hp, we
get

H = H, +E£k}k*;k, (22)
Kk

where € is determined by formula (15), in which Ay

and B have the following form:

= Is(ka )2__”,12’1( 2%)

(23)
B = uH,./2
The quantities u, and vk are given, as before, by
the expressions (16}(
With the aid of formula (1) we get the following value
for the magnetic-moment density:

M, = My— = (29)

(o] o
1k——ek ) b é‘i kdk
e e —— |

) ek 2n® J Bk ek T 1"

From a comparison of (23) and (24) with (12) and
(17), respectively, it is clear that the limiting values
of the magnetization at H = HA, as H approaches Hp
from below and from above, agree. This means that
the magnetization is continuous at H = HA. Since the
magnetic susceptibility, as is clear from (20), has a
logarithmic singularity at H = Hp, this value of the
field can be regarded as a point of phase transition of
the second kind with respect to the field. It is easy to
show that when H approaches Hp from above, x also
diverges logarithmically:

1 uM, pLHA
= 322 ]SV \H_«_l}

From a comparison of (25) with (20) it is clear, first,
that the singular parts of x differ by a factor 2; and,
second, that the regular part is absent in (25).

When the field H is large in comparison with HA,
the magnetization at zero temperature approaches Mo,
as it should:

(25)

(26)

- r l,“,‘{fz)z I
T 128aa*\ Ts uwH’
The temperature part of the magnetization in both
magnetic-field regions gives a small negative contribu-

tion, according to the temperature, so that for arbi-
trary temperature T < Js and at arbitrary fields, the
value of the magnetization does not exceed M.

M, —

2. THE CASE OF NEGATIVE ANISOTROPY CONSTANT

If the anisotropy constant is negative, then the
equilibrium direction of the moment in the absence of
a field is perpendicular to the distinguished axis of the
ferromagnet. We choose the equilibrium direction of
the magnetic moment as the y axis and the direction
of the magnetic moment as the z axis and the direction
of the constant magnetic field H as the z axis (H will
thereby be directed along a difficult axis). The Hamil-
tonian of our system in this case is written thus:

éf = 1/22 Jlmél;m +

ILm

[E | p2 > (57— pH Y sk (27)
t 1
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In the ground state, when the moment is uniform, the
energy is
Ey=—"' N\ Jims*+|K|u?s?N cos?d — pHsNcos®  (28)

Lm

(6 is the angle between the z axis and the equilibrium
moment).

As a result of minimization of E, with respect to 6,
we obtain the condition that relates 6 to H:

(29)
(30)

cose=H—H for H < Hg,

A
sin@=0 for H>Ha,,

where the anisotropy field Hp = 2 |K|us.

On transforming to a primed system of coordinates
in the same way as in the case of a positive anisotropy
constant, and on repeating the same Hamiltonian-
diagonalization procedure as for K > 0, we get

I = o+ exei e, (31)
Kk

where € is determined, as before, by formula (15),
but with the difference that Ax and B are now equal
to:

. Js(ka2+&lfi[1—(g)] (H < Hy),
T | Is(ka)? 4 w(H — Ha) (H=Ha),
p,IIA / H
(A wen @
0 (H= Ha).

The mean moment along the z axis is determined by
the equations

H H p | Ax—ex , H p ¢ A kdk
Me=Mo g g ) ~ o P ) T ) e w1
(H << Hy);
(o<}
K dle
L i (H>Hy). (33)

22 6\ eek’T_i
The magnetic susceptibility at T =0, in contrast to
the case of a positive anisotropy constant, has at the
point H = Hp a finite discontinuity Ax = Mo/HA.
In closing, we take this occasion to express our
sincere thanks to M. I. Kaganov for helpful discussions.
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