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We consider the problem of bound states when the spin of the impurity atom is unity. In that case, 
the "parquet" equation for the state amplitude [I] degenerates into a "chain." As a result. v:e get 
for a number of quantities - the amplitudes themselves, the critical temperature, the specific heat, 
and magnetic characteristics - solutions without unknown constants. This makes it possible to 
analyze the temperature dependence of the main properties. 

IN a previous paper [I] we showed that in the case when 
there are magnetic impurity atoms in a non-magnetic 
metal and when the sign of the exchange interaction be
tween the conduction electrons and the impurity spins 
is antiferromagnetic, bound states of the conduction 
electrons and the impurity spin may occur. This is a 
collective effect and the state formed is much closer to 
a Cooper pair in a superconductor than to a normal bound 
state such as an atom. We obtained in[1 J a "parquet" 
type of equation for the state amplitude and it is diffi
cult to solve this equation completely. The equation was 
solved with logarithmic accuracy and the amplitude was 
determined with an unknown constant factor. Since the 
factor in principle could be equal to zero, the problem 
could not be considered to be finally solved. 

It was already noted in [l] that the amplitude D. ( w) 
as a function of the energy w increases with decreas
ing w when the impurity spin S = %, decreases when 
S 2: %, and is constant when S = 1. The case S = 1 is 
thus a distinct one and the problem arises whether the 
"parquet" here would not turn into a simple chain as 
in the superconductivity case. In fact, in the latter case 
D.= const when w « WD (Debye frequency). We show 
in the following that this is indeed the case for S = 1. 
As a result the equations simplify and one can solve 
them completely. One can also find the thermodynamie 
and magnetic properties of such systems. 

The results are partially the same as those obtained 
by Nagaoka.C 2•3J As we noted already in [l], Nagaoka's 
method has no rigorous foundation and is clearly not 
applicable for S I 1. In his method the case S = 1 is 
not at all a special one. The results obtained by him 
are therefore also for S = 1 open to doubt. We shall 
show below that most of Nagaoka's results are incor
rect. 

1. CALCULATION METHOD. SINGULARITY OF 
SCATTERING AMPLITUDE 

We showed in the Appendix to [I] that in the case 
S = 1 one can use a calculation technique based upon 
the substitution 

S' = a~+ s~~· a~ ( 1) 

without introducing an energy A. >> T for each pseudo
particle corresponding to the operator a(3. This is a 
very valuable circumstance. The Green function of a 

free pseudoparticle has the form 

.'§ BB' = - Sp (T(aB(T)aB+(T'))) = T ~ :? flB' (wn)exp [- iwn (T- T') ), 

-~BB•(Wn)=1/iwn, Wn=nT(2n+1). (2) 

The trace is here taken over all states including the 
"unphysical" ones. We use here the fact that the op
erators a{3 and a~ occur only in the co~binations (1}, 
which give zero when acting upon unphysical states, m 
all physical quantities. The only thing which one must 
do here is to introduce a normalizing factor. 

We assume that we average a physical quantity .. l 
which is a time-ordered product of components of the 
spin of the given atom. We have (see [4 J, Sec. 12) 

Ji = Spp,;y8 {e--"'/T A}/Spphy, {e-.7t'/T}. 

The trace must here be taken only over physical states 
but by virtue of the property (1) of the operators 
mentioned above we may assume that in the numerator 
it is taken over all states. In the denominator it is no 
longer possible to change to a trace over all states. 
However, in order to get rid of the unconnected dia
grams in the evaluation of Ji (see [ 4J ) , it is necessary 
that the trace is taken over a complete set of states. 
Because of this we can evaluate .A by the usual rules 
but afterwards divide the average obtained by the ratio 

Q = SpPhYs {e·.7t'/T)jSp {e-.7t'!T). 

We consider now the average 

<S') = Sp {e-.1t'/T S'}/Sp {e-.7t'/T), 

where the trace is taken over all states. It is clear that 
in the numerator oply physical states take part and 
actinf upon them S2 gives S ( S + 1) = 2. We have 
thus1 

(3) d'') 
=-2-. 

Thus 

./[=(.A) /Q, (4) 

where ( .A) and ( S2 ) which occur in Q are evaluated 
by the usual rules of the diagram technique. When 

1lif we substitute (I) we can verify that when S =I, the quantity 
S2 = N(3 - N), where N = ~13a~a13. 
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FIG. I 

there are no bound states we get 
1 g11H 

Q= 1--sech2--
4. 2T ' 

FIG. 2 

( 5) 

i.e., Q -% when gf.l.H « T and Q - 1 when gf.l.H 
» T. We give the evaluation of Q when there are 
bound states in the Appendix. 

We shall now show similarly to Sec. 33 of C 4 J that at 
some temperature there arises a singularity in one of 
the vertex parts. We consider the case H = 0. We note 
first of all that as the Hamiltonian contains the total 
spin of the system one can classify the states accord
ing to the total spin of the electron plus impurity. When 
I = S + Ya we have aS = S, and when I = S - 1la we get 
aS= -(S + 1). We consider two basic singular dia
grams in the vertex part (Fig. 1). The diagram of Fig. 
1b contains the factor aioksksi = S ( S + 1) + aS. In the 
state I = S - Ya this factor vanishes when S = 1. As to 
the diagram of Fig. 1a it contains a factor S ( S + 1) 
- aS and does not vanish. Because of this we can to 
logarithmic accuracy restrict ourselves when evaluat
ing the vertex part to summing the chain of Fig. 2 in
stead of the "parquet" (see [sJ). 

We are, however, interested in the problem whether 
it is possible to evaluate the vertex part more ac
curately. For this purpose we investigate what happens 
when we make the "nucleus" more complicated in the 
chain of Fig. 2. The first correction consists in the 
substitution illustrated in Fig. 3a but as the diagram of 
Fig. 1 vanishes exactly, the first correction to the 
"nucleus" does not contribute. The next order are the 
diagrams of Figs. 3b, c, d. Giving not a simple, but a 
lengthy estimate we show merely that then we must add 
to aJIN a quantity of order ( ooiN )3 (where 
a = Pomi27T2 , J is the exchange interaction constant, and 
N the density of atoms in the basic metal). The correc
tions which may be of interest to us are ( ooiN )3 

ln ( EF I w), ..• The situation is similar for higher 
order and "non-parquet" diagrams. For example, the 
diagram of Fig. 3e adds to ooiN a quantity of order 
( aJIN )4 ln ( EF I w). Thus, even in the case when we 
wish to find the pole with non-logarithmic accuracy it 
is sufficient for us, for S = 1, to sum the chain of Fig. 
2 with a simple nucleus. 

Putting the total frequency at the ends equal to zero 
we get for each link 

A 1 1 A 1 
- Ta ~ ~ ds . . = - 2Ta ~ ~ ds ·--

w _"A !W - !W- S w>O -A w' + S2 

=-a~ th_l ds = -aln ZyA 
~ 2T s nT ' 

where y = ec = 1.78, A~ EF. Summing the whole chain, 
we get 

N . ' e 

FIG. 3 

(6) 

If J < 0, this expression becomes infinite when 
2yA { N } 

T, = -n-exp - 2al!l . (7) 

This shows, unconditionally, the possibility to form 
bound states for S = 1 and makes it very probable that 
the same is the case when S f 1. 

2. AMPLITUDE OF THE BOUND STATE 

As in[ 1J, we introduce basic functions, but here they 
refer to the temperature-dependent technique: 

Gaa• =- (T('IJa(x)'IJa•+(x')) ), F~ = (T('IJa+(x)aBn +(<') )), 

.<IJw, nm =- (T(a;t~(<)amw(<') )), F~~ = (T('IJa(x)aBn+(,;') )), 

Daa•=- (T('IJa(X)'IJa•(x'))), F~~= (T('IJa+(x)aBn(<'))), 

+ , (!) J i i (I) 
Da.a.' = (T('IJa.+(x)'IJa..+(x) )), ~a.B = N Cfa.a• SwFa.·w(rn<, rn't), 

< ' > (2) J i i (2) 
Xl~B•,nm =- T(anB(<)amB•('t )) , ~a.B = 1\'cr"'"'SB'BFa'B'(r,T.rn<), 

+ + ' (3) J i i (3) (8) 
;zlw, nm = (T(anB+(,;)amB'('t) )/, ~a.B = N Cfa.a'SB'B Fa•B'(rnT, fn't), 

The averaging for the operators a is taken over a 
complete set of states. Expressions s.uch as (8) were 
in[1 J defined only to first order in .6.~~· However, in 
our case this definition is complete because of the de
generacy of the "parquet." The "zero" Green func
tions have the form (right from the start we shall take 
the magnetic field into account, M is the magnetic 
quantum number) 

1 00 1 
G<O>(w, !;)= iw + I'Hcr,- s' ;r;MM = iw + l'gHM (9) 

The interaction Hamiltonian, described in terms of 
.6. is equal to 

(10) 

We have implied that 1/J and a occurring in one of the 
3t'int,2 are not paired in .6. ~~. The Hamiltonian 3t'int, 2 

characterizes scattering effects and does not play an 
important role in thermodynamics. This will be dis
cussed in Sec. 3. However, even in those cases when 
it is important (e.g., for the electrical conductivity) we 
shall to begin with consider the affects arising from 
3t'int,1 because it is there possible to sum completely 
all corrections. 

Thus, taking only 3t'int 1 into account, we get an 
equation for G (cfPJ): ' 

Gao:...(r,r', w) = G~~·(r- r', w) 

"' c<•> (1) ca (0) (2) + LJ aa., (r- ln, "')[~a.,B '" BB, ( -w) ~a,B 
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+ ~G~~,(r-rn,w)[~~~~ ~J~,(-w)~~:>~, 
n 

(11) 

First of all we consider what restrictions are im
posed upon the choice of .6.. It follows from (8) that 

(12) 

Moreover, only those .6.af3 which correspond to the 
formation or destruction of a bound state with total spin 
11 . h' F Ul th <1> 12 are non-vams mg. or .6.af3 ese are .6.1;2-1, 

(1) (1)/ (1) . 
.6.1;2 o, .6.- 112 1, and .6.-112 o· Correspondingly we have 
f A(3), A(3) A(3) A(3) d A(3) w t d 
or '""af3" '""112 1> '""-1;2-1' '""1;2 o' an '""-1/2 o· e no e 

already in [1J that there is in this problem symmetry 
between electrons and holes. It is therefore natural to 

(1) - (3) (1) - (3) 
assume .6.1;2- 1 - C 1.6.1/ 2 1> .6.1; 2 0 - C2.6.112 0 and similarly 

for the other components; C1, C2, ... are here phase 
factors. 

We now choose C1, C2, ... in such a way that in Eq. 
(11) the coefficient of n• vanishes, i.e., 

~~:~~ ~~/_,(- w)~~L + ~~!lo ~:'{- w)~~/ o 

- ~~:: :Y!~ (w)~:1,),- ~.);J :9 :> (w)~~~ o 

(I) (3) (3) (I) 1 = - [~·/,-! ~-'/,-1 + ~'/,! ~-·.,]-. --
tw+rtgH 

(1) (3) (3) (I) 1 
- (~•/,o~-'/,o + ~'/,o~-'lo]--;- = 0, 

!W 

and similarly for the ( -Y2, %) coefficient. 
We make the following choice: 

~\!,~. = ~.\~: = ~:',),, = - ~:·.) -1 = bt, 

~\!,~=~\flo= ~~~/,o =- ~~,> o = bo. 
(13) 

For this choice the coefficient of n• vanishes indeed. 
We shall see below that Eq. (13) also satisfies the 

equation for .6.. 
Equation (11) now becomes the equation for the in

teraction of an electron with a point impurity. The 
Born amplitude corresponds to 

U (w) = {~~~~ :§~"J, (- ()))~~'!~,- ~~~B ~~~' (w)~~·;~,] 
= 2[bo2/iw + b,'/ (iw + gf!Hcr,)]. 

(14) 

We have used here Eqs. (9) and (13). The total scatter
ing amplitude is equal to 

V(w)= U((J)) + U2 (w) ) G(w)ads+ U3 (w) [ ~ G(w)ad'S J+ ... 

Assuming that f G d~ = -iJTa sign w, we find 

V((J))= U(w) • 
1 +inasignwU(w) 

The complete Green function has the form 

G= [iw+rt!lcr,-5- Q-1 :\";V(w))-1 

(15) 

(16) 

(with allowance for the normalization 1/Q). From this 
it is clear that, indeed, 

a ~G(w)ds= -inasignw. 

The Green function which has one end at an impurity 
starts with the usual G but at its end can interact an 
arbitrary number of times with the impurity. One sees 
easily that this gives 

G' = G[1 +ina sign wU(w)]-1. (17) 

In particular, if both ends of G coincide at one and the 
same impurity, we have 

Gi w 0 0 = - ina sign w 
( ' ' ) 1+tnasignwU(w) (18) 

The function F<2> with coordinates in one impurity 
atom is equal to 

F12l(OO )-[ inasignw J (Zlw(O) ( 19) 
aB ' 'hl - 1 . . U( ) ~a,~,·Y ~.B· 

-lJtaSign(t) ' - w aa 1 

From Eq. (18) we find for .6. ~~ 

(2) J "' (2) J - "' (2) ~'1.-1= -NT LJp,_,(O,O,w)+N12T LJF-'f,o(O,O,w), 
w w 

(20) 

Substituting here (19), (13), and (12), assuming .6.<i> to 
a{3 

be real and introducing the definition 

J "' ina sign w [ 1 602 612 \ J-1 
./ = -- T LJ . 1 + 2ina sign w \ -:- + . I , 

N w ttu - gflH , tw zw - grtH · 

J ~ ina sign w [ ( b02 612 )]-' 
B = - -, T L.J . 1 + 2ina sign w 1 --:- + ---=---

1\ ,,, "" \tw iw+g)lH. (21) 

we get 
bo = ·-12-Ab,, b, = .Ab, -)'2Bb0• 

Putting the determinant equal to zero we have 

..4(1 + 2B) = 1. 

(22) 

(23) 

Writing equations similar to (20) for the other com
ponents of .6.~~ or for .6.~~ one can verify that the as-

sumed form of solution (13) satisfies the equations. 
Equation (23) determines Oo and 61 apart from the 
sign. According to (22) only one sign is arbitrary. In 
the case H = 0 we shall have A= B = Y2, Oo = -61/l'i 
and for J < 0 we have 

I I I 1 4na - T 
N ~w+3nab,2 1. 

w>O 

3. BASIC THERMODYNAMIC CHARACTERISTICS 

We first of all consider 61 for H = 0. We get for 
61 = 0 from Eq. (24) the critical temperature 

2Ay { N ) 
Tc= nexp - 2aiJI f' 

(24) 

This expression is the same as (7). On the other hand, 
assuming T - 0, we change from a sum to an integral 
and find 

3nalh2 (0) =A exp {-N /2alll}. (25) 

It follows from ( 2 5) that 
lt Tc 

3na612 (0) =-To=-. (26) 
2y 1,13 

We can write Eq. (24) in the form of an integral, 
using the tanh function to go from imaginary to real w. 
This gives 

2a '_!_I )A wth(w/2T) dw= 1, 
N 0 (J)2 +R2 (27) 

where R denotes 3JTao~. 
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We can write Eq. (24) also in another form. Adding 
and subtracting from the sum over w its value at 
R = 0, we get 

ln Tc= ¢(~+~)-1jl(_!__) (28) 
T 2nT 2 . 2 ' 

where lj! ( x) is the logarithmic derivative of the gamma
function. Near Tc, i.e., for small R, we find from 
this 

R=1.27(Tc-T)-0.2(T,-T) 2 /Tc. (29) 

It is convenient to use Eq. (27) near T = 0. From 
it we find for T « Tc 

n2T2 3n4T4 

R=R(O)- 6R(O) + 40R3 (0)' (30) 

where R(O) isgivenbyEq. (26). 
NagaokaC2 J found the results (7) and (25) to (30) for 

arbitrary S. However, as we noted already earlier, his 
method is open to doubt. The derivation given here 
validates these results only for S = 1. 

Let us now find the critical field. To do this we use 
Eqs. (21) and (23). For 61 = Oo = 0 we get from (21) 

• .f = 2na ~~~ T~---00--=~+a ~~~[In T, 
IN w>0 ro2 +(gJ.tH,) 2 2 N T 

' I I I 1 1 I I I Tc B = 2na - T ~ -=-+a - In--. 
N """"ro 2 N T 

(31) 

Substitution into (23) gives the field He· As T - 0 the 
sum in (31) can be replaced by an integral and we get 

Jl=aJ~Iln~ -. 
N gJ.tHc 

From (23) we have 

Then, as T - 0, the quantity gf..I.Hc - A as follows 

When, on the other hand, T- Tc, clearly He- 0. 
Then 

.A= B-2na ~~ \ (gJ.tH,) 2T,~~ 
IV ro3 

w 

I I I 7 / gJ.tHc \ 2 
=B-2a- -\;(3)1--1. 

IV 8 \ nT, 1 

Substituting this into (23) we find 

(32) 

(33) 

gJ.tH, ::::: n[6/,i; (3) T, (1',- T) ]'". (34) 

Hence, the He ( T) curve does not at all resemble the 
curve of the critical field of a superconductor. 

We now find the thermodynamic potential. We put 
H = 0. Taking the derivative with respect to the inter
action constant, we have 

aQ 

a(I/IV) 

(:JC;nt) 
(l/N)QV . 

(35) 

The normalization 1/Q gives the change from the com
plete to the physical average. The potential n is 
normalized to unit volume. 

If (in (10)) we take only .o/tint 1 into account, we get 
from (35) ' 

Ni ~ cSJ ~ c•l i i - Q T L.J F,.~(O, 0, ·ro1) · T L.J F .. ,~. (0, 0, ro2) cr .. ,..S~~.· 
(1)1 6>2 

Using the definition of A~$, Eq. (19) for F(2 ) and a 
similar formula for F(3 ) we find 

(36) 

an _ 32nalV; 1 ~ 602 + 61• 4l3 12IV; 4RIV; 
aii/NI -- -3--Jl?NfL.J -; + R -- -IJ/NI' =- 3nall/JVI2 

w~ - ' 

We have used here Eq. (24), the value Q =% (see 
Appendix), and the relation Oo = -ch/Y'i. 

We write Eq. (24) in the form 

2aiJ I Nlh(R) = 1. 

From (37) and (38) we have 

(37) 

(38) 

IJ/Nl ' R 

Q _ Q = 1 d (_1_) 4RN, = ~~ i ajT(R.) R dR (39) 
0 ~ \ IJ/IVI 3na 3n ~ aR. I 1' 

where no is the value of n for J = 0. This formula 
can be appreciably simplified if we change from n to 
the energy E = n- Tan/aT. For this purpose we 
write ( 24) symbolically in the form 

1 2yA "" ( R \ n ( 

2all/IVI = ln-;y + n~l an T} . 40) 

Substituting into (39) we find that n - no has the form 
8Ni oo n anRn-1 1 

Q-Qo=~~----. 
3n n~l n + 1 rn 

Hence we get 

8N; a ( R \ ( R )n 
E-Eo= --T2 - --)~nan - . 

3n oT T , \ T 
·n=i 

Differentiating (40) with respect to the temperature we 
find 

E -Eo= -(81V,/ 3n)R. (41) 

Nagaoka[3 J found a similar formula, but with a coeffi
cient 2/ 7T instead of 8/ 3rr. 

Using Eqs. (29) and (30) we can get the asymptotic 
values of n: 

8 4nT2 :t3 T 4 

- :-\;t'H (O)- -('JR (0) -1'5H3 (0)' T < T" 

From (41) or (42) we can find the asymptotic values of 
the specific heat: 

[ T ( T \'l C-Co=N; 3.16--36,-) , T¢J,., 
T,. \ T, . _ 

(43) 
[ T- T, l C-Co=N; 1.08+0,34-T-,- , T,-T<{;_T,. 

The specific heat has thus for T << T c a correction 
proportional to Ni and linear in the temperature. As 
to order of magnitude, (C- Co)/Co ~ CEF/Tc where 
c is the atomic concentration. Because of the factor 
EF/Tc this quantity may turn out to be large. In the 
vicinity of T c we get a jump in the specific heat. In 
actual fact, the expressions obtained are apparently 
inapplicable in the immediate vicinity of T c (see 
below). 

To conclude this section we must dwell upon the 
limits of applicability of the expressions obtained. The 
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limitation will first of all be connected with the fact 
that we took in our calculations only the "pole" part 
of the interaction Hamiltonian .1't'int 1 into account. The 
problem arises of the role of .1t'int,~· This part has the 
same form as when there is no pairing but, drawing the 
diagrams, it is necessary to fit in this time not only the 
functions G and ;§, but also the functions F and fJ) and 
after this it is necessary to subtract the "normal" 
expression. We shall not go into this estimate in detail. 
It turns out that the contribution of these terms is of 
order ( aJ/N )2 ~ ( J/ EF) 2 as compared to the terms 
evaluated. 

The vicinity of Tc occupies a special position. An 
estimate of the region in which we can expect trouble 
can be obtained from the following considerations. 
According to section 1 of the present paper, correc
tions from taking into account diagrams which do not 
occur in the chain correspond to a relative change in 
the interaction constant aJ/N by the amount 

6(a~) 11(a~) ~(_!_). ,\ J'v ' \ Bp • 

This correction may compete with I Tc - T I in the 
form (6). On this ground, the criterion for the applica
bility of the theory is thus of the form 

I Tc-T I~(!....). (44) 
Tc Bp 

4. MAGNETIC PROPERTIES 

The results obtained make it possible to determine 
the magnetic moment of the system in any field. 
Expressed in terms of Green functions, the moment has 
the form 

N; 
(MII)=Me+M;=!JT ~ G(<•l,r,r)cr,+Q-R!JT~I~MM(w)M. (45) 

ro,O'~ w,:u 

One checks easily, using Eq. (16), that the first term 
gives simply the Pauli paramagnetism. To see this we 
subtract the analogous expression with G< 0 ). The re
mainder can immediately be integrated over ~ and this 
gives zero. We are interested in the second term and 
we shall consider it now. 

Taking .1t'int, 1 into account, we get 

;g w = '§~~· + .'§ J~, [~~~,F ~l!·- ~~~,F~3~.]. ( 46) 

Substituting (19) and a similar expression for F(3 ) and 
using (13) we get 

1 ( ilo2 \ 
. '§ H = . 1 + 2nia sign'''-:--·· J 

l-(!) + g~lff t{r) i 

[ I 6o2 ll12 ) J-l , X 1 + 2nia sign w 1 -.- + c-. --:---=-
\ "'' zw+11gH 

Y}_l--l(H)= 5§u(-H), (47) 

.8 1 2niallo2 {[ , . . ( 6o2 612 \ l-1 
8 oo = -:-- + --- 1 + 2ma stgn w -:- + -:---- I 

tw w2 tw tw + f!gH I J 

[ ;ilo2 612 ) l-1) + 1+2niasignw(-.-+. _1-. 
\ l(r) l(r) - ~gH J 

Substituting ( 45) we get 

+ 2rra602 (w -- ig!lll) + 2rruo12<,,]- 1 - [w(w + igvH) (48) 
+ 2na6o2 (w + ig!lH) + 2:rta1\12w]-1}. 

Bearing in mind that Q also depends on H it is clear 
that this is a very complicated expression. We con
sider limiting cases. 

In the case T = 0 we can in Eq. (18) replace the sum 
by an integral 

T ~--1 ~ dw. 
w 2n 

If J..LH << 1Tetcl, the corrections to 6 are of order 
( J..LgH/ 7Tet62 ) 2 and can be neglected, i.e., the values of 
6~ and 6~ are taken for H = 0. It is not possible to 
expand immediately in terms of H in (48) as the ex
pressions inside the square brackets have a pole at the 
points w ~ iJ..LgH and the path around these poles gives 
the main contribution to the moment. Integrating and 
limiting ourselves all the time to terms of zeroth and 
first order and also taking into account that for this 
case Q = % (see the Appendix), we get 

M· = ~N-a 8N;(gf!)'H( ln 9na1\12 + 1 ). (49 ) 
' 7 'b f! + 21 n2all12 {{f!H 2 

The other interesting limiting case is that of a weak 
field gJ..LH « T. We can then expand in (48) in terms of 
gJ..LH and we can again take for 6 its value for zero 
field. The normalization is in that case always equal 
to %. Hence we get 

111; =' _16N;(gfl:~:!! T ~ ~+_•ta1\1l)' .. . (50) 
3 w>0w2 (w + :lJtail12 ) 2 

As T - Tc the quantity 61- 0 and we get 

2 N 1(gf!)2H 
M;=------. 

3 T 
(51) 

As T - 0 we must note that the summation in ( 48) 
goes over w ~ T. We can thus assume that w << 1Tet6f. 
We get then 

(52) 

It is interesting that when bound complexes are formed 
the Curie law is retained although the coefficient turns 
out to be nine times less. Such a conclusion was quali
tatively obtained in [BJ. 

Nagaoka [3 J also obtained a Curie law at low temper
ature but with an incorrect coefficient ( Ya instead of 
%7 for S = 1 ). We must also note that at T = Tc the 
moment smoothly reaches its normal value without any 
correction whatever to the Kondo effect. Using the 
technique discussed here one can check that above the 
critical temperature the moment is expressed by Eq . 
(51) with small corrections of order J/ EF· 

It is very complicated to find the complete tempera
ture dependence of the magnetic susceptibility in ex
plicit form. However, one can obtain an interpolation 
formula. Using the fact that the main role in (50) is in 
all cases played by w "'=' 11T we replace in the brackets 
in the sum w by 11T. As a result we get 

__ M1 _ 2N1(gf!)'(nT+R/3\' 
X• - H - 3T nT + R ) . 

(53) 

Knowing the function R ( T), we can find x ( T). 
We must, however, bear in mind that we have here 

considered only the case S = 1 and that for other cases 
the situation may be different. We must bear this in 
mind when we speak about comparing the results with 
experimental data. 
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5. THE PROBLEM OF THE ELECTRICAL 
RESISTIVITY 

NagaokaC2J found an expression for the electrical 
resistivity at low temperatures. A similar expression 
can also be obtained using the Green function (16). 
However, all the same, the expression obtained in[2J 
gives, apparently, only qualitatively the behavior of the 
resistivity. The point is that it is obtained without 
taking into account the "non-pole" part 3fint,2 of the 
interaction which in this case plays an essential role. 
This is clear from the fact that the "pole" part of the 
scattering probability Im NiVR( w), where yR is the 
retarded analogue of (15), vanishes at T = Tc while the 
part connected with 3t'int,2 has clearly the same order 
of magnitude as Im NiVR( w) for T = 0. 

The complete temperature dependence of the re
sistivity can be described as follows. Above Tc the 
resistivity p increases because of the Kondo effect 
when the temperature decreases and is expressed by 
the formula obtained inC 7J. In the vicinity of Tc this 
formula no longer applies as the difference 
1 - 2 IJ/N I a ln ( A/Tc) which occurs in the denomina
tor is of order IJ/N I a and the next orders of magni
tude must be taken into account. 

As to order of magnitude p ( T c) must be the same 
as for resonance scattering, i.e., p ~ em/ ae2 
~ c/ e2po, where c is the atomic concentration of the 
impurity. When the temperature is lowered the lower 
limit of the logarithmic integrals must remain of 
order T c as the temperature cut-off is replaced by a 
cut-off because of the appearance of 6. On the other 
hand, in this region the pole part appears which not too 
close to Tc is of the same order of magnitude. The 
temperature dependence of the non-pole part of the 
resistivity will for T << Tc be connected primarily 
with the change in 6, i.e., it will have the relative 
order ( T/ JTa62 )2. The temperature correction from the 
pole part has the same form. Hence it follows that for 
T « Tc 

p = p(0)[1-q(TlT,)']. (54) 

where p ( 0) ~ em/ ae2, q ~ 1. This formula is very 
similar to the one obtained when there is only one, 
"pole," part but, of course, the numerical values of 
the coefficients must be different. This fact must be 
borne in mind when comparison is made with experi
ments.2> 

Unfortunately, the advantages enjoyed by the case 
S = 1 does not at all manifest itself in calculating the 
resistivity as in the non-pole part states with total 
spin S = 1'2 take part and for those the "parquet" 
equation remains. 

The most important result of the present paper is 
the fact that in any case for S = 1 bound states indeed 
and are energetically advantageous. For other values 
of the spin this has, of course, not been shown rigor
ously, but it is very probable. 

2 >Preliminary estimates show that the non-pole part forT~ Tc is at 
most of order of magnitude (T/Tc)2 • Because of this p(O) is forT= 0 
given by only the pole part. From (15), (16), and (14) we get p(O) = 
167rc/3(ze2 p0 ), where z is the number of electrons per atom of the basic 
metal. (Added in proof, November 14, 1967). 

On the other hand, in the work of Suhl and WongC 7J 
and Maleev [aJ, who start from the absence of a bound 
state, the case S = 1 is not at all a special one. One 
can conclude from this that the scattering amplitude 
without singularities corresponding to the absence of 
a bound state can be obtained even in the case where it 
surely can exist. From energetic considerations one 
must prefer a bound state. 

The experimental data on the temperature depend
ence of the resistivity also favor this. Although both 
theories predict at T = 0 an approach to a finite value 
of the same order of magnitude, in the case of bound 
states this approach follows Eq. (54) while if they are 
absent the temperature correction is of order 
1/ln2(A/T). Daybell and Steyert's experimentsCsJ 
agree well with Eq. (54). 

APPENDIX 

We evaluate the magnitude of the normalization Q 
when there are bound states. From Eq. (3), the foot
note referring to it and the definition (8) we have 

Q = '12\Sz) = •;, <R (3- R)) 

= 23 T L .'l/~~(w)eiw<- ~ [ T ~ '9 ~B(w)eiw< r 
"' ''' (A1) 

1 '\' ce . ~ '"' . 1 ~ + ~ +zT' '"-'·'~~.(w,)e-'"''' LJ ·"'~·~(w,)'"'•'-;,:-TZ LJ ,qzJ~~.(w 1 ).!JXi~~.(w2), 
w1 w< (J)J (,,, 

where T ~ + 0. 
We found the function :rJ earlier. Similarly we can 

determine also the functions ffJ and ,q)+. To do this it 
is necessary to express them in terms of the F(il as 
was done in section 4 for :5 and then to use Eq~ (19) 
for F( 2 > and similar formulae for the other Fn>. It 
turns out that all the ,qz){3{3' vanish. When substituting 
into (A1) we take into account the rule for taking sums 
with factors eiwT (seeC4J): 

T ~ ;§ (w)eiw< = 2T L Rc ?J (w)+ 1/,signT. 
w>O 

As a result (see (47)) we get (when gJ-.LH « JTa62) 

T "" ;!} MM (w) eiw< = 2T"" !J,gHM w +nab,' 
L.J LJ w'+( aHM)' + 3 6' 

uJ (v>o lln w na 1 

1 1 ( 1 11gl!M ) 
+-·sign-r=- .-th--+sign,; . 2 2 . 3 21' ' 

since only w ~ J-.LgH or w ~ T are important. 
Substituting these results into (A1) we get 

3 1 !J-gH 
Q=-+-th2--

;, 36 2T 
(A2) 

When J-.LgH « T, we have Q =%and also for 6 = 0, 
while when J-.LgH » T we shall have Q = 'jig, It thus 
turns out that for H = 0 the quantity Q = % for all 
temperatures. In the vicinity of the critical tempera
ture ( 1T0!0 2 « T) we can use Eq. (5). 

There remains the limiting case J.LgH >> T, JTa6 2 • It 
is clear that then 6 is not at all important and Q = 1. 
The expression for Q is more complicated in the inter
mediate regions, in particular when J-.LgH ~ JTa62 2: N 
However, in that case most interest centers around the 
critical field and this is evaluated without normaliza
tion (see Sec. 3). 
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