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We consider the viscosity and thermal conductivity and also sound propagation in molecular gases in 
mutually perpendicular constant and variable magnetic (or electric) fields. We show that for well
defined relations between the magnitude of the constant field and the amplitude and frequency of the 
variable field the change in the transfer and sound absorption coefficients shows a resonance charac
ter. The effect depends essentially on the form of the angular dependence of the non-spherical part 
of the interaction potential of the molecules. 

1. INTRODUCTION 

IT has been shown in a number of experimental and 
theoretical papers [1-11 J that the transfer coefficients 
of molecular gases are changed in magnetic and elec
tric fields. Such an effect is explained by the existence 
of a non-spherical dependence of the molecular colli
sion cross section on the angle between the relative 
velocity of the colliding molecules and their angular 
momenta. The precession of the molecules caused by 
the interaction of the magnetic moment of the molecule 
and the magnetic field (or the dipole moment and the 
electric field) leads to an increase of the collision 
cross-section. The transfer coefficients in an external 
field have a tensor character and the tensors contain 
both components which are even in the field and com
ponents which are odd. 

A qualitative discussion given by us together with 
L. L. Gorelik and V. V. Sinitsyn of the problem of the 
influence of crossed constant and variable fields on the 
transfer phenomena in gases enabled us to assume that 
in such fields a resonance decrease of the transfer co
efficients must take place. This assumption was experi
mentally corroborated for the example of the thermal 
conductivity of oxygenP2J 

It is well known C13J that the motion of particles with 
a magnetic moment in "crossed" magnetic fields has a 
resonance character when the frequency of the rotating 
field is equal to the precession frequency in the constant 
field. In contradistinction to the usual precession in a 
constant field, in the case considered there occurs a 
complicated precessional motion (the end of the angular 
momentum vector M describes a spiral line) leading 
to an additional increase in the scattering cross-section 
of non-spherical molecules. This fact, in turn, leads to 
the occurrence of effects connected with a resonance 
increase in the scattering cross-section of the mole
cules for a well-defined relation between the amplitudes 
of the constant field Bo and the variable field B1 and 
the frequency w of the variable field. 

In the present paper we give a theoretical considera
tion of the viscosity, thermal conductivity, and the 
propagation of sound in molecular gases in crossed 
(magnetic and electric) fields. In the following we show 
that for a well-defined relation between Bo, B1, and w 
the change in the transfer coefficients has a resonance 
character and depend on the form of the non-spherical 

part of the molecular collision operator. The change in 
the transfer coefficients of a molecular gas in external 
constant and variable fields [s ' 10J is not critically de
pendent on the model for the non-spherical part of the 
scattering cross section. It is thus rather complicated 
to deduce the angular dependence of the collisional 
cross section of the molecules from experiments in 
constant and variable fields. This becomes possible if 
we consider the change in the transfer coefficients of 
molecular gases in crossed fields. 

2. SOLUTION OF THE KINETIC EQUATION 

We consider a gas with rotating molecules in a 
crossed (magnetic or electric) field B 

B = -iB• sin wt + jB1 cos wt + kB0, (2.1) 

where Bo is the intensity of the constant field, B1 and 
w the amplitude and frequency of the rotating field. The 
linearized kinetic equation written down in a spherical 
system of coordinates in which the z axis is taken 
along the direction of the constant field Bo, has the 
form [6 ] 

ox ox -at+ N + y[MB] oM=- Jx, (2.2)* 

where f = fo ( 1 + x)' fo is the equilibrium distribution 
function, 

N = .:8azm'Azm, 
l,m 

Aim= Ylm(U) (u2 + H,012 ~ Cp), 

2 1 
A 00 =-3 u2 --(u~+Hro1 ); 

Cv 
(2.3) 

Ix= ~ /od(x+x.)W-(x'+xt')W1ar.ar'ar,', (2.4) 

dr a phase volume, Yzm ( u) = ulYzm ( <Pu, "u); u and 
Hrot are the dimensionless velocity and rotational 
energy. The quantities atm are given in [6 J. 

Equation (2.2) is obtained by averaging over the fast 
rotation of the molecules around their axis and de
scribes the behavior of a gas with linear molecules and 
with "symmetric top" kind of molecules in an external 
field. The quantity y is defined by the following rela
tions: 

y = da I M, a= cos(dM) (2. 5a) 

for polar symmetric top kind of molecules with a dipole 
moment d in an electric field; 

*[MB] = M X B. 

1210 
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2~-~ocr 211ofi 
'Y = --+ ,_____ .Scro, <1 = 0, ± 1 

M M2 

for paramagnetic molecules ( Oz) in a magnetic 
field[nJ ( JJ. 0 -Bohr magneton); 

'Y = llroth 

(2. 5b) 

(2.5c) 

for non-paramagnetic molecules with a magnetic mo
ment JJ.rot· 

In a crossed field the operator which takes the inter
action of the rotating molecules with the field into ac
count has in the chosen system of coordinates the form 

f) A A , A , 

y[MB]- = i(y0l, + y1l+e-•"'' + 'YtLe'"''), 
aM 

where Yo= YBo, Y1 = YzYB1; l is the operator of the 
angular momentum of the particles.L14J 

(2.6) 

We shall look for a solution of Eq. (2.2) in the form 

X=- ~ azm.Xlm· (2. 7) 
l,m 

The functions Xtm must satisfy the equation 

axzm I at+ i{yoZz + 'Yt4e-i"'' + 'YtLe'"''hzm = Azm- Ixzm. (2.8) 

FollowingCsJ we split the collision operator (2.4) into 
two parts: 

(2.9) 

where i <o> describes the collisions without taking into 
account the rotational degrees of freedom of the mole
cules, €1 <1> is a small operator which takes into ac
count the dependence of the collision cross-section on 
the rotating moments ( E. is a small parameter). 
• We shall assume that I <o> is the Maxwellian colli
sion integral,CsJ i.e., its eigenfunctions from a com
plete set of orthonormalized functions and are deter
mined by the following expressions: 

f<o>IJln = AniJln, (2.10) 

'l'n = ¢lmld.~r,r2s = ~ C1!~,t2m~Yz,m1 (u) 

X Yz,m, {:M)L,,Z• (u2)L~" (H,0 t) 'I'.< ( cr), 

An= az,r,.Sno.Sz,olisO + ~z,r, (1- .Sr,o.Sz,o.S.o), (2.11) 

where Czlmm z m are Clebsch-Gordan coefficients, l 1 1 2 2 

Lr ( x) Laguerre polynomials; for linear molecules 
a = 0 and for symmetrical top kind molecules a = %. 
The eigenvalues (2.11) differ from those introduced 
in [sJ by a factor n (n-the density) and have the dimen
sions of frequency. 

Using (2.9) we write Eq. (2.8) for Xlm in the form 

(2.12) 

where 
A f) A A A A () 

K-1 = -+/(0) + i(yolz+'Ytl+e-ioot + 'Ytl_eioot). 2.13 at 
We shall look for the solution of Eq. (2.12) in the form 
of an expansion in the small parameter E: 

(2.14) 

We substitute (2.14) into Eq. (2.13). Separating the 
equation for x1~ and using the explicit form (2.3) for 
Azm, we get 

xz'~= :3t.n,-1 ('¢n.,Azm)'¢n., no=(l,m,l~,O,r~,rz,O), /(2.15) 

where ( F1, F) = f fo Fi Fa dr da in the case of an 
electric field. In the case of a magnetic field the inte
gration over a is replaced by a summation. 

The equation for the function x l~ has the form 

(2.16) 

Here 

(2.17) 
no 

We shall look for its solution in the form 

where the unknown functions x <1 > satisfy the equation 
12m2 

A (I) 
K-txz,"!, = Yz,m,(M). 

We write Xz <1> as a sum 
2m2 

xS.>.. = :3aqm,kYz,k (M) eioot(m,-h>, q = (ltrtlzrz). 
k 

Substituting (2.20) into Eq. (2.19) we get 

where 

yo= 'Yo -.w, 

(2.19) 

(2.20) 

(2.21) 

It is clear from (2.21) that the problem of determining 
the unknown coefficients aqm2k reduces to solving the 
equation 

0" + i(.Y.,z: +vi~-+ 'YtL) Jx(M) = Yz.m,(M), (2.22) 
~ ...... (0) 

where I= I + imzw, 

( 2.23) 

We rotate the system of coordinates in angular mo
mentum space over an angle J1 defined by 

(2.24) 

The new z' axis is then directed along the effective 
field 

(2.25) 

This transformation of the system of coordinates 
corresponds to a linear transformation in the space of 
the functions Ylzk ( M): 

(2.26) 

where Tl2 = ik-pplz (cos J1). The functions plz (cos J) 
kp kp kp 

are defined in [1sJ. 
In the rotated system of coordinates Eq. (2.22) has 

the form 

(i + iYerrlz·)x = :3T~,vYz,v(M'). (2.27) 
p 

Performing the inverse transformation to the old sys
tem of coordinates in the solution of Eq. (2.27) we get 
an expression for the coefficients aqmzk: 

aqm,k = :3 (!., + imzw + ipy erd -IT m,p (T-I)pkZ.· 
p 

(2.28) 
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Substituting (2.28) into (2.20) and (2.18) we can find 
x 1~ · Formally we can write the expression for X~~ 
as follows 

(2) ~A (1) 
Xlm = - eK/<'lxzm, (2.29) 

where K is the operator which is the inverse of K-1 • 

3. THERMAL CONDUCTIVITY, VISCOSITY 

We shall consider the viscosity and thermal conduc-
tivity of molecular gases in a crossed field. It has been 
shown earlier [6 J that the viscosity and thermal conduc
tivity coefficients in a constant field are determined by 
the expression 

C!'m',lm = (Az'm•, Xzm)o (3.1) 

In the case considered the coefficients (3.1) which are 
off-diagonal in m differ from zero. From the form of 
the operators K-1 and I ( 1) the following properties of 
the coefficients czm,l'm 1 are determined: 

Czm, l'm' (t) = eiwt(m-m')clm, l'm', 

Czm.z•m•(Bo, B,) = Cz~•.zm(- Bo, -B,), 

Czm.l'm•(t) = (-1)m-m'cz:_m.z•-m•(t). 

Bearing these properties of the coefficients czm l'm 1 

in mind we can write down the thermal conductivity and 
viscosity tensors. The thermal conductivity tensor has 
the form 

2T { 
><;• = 3m 8;• Re c11.11 + b;0b•0 (cw.JO- Re c 11,11) + b;•0 Im c 11,11 

+ 1~2 ( b;06"' + b•0o;') Re c10,11 + ~2 ( b•0b;'- bh'b;•) Im c 10,11 

+ (b;'b•'- 6;'6•') Re c11. 1-1 + (b•'o;'- b1'6•')Im c 11 . t-1}. 

Here 
Bo; 

b•-
l- Eo_,_ 

o;' = _1 __ dBu • 
wB1 dt 

(3.3.) 

The viscosity tensor is very complicated; part of it is 
completely analogous to the viscosity tensor in a con
stant field. The remaining terms describe the time
dependent components of the tensor. 

Both Eq. (3.3) and the viscosity tensor satisfy the 
Onsager symmetry principle for kinetic coefficients in 
a magnetic field 

Xik (H) = Xki (-H), 

and in an electric field 

l]iklm(H) = l]zm;k{-H), (3.4) 

Xik(E) = ><•;(E), l]iklm(E) = l]zm;.(E)o (3.5) 

The relation (3. 5) for an electric field follows from the 
fact that the terms Xlm which are odd in the field are 
also odd in a and the averaging over a therefore makes 
them vanish. We must emphasize that it is possible that 
there occur terms which are odd in the field in the ex
pression for the czm Z'm', if l- Z1 is an odd integer. 
However, such terms' do not occur in the viscosity and 
thermal conductivity tensors. The latter describe the 
mutual influence of viscosity and thermal conductivity 
phenomenaC7 J (cross effect). Therefore, in a crossed 
magnetic field the thermal conductivity of a molecular 
gas is determined by seven coefficients, and in an 
electric field by four. The viscosity in crossed mag
netic or crossed electric fields is determined, respec-

tively, by nineteen and twelve coefficients. The coeffi
cients which are additional as compared to the case of 
static fields describe time-dependent components of 
the viscosity and thermal conductivity tensors. It is 
clear from (3.3) that the thermal conductivity tensor 
contains first and second harmonics of w. In the vis
cosity tensor harmonics up to the fourth occur. We 
note that all coefficients czm,llm 1 which describe the 
time dependence of the viscosity and thermal conduc
tivity tensors are of order E2 • The other coefficients 
are of the same order as in a constant field.C 6 J 

Let us consider the dependence of the coefficients 
czlml lm on the magnitude of the constant and the 
variahle fields and the frequency o We can in accordance 
with the expansion (2o14) write the coefficients (3.1) 
also as power series in E: 

Cz•m•, lm = Cz·~·. lm + ec~';:,., zm + e2c,\% .. zm + o o • ( 3. 6) 

It is clear from Eqs. (2.3), (2015), (2.17), and (2o29) that 
the field-dependence occurs only in cz<2,> z1 m, m 

(30 7) 

Using the explicit form of Azm andA X~1 J ~nd the sym
metry properties of the operators K ailll I u J we can 
write Eq. (2.37) as follows 

(3o8) 

Using Eqs. (2.17), (2.19), and (2.28) we find that the 
coefficients c1<~J 1 l are equal to m,m 

n,n' 

Gnn' = ~ ct;:nlt~m2Cz~~~2mJ-6zlzl,tJz:J 2 '6m 1m 1 •brlr,' 
m1+1'n:=m 

m 1+m{=m' 

The quantities B~m were defined in (2.17). 

(3.9) 

(3.10) 

We consider the change in the time-averaged trans
fer coefficients in a crossed field. Such changes in the 
transfer coefficients are described by the coefficients 
c 1<~J 1 l for which m 1 = m. Using the relation m,m 

(3.11) 
p 

which follows from the unitarity of the representation 
of the rotation group [1sJ we can write Eq. (3.10) in the 
form 

•a = "' 1 p 1• ( .o. ) I' ( m,w + PY eff) 2 + iA.n ( m,w + py eff) 
Ll qm 2m 2 ...:::.J m 2 p COS lli · . • 

P A.n2 + (m,w + PYerrl 2 ( ) 
3.14 

From this it follows that the change in the coefficients 
cf~in~ lm in a crossed field is equal to 

' 
(3.15) 

n,n' 

Equations (3.12) to (3.15) completely describe the 
dependence of the time-averaged changes in the trans-
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fer coefficients of polar, para- and non-para magnetic 
gases on the magnitude of the constant field, the ampli
tude and frequency of the variable field, and the pres
sure (P) since as we indicated above in (2. 5), (2.11), 
and (2.25) Yo~ B0 , y 1 ~ B1, "-n ~ P. For nonpara
magnetic gases Eqs. (3.12), (3.14), and (3.15) remain 
as before, but (3.13) simplifies as Yo and Y1 are in
dependent of M: 

6.Gwn' = -An-i ~ c/:~z,m!Cz';:::lt2m2~z,-tt'&t2l2'6m,ml' 
m1+~m (3.16) 

Even and odd effects are described, respectively, by 
the real and imaginary parts of expressions (3.13) and 
(3.16). From Eqs. (3.12) to (3.16) it follows that the 
effect is, generally speaking, larger in a crossed field 
than in a constant field since all terms with different 
m2 give non-vanishing contributions in the sum over 
m1 and m2. In the case of a constant field in the ana
logous expressions terms with m2 = 0 did not contri
bute to the effect.C 6 J For arbitrary values of Yo, Y1, w, 
and "-n the behavior of the changes in the transfer co
efficients in a crossed field is rather complicated. 

Let us consider the case of large magnitudes of the 
fields. We require that the inequalities 

IY eff - wl '~An, yo, W ~An. (3.17) 

are satisfied. The real part of Eq. (3.16) then takes in 
the case of a non-paramagnetic gas, and taking (3.11) 
into account, the form 

Re ~Gnn' = - An-16t 1 l 1 '6l~l2 '6m 1mt'6m 2m./br 1 r 1 '6r 2r 2'Gt:'; l'm, 

Gz~~,r'm = ~ c;';:nlt2m2C}1':tl2mz + c:7:n1z2oc:;:ltzo [1 
m1+m~m 

m2'T'=O 

where Pz is a Legendre polynomial of rank l2 

(3.18) 

l 2 
(Po~(cos J) = Pz2 (cos J)). The sum in Eq. (3.18) corre-
sponds to a saturation of the even effect in a constant 
field when Yo >> "-n· The second term describes an 
additional change in the transfer coefficients in a 
crossed field. When the angle J-1 is changed the mag
nitude of the second term gof.s throu9.h a maximum 
when it reaches the value c1 m l 0c l m . The rela-

1m1 2. l1m1lzO 
tive increase in the time -averaged coefficients cl(~) l 

m,m 
with l = l' in a crossed field as compared with their 
value in saturation in a constant field is thus determined 
by the expression 

(Cz,~'::z,o)"/[1- (Cz~:,z,o) 2]. (3.19) 
For instance, for the coefficient C1o,10 which determines 
the change in the thermal conductivity coefficient in the 
direction of Bo this quantity is %. 

It is clear from (3.10) that the dependence of the 
effect on the parameters w, Yo, and Y1 in a crossed 
field shows several maxima. The collection of maxima 
and the relations between w, Yo, and Y1 in the point of 
maximum are determined by the model of the collision 
integral operator i O> which takes into account the 
mixing of the rotational and translational degrees of 
freedom. We consider a model of i<1 > for which the 
magnetic elements I~>n occurring in Eqs. (2.17) and 
(3.15) are non-vanishi'hg only for "transitions into a 

state" with n = (lml12000). Then the second term in 
(3.18) has the form 

(3.20) 

and reaches its maximum value for cos2J = %, or 
1 

w=yo±-y2YI· (3.21) 

Equations (3.18) to (3.20) are approximately true for 
polar and paramagnetic gases if we substitute into them 
the values of Yo and Y1 containing the average values 
of the angular momentum M. , 

The exact expression for the C~r:J/ m for a para-

magnetic gas in the case, of the collision operator 
considered above, has the form 

where ~ = 2Bo/B1; TJ = 2w/B1; y defined in (2.5b). 
From (3.22) and (2.5b) it follows that for oxygen the 
resonance curves must have two paired maxima for 
the states a = ±1 and a = 0 when we use the chosen 
model for i ( 1 ). 

In the case of an arbitrary model for the collision 
of the molecules and when the inequalities (3.17) are 
satisfied, there will be in Eq. (3.15) be a sum of squares 
of Legendre polynomials P 2 (cos J 1). From this it 
follows that an experimentalz study of the dependence of 
the effect on cos J-1 enables us in principle to establish 
the angular dependence of the non-spherical scattering 
of the molecules. 

It is necessary to note that in a paramagnetic gas 
such as oxygen another kind of resonance behavior of 
the transfer coefficients in a crossed field is possible. 
This is connected with the fact that a rotating field of 
frequency w will cause transitions of molecules 
changing the quantum number a from +1 to -1 and 
vice versa, if nw = a, where a is the energy gap be
tween the states with a= +1 and a= -1. For oxygen 
a = 1.98 em -1 and w = 7. 5 x lOll Hz.Cl6 J It is clear that 
then the precession of a paramagnetic molecule and 
with it the change in the transfer coefficients caused 
by a constant field disappears. A similar situation may 
occur apparently also in the case of polar gases with 
long linear molecules or asymmetric top kind molecules 
with a small asymmetry parameter. For such mole
cules the presence of a pair of close-lying states dif
fering in the direction of the dipole moments (for 
linear molecules the splitting of rotational states is 
connected with transverse oscillations) is character
istic. The energy difference between these states is 
appreciably less (in frequency 104 to 106 Hz) than for 
oxygen and depends on the rotational moment of the 
molecule. 

4. SOUND PROPAGATION 

Let there be a sound wave excited with a frequency 
w0 • Its propagation in a constant field is described by 
the distribution function 

1 = to ( 1 + xe'kr-im,t) . (4.1) 
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In the presence of a rotating field of frequency w this 
wave excited additional harmonics of frequencies 
n = w0 + n w ( ln is an integer) the amplitudes of which 
are small, if In I f wv. In the opposite case resonance 
occurs. 

Far from the resonance the nature of the change in 
sound propagation in crossed fields is the same as in 
the case of a constant field and is described by formu
lae containing the quantities cz 'm' lm .c17J The role of 

' the rotating field in this case reduces basically to an 
additional decrease in the sound absorption. 

We consider the resonance phenomenon. For the 
sake of simplicity we restrict ourselves to resonance 
at the lowest possible sound frequency (we assume that 
the frequency of the rotating field is given), i.e., 

(4.2) 

We shall look for the distribution function in the form 

f=!o[1+x+exp{ilu-<~ +~Q)t} 

+x-exp{ikr+i(; -~Q )t}+~xJ. (4.3) 

The other harmonics whose amplitudes are small occur 
in ~X and we shall not take them into account. 

The functions x. and x _ satisfy the equations 
(Co= {{2TTni)): 

( i ~ - i~Q + icolm) )(_ + vol,x_ + y,(x. = -fx_. (4.4) 

To solve (4.4) it is convenient to write x+ and x_ in 
the form 

(4.5) 

where the x~ are independent of the direction of M. 

The functions x ~ and x M are determined from the 
t . ± 

equa 1ons 

i (- .."!_- ~Q + c0ku) )( u = _ J<0l._ u _ e/Ol..., M 2 + lv+ lv+ t 

rot'x+M + y,l+x-M =- !<•>x.M- e1{l>x+"• 

i (.:;;- ~Q + CokU) X-"=_ )"<0lX_u -ef(l))(_M, 

(4.6) 
YoLzX_ M + y,l_X+ M = - f(OJX_ M- ef(llX_ u. 

We have used in (4.6) the fact that the ultrasound fre
quency (and kco) is small compared with the collision 
frequency, i.e., with the non-zero matrix elements of 
the collision operator. 
From~ second and fourth of Eqs. (4.6) we can 

express X± in terms of x~ and substitute the expres
sions obtained into the first and third Eqs. (4.6). We 
have 

·(-"' •Q+ k) u 1'<•> "+ 2A' "+ 2B' u ! +z-u Co u X±-=- X± e ±X± e ±X'f, 

.4± = J<'' rl, + J<•> -1± <l, + J<"'r'r.r'J(l>, 

i1± = _J(l> rz, + J<"' -1± <l, + J<•>)-' t.r'z± <l, + J<•>)-'1<''· 

(4. 7) 

(4.8) 

As the operators A± and B± are bounded we can solve 
Eq. (4. 7) by perturbation theory methods with respect 
to the parameter E. The corrections to the sound 

velocity and absorption coefficient are expressed by 
the equations 

v ez 
v<2J= e2 -ReQ<ZJ, -y<Z>= --lmQ<Z>, (4.9) 

(t) v 

in which n (2 ) is determined from the equation 

(iQ<•>- <x}"'' .4.x}"'>) <- 2i~Q + iQ<•> + e• <x_<•>",4_x_<•>>) (4.10) 

+ e• <x}"''!J.x_<"'> <JL<w !J_x.<•>> = o. 

Here x ~> is the solution of equations whose explicit 
form was given inC17J 

<+ iw + iLlQ + ic0ku) X± <•> = - !<•>x± <•>, 

Solving (4.9) we have 

2iQ<•> = 2iLlQe-. + <x+<•>· it+x.<•>> + <x_<w A_x_<•>> 
- [(2iLlQe-. + <x.<OJ" A.+x.<•>>-: <x_<OJ' A._x_<•>)}2 

- 4<x.<•>' !J+x_<•>> <JL<•>· !J_x}"'>J'1'. (4.12) 

Assuming Im Q <2 > and Re n <2 > to be quantities of the 
same order we get for the order of magnitude of the 
ratio of the relative magnitudes of the changes in the 
sound velocity and absorption the expression 

~+ roororot 

ro tr rooz + ro2 rot 

( wrot and Wtr are the frequencies of the rotational and 
translational relaxation). We need therefore take into 
account the change in the sound velocity only if w0 

~ wrot· In the opposite case it changes appreciably 
less than the absorption. 

The matrix elements (X~'* A±X~') and 

x~'*B±X~') are for small sound frequencies 
(wo << EA.o) of order E- 2 and for high frequencies of 
order unity. Therefore, at high frequencies the reso
nance is narrower (resonance width ~E2 ) than at low 
ones (width of order unity). 

It follows from (4.12) that a resm1ance change takes 
place if the matrix elements ( x~'* ~±X~') are non
vanishing. However, the operators B± tend to zero as 
B- 00• For high fields, therefore, there will be no 
resonance sound absorption. The effect will be appre
ciable only for such fields that Y1 ~ Yo ~ Wtr· 

In conclusion the authors express their gratitude to 
L. L. Gorelik and V. V. Sinitsyn for useful discussions 
of the work. 
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