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It is shown that the radiation line width in the Josephson effect is determined by voltage fluctuations at 
the contact. The line width is determined as a function of the contact parameters and characteristics 
of the external circuit. 

1. 1 A Josephson element consists of two superconduc
tors separated by a thin dielectric layer. A de voltage 
V on the contact produces an alternating current and 
radiation at a frequency w = 2eV /n. A certain radiation 
line width is observed in the experimentC1 J. 

If external sources maintain the de voltage at the 
contact constant, then the line width is determined by 
the thermal fluctuations of the voltage. We obtain be
low the dependence of the line width on the parameters 
of the Josephson contact. In an external magnetic field, 
the direct current flowing through the contact has 
resonance maxima at definite values of the voltage [l- sJ. 
We obtain the width of these maxima and the radiation 
line width near them. We show that the Nyquist formula 
for the fluctuations of the current through the contact 
is applicable only if the voltage on the contact is much 
lower than the temperature. We obtain the current and 
voltage fluctuations and the radiation line width also 
for the case when the voltage is comparable with or 
higher than the temperature. 

2. In the case of slow variation of the voltage on the 
contact, the Josephson current through the contact is 
determined by the formula [B- aJ 

2e ' J j(t)=j.sin[11 ~ V(t')dt'. 

In our case, the voltage is equal to the sum of the de 
voltage Yo, determined by the external source, and 

( 1) 

the ac voltage vl ( t), determined by the thermal fluc
tuations. In experiments one usually sets a constant 
average contact voltage; the resultant alternating cur
rent leads to the appearance of alternating voltage 
harmonics. However, the frequency of these harmonics 
is large compared with the line width and they can 
therefore be neglected. 

The average values of the thermal fluctuations of V 1 is 
zero, and the mean square value at Yo<< T is deter
mined by the Nyquist formula 

1 t" · . Teff (2) 
q>(ro)=-) drV1(t) V,(t + -r)e'"" = --ReZ(ro). 

2n_oo n 

The bar denotes hear averaging over the time T. 
In our case the circuit consists of a capacitance and 

two resistances connected in parallel. The capacitance 
of the contact is equal to 

c = &/4:rrd, (3) 

where S is the area of the contact, d the thickness of 
the dielectric layer, and E its dielectric constant. One 
of the resistances is the external-circuit resistance 

Rext and the other is the resistance of the contact to 
the normal current. If the contact voltage Yo is small 
compared with the temperature, then, with logarithmic 
accuracy, we have in the case of identical supercon
ductors on both sides of the contact [a] 

,", [ ,", ( T \•]-' 
R = RN ch2 8T 1 + 2T In v~ ) . ( 4) 

Here RN is the resistance of the contact in the normal 
state. This expression is valid only in the absence of 
an external magnetic field, whose influence will be 
discussed later. In formula (2) 

1 1 1 1 1 
-=-iroC+--, --=-+-, 

Z Reff Reff R Rext 

(Text T\ (5) 
T eff = Reff \ Rext R j• 

where T is the temperature of the contact, and Text 
is the temperature of the external circuit. Thus, for
mula (2) can be represented in the form 

I Z 12 ( T Text) 1 T eff R eff 
q>(ro)=-- -+- =- . 

(6) 
:IT R Rext :It 1 +( roCReff ) 2 

3. Let us find the radiation line shape. The radia
tion intensity in the frequency interval ( w, w + dw) is 
proportional to the expression 

/(ro) ~ feiw<j(t)j(t + T) d-r ~ rd-re-iOwl €Xp[ Zi~ ~ Vt(t + t') dt'] 

-~ • (7) 
where ow= w - 2eVo/n. As before, the bar denotes 
averaging over the time t. 

When averaging the exponential, we make use of the 
fact that for the large times T under consideration the 
thermal noise can be regarded as white noise. This 
means that the average of the product of any even num
ber of factors V breaks up into a sum of product of all 
the possible paired averages. As the results we obtain 

+00 

I(ro) ~ ~ dte+iOw< exp [- ~:2 ~ ~ dt1 dt2 V!(t + t1) V,(t, + t2) J 
0 

-~ [ Se• ~ sin2 (ro·t/2) 1 = d-rei 0"'' exp -- drocp(ro) , . 
IF ro- J 

(8) 

-00 

Substituting here the expression ( 6) for cp ( w), we get 

2RerrC . R C ) =He----ll>(1,x+1+z&ro eff ,x, 
x + ibroReff C 

(9) 
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where x = 4e2ReflTeffC/:Ii2 and <I> is the confluent 
hypergeometric function. 

To consider the limiting cases, we note that the 
times T which are of importance in the integral (9) are 
of the order of the reciprocal of the line width. If 
r « ( ReffC t\ then 

I w ~ ____! f 4e2 ( 1 ) 
( ) 11 (bw)' +f'' f = f/2Reff T effo 0 

In this case the line has a Lorentz shape. For small 
fluctuation frequencies, ~r, the "resistance" of the 
capacitance ( rc rl is large and therefore the capaci
tance does not enter into the final answer. 

In the other limiting case r » ( ReffC t 1 we have 

l(w) ~ ~exp [- (~)'], r = ~ v2Terr 0 -yn r r h c 
(11) 

In this case the line has a Gaussian shape and the width 
is determined by the capacitance and does not depend 
on the resistance. In the case when the time ( ReffC) 
required to establish equilibrium is large formula (11) 
can be obtained by statistical averaging of the mono
chromatic line 

I(w)~ \ dV,exn(- CV,')~>(Iiw- 2eV_1 ° 

) 2T eff h 
(12) 

We note that formula (12) contains Teff> that is, the 
temperature of the resistance that shunts the capacit
ance. 

4. The expression (4) for the resistance of the con
tact to the normal current is valid only if the contact 
is not in an external magnetic field. A magnetic field 
strongly influences the current-voltage characteristic 
of the contact, and by the same token the line width. As 
shown in many papersC1 - 5J, the direct current through 
the Josephson contact has resonance maxima at vol
tages corresponding to the frequencies of the standing 
waves in the contact. The width of these maxima was 
as a rule introduced phenomenologically. Estimates 
show that it is determined principally by the absorption 
of the high-frequency radiation in the superconductor. 

In order to find the dependence of the current of the 
voltage, we write down the current-conservation equa
tion for a certain point of the contact in the form [3- 5] 

[ 

A 1 IJ' 1)2 ' e IJ2 J 8ne . 
)..-t \ax'+ iJy2 )- dc2 fii2 cp = M J(x) 

4n iJcp 8ne 2e r (13) 
= Rc' iii+ he' j, sin cp, cp = T, J V(t 1)dt1; 

here A is the sum of the penetration depths, A = A1 + Az. 
It is important that the penetration depth A. ( w) depends 
on the frequency and is an integral operator in time in 
Eq. (13). 

As usualC3 , 4J, we seek a solution in the form 
2e 2eA.(O)Ho 4neVoA.(O) (14) 

cp=hVot--h-c-x+ · Rc'n x2 +!ll(x,t), 

where R is given by formula (4). Neglecting small 
losses to radiation, we can assume that aq,jax = 0 on 
the boundary. Solving the equation linearized with re
spect to <I>, we obtain for the de component of the 
current the expression 

0 = _.!! ~ 4nej.'Siani 2 Q {[4e'Vo2e -(nn)'R _1_]'+ Q z}-t (15) 
1 R + LJ c2h n h2dc2 l e ).. n ' 

n=~oo 

where 
Qn = 8neVo +(nn)' Imt.(2eV0/h) 

hRc2 l IA;(2eVo/h) I'' 
l 

1 S (nnx) [ 2iet.(O)H0 J an = - COS - 1- exp ft X dxo 
l 0 c 

The first term in Qn is connected with the normal 
current through the contact and is usually small com
pared with the second term, which is determined by the 
absorption of the field of frequency 2e Vo / li in the 
superconductor. At very low temperatures, both terms 
of Qn decrease exponentially, and the resonance broad
ening connected with the radiation may become appre
ciable. 

At voltages Vo close to the resonance values, the 
second term in (15) becomes larger than the first. In 
this case it is necessary to replace R-1 in ( 5), (9), and 
( 10) by oj/ ilV o. If the resistance is not strongly shunted 
by the capacitance or by an external resistance, then 
the line width decreases near resonance. 

5. The Nyquist formula used above for the contact 
current and voltage fluctuations is applicable only if 
the voltage on the contact is small compared with the 
temperature. Let us derive an expression valid for the 
fluctuations in the general case. 

As usual, we describe the penetration of the elec
trons through the contact by a tunnel Hamiltonian; 

(16) 

The operator of the current through the contact is 

( 17) 

Neglecting the higher powers of T, we obtain for the 
low-frequency current fluctuations 

1 fa-r - ~ - A 

(j')oo~o = Z ~=2n (j(t)j(t + ,;)+ j (t + ,;)j (t)) 
(18) 

1 sf' dw ( eV0 ) 
= 2112RN Re _:,5 dst dS, 2n G,(w,1;t)G2 w-T, £2 0 

Using dispersion relations [sJ that express the 
Green's functions in terms of their imaginary parts, 
we can express, using the method developed in [aJ, the 
resultant integral in terms of the density of states; 

1 r aap 
p, = Im-; J GR (2n)a , (19) 

(j2)w~o = - 1-T dx [ 1- th ( --=-) th( x- eV )l p,(x)p, (x ---:_~_Vl_ 
4nRN -= 2T 2T _ PN2 

For the normal metal we get from ( 19) 

(j2 )oo~o = 2;N cth( ~) 0 (20) 

In the limiting case eV « T we obtain the Nyquist 
formula, and in the opposite limiting case eV >> T it 
is necessary to substitute in the Nyquist formula eV /2 
in place of the temperature. A similar result is ob
tained in these limiting cases also for a superconduc
ting contact. Thus, when eV >> T it is necessary to 
replace T by eV/2 in formulas (5), (6), and (9). 

All the formulas derived above were obtained for 
the width and shape of the radiation line. A similar 



RADIATION LINE WIDTH IN THE JOSEPHSON EFFECT 1221 

shape will also be possessed by the absorption line, 
that is, by the dependence of the direct current flowing 
through the contact on the frequency of the incident 
monochromatic radiation. 

Thus, the line width turns out to be dependent on the 
parameters of the contact and the external circuit. If 
the resistance to the external circuit is sufficiently 
large, then in most cases the line will have the form 
(11) and is determined by the capacitance of the contact. 
A possible exception is the case when the contact is in 
an external magnetic field. Near resonance, the effec
tive resistance of the contact decreases strongly, and 
it is necessary to substitute in (5) R-1 = aJI ilV0 where 
the dependence of J on V0 is determined by formula 
(15). In this case the line width is inversely propor
tional to the slope of the current-voltage characteristic. 

The line width decreases in the case when the con
tact is shunted by a sufficiently small external resist
ance or by a large capacitance. Broadening of the 
width of the peak with decreasing external resistance 
was observed experimentanyC10J. 
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