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Using a method which employs an expansion of the molecular distribution function in a series in 
generalized orthogonal polynomials, we obtain relaxation equations and relations transfer for a 
simple polyatomic gas in a 17-moment approximation. We find expressions for the slipping veloc
ity and the temperature jump in a polyatomic gas near a solid plane wall. The results obtained are 
valid both in the case of an "easy" and in the case of a "slow" exchange of energy between the 
translational and the internal degrees of freedom of the molecules. 

1. INTRODUCTION 

THE development of a formal kinetic theory of poly
atomic gases [l - 3 ] is usually based upon a generalized 
Chapman-Enskog method which is widely used in the 
theory of a monatomic gas.C4J In the framework of such 
a generalization one explains the occurrence of second 
(volume) viscosity, and also of an additional contribu
tion to the thermal conductivity connected with taking 
into account the internal degrees of freedom of the 
molecules (modified Eucken correction). 

It is well known that the Chapman-Enskog method is 
not able to describe processes which involve essen
tially relaxation and as a result of which one estab
lishes time-independent linear relations between fluxes 
and the gradients of thermodynamic quantities. This 
deficiency becomes particularly marked in the case of 
a polyatomic gas when apart from the characteristic 
relaxation time T describing the establishment of 
equilibrium with respect to the translational degrees of 
freedom there occurs in the problem yet another 
parameter: the characteristic time TE of exchange of 
energy between the translational and internal degrees 
of freedom. In fact, a consistent generalization of the 
Chapman-Enskog method is possible only in the case 
when TE ~ T and the appearance in the pressure tensor 
of a term with the volume viscosity which is propor
tional to the divergence of the velocity corresponds just 
to this case of so-called "easy" energy exchangePJ 
When the exchange is "slow" ( TE >> T), when TE may 
be of the same order of magnitude as the characteristic 
time TL of the problem, the linear relation by means 
of which one introduces the volume viscosity coefficient 
loses its validity and the corresponding term in the 
pressure tensor can be found only from the relaxation 
equations for the translational and internal energies of 
the gas. 

Below we propose an alternative approach to a 
theory of transfer phenomena in a polyatomic gas which 
is based upon the use of an expansion of distribution 
functions in series in generalized orthogonal polynom
ials. The character of the expansion and the kind of 
polynomials are uniquely determined by the choice of 
the weight function (zeroth approximation) of a local 
single -temperature Maxwell-Boltzmann distribution in 
the velocities and the discrete internal states of the 
molecules. The relaxation equations and the transfer 
relations turn out to be in that case the natural conse
quences of the moment equations obtained from the 

kinetic equations. The results obtained are valid both 
in the case of ''easy" and in the case of ''slow" energy 
exchange between the translational and internal degrees 
of freedom of the molecules under the condition that 
the deviations of the energies corresponding to them 
from their equilibrium values are small. 

The method used in this paper is essentially a 
generalization of Grad's method [sJ for the case of a 
polyatomic gas. The 17 -moment equations obtained 
here can find an application, as could the 13-moment 
equations of Grad's, in problems about the dispersion 
of sound and the structure of a weak shock wave in a 
polyatomic gas, for the analysis of a flow with slipping, 
and so on. As an example we consider in this paper the 
derivation of boundary conditions (slipping velocity and 
temperature jump) for a polyatomic gas at a non-ab
sorbing plane surface. 

2. EXPANSION OF THE DISTRIBUTION FUNCTION 
AND MOMENT EQUATIONS 

We shall describe the polyatomic gas through a 
distribution function fi = f ( v, Ei, r, t) where v is the 
velocity of a molecule, and Ei the energy of the i-th 
quantum state. If apart from other degrees of freedom 
in the gas the rotational degrees of freedom are ex
cited, the assumption that fi depends only on Ei is, 
strictly speaking, connected with the assumption that 
the density matrix for the internal states is independent 
of the orientation of the angular momentum vector M 
of the molecule. A paper by Kagan and Afanas'ev [6 J 
was the first to note the necessity to take into account 
the dependence of the distribution function on the 
orientation of M and v. They also made numerical 
estimates of the influence of this factor on the kinetic 
coefficients for the sphero-cylinder model. In[?,sJ the 
results of [6 ] were taken into account for calculating 
transfer coefficients for a model of "rough" and 
''charged" spheres. Bearing in mind that taking this 
into account (when there are no external forces) leads 
only to small corrections in the transfer coefficients 
we shall consider the problem in the usual formulation, 
used inl1 ' 2J. 

We define the macroscopic parameters of the gas: 
the density n, the velocity u and the temperature T 
by means of the relations 

(1) 
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nu = ~ ~ vf; dv = ~ ~ vf/OI dv, 

nE(T)= ~ ~ (1/ 2mc2 +E1)f1dv= ~ j (1/ 2mc2 +E1)/;<0ldv. 

Here c = v - u, m is the molecular mass. The quan
tities (1) are given in the same way both by fi and by 
the "zeroth approximation" function f\01 for which we 
choose the local Maxwell-Boltzmann distribution of. the 
form 

j;(OI = n(m I 2nkT)'f,Q-1 exp [- (1/2mc2 + E 1) I k1'], 

Q= ~exp(-E;/kT). (2) 

In addition to (1) we introduce definitions for the 
average energies and heat currents corresponding to 
the translational and internal degrees of freedom of 
the molecules: 

qt'= ~ )~c'cf1 dv, qint= ~ ~ E;cf1 dv. (3) 
i 2 

In accordance with (1) 

nEt'+ nEint= nE(T) = nE01'+ nE0int, (4) 

where 
Ec1'= 'lzkT, Eoint= (e)kT, 

(e)= Q-1 ~ e1 exp(- e;), e; = E;/kT, 

We define also the total pressure tensor 

P,, = m ~ ~ c,c,f; dv = Pb" + :rr,, (5) 

where 

P = 'f3nE11, n, = m ~ ~ (c,c,- 1/ 3c26")/; dv. (6) 
i 

We note that in contradistinction to the monatomic gas 
P in our case is not the same as the usual statistical 
pressure p = % nE~r, since Etr I E~r. The distribu
tion function fi can be expanded in a series in general
ized orthogonal polynomials. In [9 J it was shown that 
when we use an expansion in the molecular velocity 
space the form of the polynomials is completely deter
mined by the choice of the "zeroth approximation" 
distribution function. If we choose as the weight function 
a local Maxwell distribution the Hermite tensor poly
nomials used by Grad,csJ occur automatically in the ex-· 
pansion. When there is an additional Boltzmann factor 
Q-1 exp ( -Ei) in ff 01 it is convenient to write the ex
pansion for fi as a double series in the irreducible 
Hermite polynomials Hmr n r ( 0 9f[1oJ, where 

1· • • m+n t: ~ = c v ( m/kT) and the polynomials P a)( Ei) defined 
as 11 -

p(O)= 1, fJ(tl = e;- (e), 

s=O 

( ( ... ) denotes averaging over the Boltzmann distribu
tion). The corresponding expansion has the form 

1 >The polynomials (7) are easily obtained as the result of orthogon
alization of I, €i, €f, ... , successively, with the weight function 
Q-1 exp( -€i). The first two polynomials of (7) were (together with 
Sonine polynomials) used in [ 1 1 in the generalization of the Chapman
Enskog method (see also [ 1 1 1 ). 

_ (OJ )', . (2m+1)!(m+n)! amnq Hmn 
f,-f, ~ n!(m!)'(2m+2n+1)! r, ... rm+n '•··'m+n(~)P<ql(e;). 

m.n,q=O 

The expansion coefficients amnq are, in agreement 
with the orthogonality conditions for the polynomials, 
determined from the relations 

Multiplying the kinetic eqy.ation for the polyatomic 
gas [2J by Hmn ( 0 ptq)( Ei), integrating over r1 ... rm+n 

(8) 

(9) 

the velocities and summing over i, we are led to an 
infinite set of differential equations for the coefficients 
amnq and the parameters n, u, and T. 

We shall look for a solution of the kinetic equation, 
limiting ourselves to a finite number of terms in the 
series (8) in such a way that the corresponding coef
ficients amnq in (9) can be expressed in terms of the 
quantities (3) and (5) which have a clear physical mean
ing. To do this we retain in the expansion terms con
taining the products of the polynomials Hmn by p<o> 
= 1, for m, n = 0, 1, and m = 2, n = 0 and alsr the 
products of Hmn by p<1> = Ei- ( q) for m = 0, 1 and 
n = 0. The distribution function in the approximation 
considered has the form 

where 

(OJ { 1/'iEtr[ 3k l 
/;=Ji i+3kT (£'- 3)+ cint(e;-(e)) J 

m :rtrs I 1 ) 1 ( m )'h + 2kT_p_\£,£,-3£'1l,, +5;;-\~cr qlrs(£'- 5> 

k tm)'" 1 + -. I- qints(e;-(e))f, 
pcmt\ kT 

p = mn, cint= (8E0intl fJT)v = k[(e2)- (e>"]. 

(10) 

In using (10) the parameters determining the state 
of the gas are the quantities p, u, T, .a.Etr = Etr - E~r, 
"rs' qtr and qint. (The approximation corresponding to 
them can be called the "17 -moment approximation".) 
The closed system of equations for these quantities can 
be written in the form 

dp 8u1 dur 8Prs 
-+p-=0, p-dt +-=0, 
dt 8xl ax, 

dT OUr Bql ( 
ncv-+P,,-+-=0; 11) 

dt ax, OX! 
df1Eir cint OUr cintf}qltr 3 k 8qlint kT ( 12) 

n ~-+ -P,.-+ -------=-ROW 
dt Cv OX, Cv OXz 2 Cv OX1 2 ' 

dn,, { 8u, } 8u, 4 { Bqr tr} zoo ( ) 
dt + 2 :rtrl ax, + :rtrs OX! + 5 ax. ' + 2Pe,, = kTR" ' 13 

dqr1' 7 tr au, 2 tr au, 7 tr OUz 7 k 8T 
a:t+5q. ax, +5q, OXr +-gqr OXz +2-;;;:rtrs ax, 

kT 8n,, 5 kTn 8f1Etr 5!1E1' 8nkT 
+--+~--+~~ --

m 8x, 3 m Bxr 3 m 8x, 
5 f1Eir8P,, n,, 8P,1 5 k 8T m ( kT ''f, 110 

-3---;;;ax_;--p 8x1 +2-;;,:P ox, =2-\-;;,:-) R, ' (14) 

dq,int + intau, + . t OUz cint aT 
-- q, - q,m-+-n,.-

dt ax, OX! m ax, 
kTn 8/'iEint f1Ein18nkT f1Eint 8Prs 
+-~-+-----~ 

m 8x, m 8x, m ox, 

cint 8T ( kT )'!, 101 
+-P-=m- R,. 

m axr m 
(15) 
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Here cy = %k + cint and we have used the notation 

d I dt = a I at + u1 a I fJx1, {A,} = 1/2. (Ars + A,,) 
- 1/a6rsAu, e,, = {au, I ax,}. 

On the right-hand sides of Eqs. (12) to (15) occur 
the "moments with respect to the collision integral" 

mnq - ""' f (Hmn ("')P<ql(e) Rr1 ••• rm+n- .L.J J r 1 ••• rm+n ~ k 
ijkl 

(16) 

Here I~l ( g - g ', x, cp) us the differential scattering 
cross ~~ction for the process (g- g'; ij- kl), where 
g is the relative velocity of the colliding particles (the 
prime refers to values determined after the collision); 
i, j and k, l are the quantum states of the molecules 
before and after the collision, respectively, X and cp 
are the polar and azimuthal angles describing the ori
entation of g' relative to g. 

After substituting the expansion (10) for fi into (16) 
the quantities Rmnq can be expressed in terms of the 
appropriate moments. As in the case of the monatomic 
gas it is convenient for the evaluation of the Rmnq 
from the variables v and v1 to the variables G and g 
in the center of mass system of the colliding molecules. 
Since the 1l\l are independent of G the integration over 
G can be d~ne explicitly. A number of new terms ap
pear since g' f g. The approximation chosen by us de
scribes a state of the gas which does not deviate much 
from the equilibrium state so that the terms quadratic 
in the moments can be neglected in the expressions for 
the Rmnq compared with the linear terms. The final 
results can be written in the form 

ROJO = -"/a (cv / cint) n'QEfi.Elr I kT, ( 1 7) 

R;':= -"f,n2R.nnrs/p, (18) 

( !!!___ ,)•;, RHO= - ~- n' ( Q + 25 QE) q,tr + 10 _!:_ n'QE q/nt, (19) 
\ m ' 15 \ ~ 24 p 3 cmt p 

( kT )''• 101 2 q,tr 8 ( k \ q, int ( ) 
, - R, = -n2~h- --n2 \· r:Jn+--:-QE 1-. 20 
\ m 3 p 3 cmt , p 

Here p = nkT and we have introduced the quantities 

QE= (kT/nm)'h L ~ dQ(fl.e)', 

Q" = (kT /rrm) •;, ] ~ dQ [y2(y2- y'2 cos'x)- 1/e(fl.e) 2], 

(ci01jk)fJv= (kT/rrm)'f, ]'~ dQ {(e;- (e))[(e;- ei)Y2 

-(e.-el)yy'cosx]}, (21) 

where 

y = (m I 4kT)'"g, 

and LJdn indicates an integral operator acting upon 
the function F as follows 

00 2Jl 1C 

~ ~ dQF = Q-2 ~ ~ dy ~ d<p ~ dx 
ijkl 0 0 0 

X [Fy3 exp ( -y2 - e; - Bj) /;;'1 sin )(]. 

3. RELAXATION EQUATIONS AND TRANSFER 
RELATIONS 

(22) 

It is convenient to rewrite the right-hand sides of 
Eqs. (11) to (15) introducing the appropriate relaxation 
times. The meaning of those is elucidated when we 

consider the behavior of the gas in the particular case 
when p, u, and T are constant and the other moments 
depend solely on the time. Equations (11) to (15) reduce 
then to the following ones: 

i5/I.E1'/ iJt = - (2cv / 3k)1;"-l,fl.£1~ 

iJn,, I &t = -1:" - 1rr,,,, 

iJql:tf iJt = -'/,[-r"-1 + '/e(cint; khE-1]qlr+ 'fs-cE-1qin~ , 

iJqintj 8t = -[-rv-1 + If2TE-1]qint+ If,(cint; k)cE-tqt~ (23) 

Here 

(24) 

Writing Prs from (5) in the form 

(25) 

we note that the off-diagonal components of the pres
sure tensor and the non-equilibrium corrections to the 
diagonal terms decrease exponentially with time with 
decrements T ry1 and (2cy /3k) TE, respectively. In the 
case of a slow exchange of energy TE >> Tr1, i.e., 7Trs 
is damped appreciably faster than .c.Etr. The relaxa
tion of the heat current q = qtr + qmt is in the general 
case described by a linear combination of exponents 
with damping decrements determined by the values of 
the characteristic equat~on of the system of coupled 
equations for qtr and qmt. For a slow energy exchange 
the cross terms on the right-hand sides of the equations 
for qtr and qint can be neglected and the relaxation of 
the heat current q is described by the expression 

q (l) ~ ql'(O) exp [ - 2/3 (t /'t")] + qi01 (0) exp [ - 2/:J (YJ I pD) (t h")], 

where we have used the relation [z:J T i) = ( qj pD) T q1 
for TE >> Tq. (Here '7 and D are the viscosity and 
self -diffusion coefficients of the gas.) 

We consider now the case of slowly changing gas 
flows. When the conditions 

lc<S,' L, (26) 

are satisfied, where L and TL are characteristic 
linear and time scales for the change in the macro
scopic parameters of the gas, A and T the mean free 
path and mean free flight time of the molecules, one 
can on the left-hand sides of Eqs. (13) to (15) neglect 
the derivatives d7Trs/dt, dqtr/dt, dqmt/dt and the 
non -linear terms, as T ~ Tq ~ TD and A ~ (kT/m) 112 TI). 
In the case of easy energy exchange we have additionally 
TE ~ Tq and this enables us to neglect also in Eq. (12) 
the derivative dt. tr / dt. As a result we are led to the 
relations 

(cint/cv)pdivu+ (cintfcv) divqt'- 3/,(k/c,~) divqint 
= - 2/3(cv / k)-rE- 1nfi.E1~ 

2pe,. + '/5{iJq,1'/ iJx,} = -T"-1rr,.,,, 

''/2 (/c I m)p iJT I ox,+ 'la(P I m) iJ!I.E1'! ox,+ (kT I m) orr,,/ ax, 
= -'/a['tn-1 + '/e(cintj k}TE-']q,t'+ 'ls-rE-1q,)n~ 

(cintl m)p iJT I ax,+ (pI m)ofi.E1'/ ox,. 
= -(-rv-1 + lj2-rE-1)qrint+ lh(cint; k}-cE-1q,t'. 

(27) 

(28) 

(29) 

(30) 

In the left-hand sides of (27) to (30) we have left the 
terms with derivatives of qtr, qint, 1frs' and t.Etr. 
Some of those may have non-vanishing values, e.g., 
when we consider inhomogeneous problems (different 
longitudinal and transverse scales for changes in the 
macroscopic quantities). In most case, however, these 
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terms can be dropped and Eqs. (27) to (30) lead to the 
usual linear transfer relations: 

'fanAE1' = -\; div u, q = -'AgradT (31) 

with viscosity and thermal conductivity coefficients 

'1 = p-r~, \; = (clinlk / cv')PTE, A= 'A''+ t.int, 

t.trm _ 15 {' a cint ( 5 ) / [ a ( 5 cint )l} 
-11----;;k 1-3T --z-llt 1+2 :JT+fl ;" , 

l.i~':" = ~cint{ 1 + -i ( ~- fl) / [ 1 + %-( ~ c:t + fl \1] } , (3 2) 

where 

The expressions obtained are the same as the results 
of [zJ. 

The equations (28) to (30) and the expressions for 
the viscosity coefficient TJ and the thermal conductivity 
A. following from them retain their meaning also in the 
case of slow exchange of energy between the transla
tional and internal degrees of freedom. In particular, 
when a- 0 

'A = ( ~ k + pD cint) ~, 
,4 11 m 

(33) 

which corresponds to the introduction of the modified 
Eucken correction inC4J. However, the volume viscosity 
coefficient ?; can no longer be introduced simply, as 
when TE >> TTJ it is necessary to use apart from Eq. 
(27) the more complete relaxation Eq. (12). Dropping 
in it the derivatives of qtr and qint and neglecting 
non-linear terms, we have 

diJ.Eirj dt + (cinlj cv)kT divu = - 2/ 3 (cv / k)-rE-1l>Eir. (34) 

4. TWO-TEMPERATURE RELAXATION 

In the case when inelastic collisions in the gas are 
relatively rare, the scheme, described in the foregoing, 
of expansion in generalized polynomials can easily be 
developed by choosing the zeroth approximation to fi 
in the form of a product of two equilibrium distributions 
in the velocities and the internal states of the mole
cules, determined respectively at the temperatures 
Ttr and Tint, i.e., 

(O) ( m )''' , 1 ( mc2 E; \ 
j, = n \ .2nkTtr Q-' ( rm) exp \- 2kftr- kTint}. (35) 

It is then natural to assume that not only the total 
energy E of the gas, but also separately each of its 
constituents Etr and Eint are determined in the same 
way both through fi and through ft> by virtue of which 

(36) 

In such an approach the quantities n, u, Ttr, and Tint 
w)lich occur in the weight function and 1Trs' qtr and 
qmt which appear in the expansion serve as the mo
ments which are of interest to us. The moment equa
tions corresponding to them lead when conditions (26) 
are satisfied to linear relations for 1Trs and q. By 
virtue of condition (36), however, the pressure tensor 
is defined as Prs = nkTtrOrs + 1Trs and does not con
tain explicitly a term with the volume viscosity. In
stead of this the complete set of equations includes in 
it relaxation equations for Ttr and Tint. It is useful 
to establish a connection between these equations and 

Eq. (34) obtained in the previous section. 
As we are only interested in the relaxation of the 

energy, we can for the sake of simplicity put 1Trs' qtr, 
and qmt equal to zero. In that case, the expansion for 
fi is the same as f~o>. Expanding (35) in a series in the 

small differences (1Ttr - T )/T and (Tint - T )/T 
which corresponds to the assumption used earlier that 
the deviations of the translational and internal energies 
from their equilibrium values at a temperature T are 
small, and neglecting quadratic terms, we find 

j, = n(m j 2nkT)'1oQ-1 (T) exp [- ( 1/,mc2 + E;) / kT] ( 37) 
X[1 + 1 /2 (~2 - 3) (Ttr_ T) / T + (e,- (e)) (Tint_ T) / T], 

One notes easily that the expansions (37) and (10) are 
the same, if we put 

IJ.Etr= 3j,k(Ttr_ T), A£int= -A£1r= cini(Tint_ T). (38) 

If we use (38) and Eqs. (11) for T Eq. (34) transforms 
then to 

(39) 

Equation (39) is the same as the usual relaxation equa
tion for the internal energy of a gas which is used in 
the theory of two-temperature relaxation.C12>13J 

5. SLIPPING VELOCITY AND TEMPERATURE JUMP 
AT A WALL 

We shall use the results obtained earlier to derive 
the boundary conditions in the case of a plane flow of 
a polyatomic gas near a surface x = 0 (the x-axis is 
directed along the external normal to the surface, the 
y-axis in the direction of the flow). When describing 
the state of the gas in the immediate vicinity of the wall 
it is convenient to introduce distribution functions 
fi(v, Ei, r, t) and fi:(v, Ei, r, t) corresponding to in
cident and reflected molecules in such a way that 

f(v, E;, r, t) = j+(v, E;, r, t) + j-(v, E;, r, t), 
j+(v, E;, r, t) = 0 when vx < 0, j-(v, E;, r, t) = 0 when vx > 0. 

As kinetic boundary condition we take that part of 
the incident molecules is reflected specularly (without 
a change in the distribution in the internal states of 
the molecules) and that the other part is initially ad
sorbed by the wall and afterwards emitted with a 
Maxwell-Boltzmann distribution with the temperature 
To of the wall, i.e., 

j+(vx,Vy,V,E;) = (1-a)j-(-vx,Vy,v,,E;) (40) 
+ x exp [ -( 1/,mv2 + E;) I kT0 ]. 

The coefficients K and a are connected with the 
condition that there is no build-up of molecules at the 
wall, i.e., with the condition ux = 0. In a rigorous ap
proach we should give each of them an index i as the 
reflexion coefficients can, in principle, depend on the 
internal states of the molecules which interact with the 
surface. However, it then turns out to be practically 
impossible to express the macroscopic boundary condi
tions in terms of the usual parameters of the polyatomic 
gas which are obtained by averaging over all states of 
the molecules. Assuming thus for the sake of sim
plicity that a and K are independent of i, multiplying 
(40) by Vx and using the expansion (10) for fi we are 
after integrating over v and summing over i led to the 
condition 



THE KINETIC THEORY OF A POLYATOMIC GAS 1191 

( m )'/, T'l• ( 1 !!.Eir 1txx ) 

x= an\.z;k To• \.1 +"3k"f+2p . 

The relations for the slipping velocity and the tem
perature jump are found from the condition that the 
tangential component of the momentum current and the 
normal component of the energy current vanish at the 
wall. Multiplying (40) successively by Cxcy and 
Y2mc2 + Ei and using (10) we have after the appropri
ate integration and summation 

2- a 1txy 1 ( 2m \ 'h qytr ( 2m )'{, ( 1 M'tr 1txx) 

. a-p+ 5\nki) -p+\~r Uy\ 1+3-kT+Tp =O, 

2- a 1 nm ''" qx 1 !!.Etr nxx ( 1 !!.E1r nxx ) -·-,- I -+--+-+,1+--+-
a \ 8kT I p 6 kl' 4p \ 3 leT 2p 

x,[1- T0 +~ E0int(T)-Eoin1(1'0)_ mu,ZJ=o. (4l) 
T 2 leT 4k1' 

Substituting into ( 41) the relations (31) for TTxy, TTxx, 
D.Etr, and qx, and also q~r = -A.tr aT/ay and neglect
ing terms quadratic in the gradients we are led to the 
formulae 

Uy I x=O = 2- a nv .2! auy + ~ t.lr aT' ( 42) 
a 4 p ax 5 p ay 

( 1 + cinh\ !!.T I x=O = 2- a ,_')._aT+ (~ + •;, TJ)_ auy . ( 43) 
\. 2k I a nlev ax 4nle 8y 

Here D.T = T -To, v =...; (8kT/rrm). When changing to 
(43) we used the expansion 

Eoini(J')= Eoini(To) + (!!oint J !!.T + .. , = Eoin\To) + cini().T + ... 
aT 'To 

The first term in (42) has the same form as in the case 
of a monatomic gas. It is interesting, however, that the 
second term describing the "thermal slip" depends 
solely on the translational part of the heat conductivity, 
Atr. 

Bearing in mind that cint = cy - %k, and intro
ducing y = cp/cy the expression (43) for the tempera
ture jump can be transformed to 

!!.Tix=o= 2-a_~_'A_~~+.3+•/a1]_auy. (44) 
a v+1 ncvvax ncv(y+1) ay 

The first term of this expression is the same as the 
result given in Kennard's book,l14J which was obtained 
from elementary considerations assuming that the flow 
of molecules of a polyatomic gas incident upon a wall 
carries along an energy 

E-=- - ·-kT+cmtT +-t.-nv (4 3 . . ) 1 aT 
4 3 2 2 ax ' 

where the factor % is introduced to take into account 
the correlation between the translational energy and 
the molecular velocity. 

The author is grateful to Yu. Kagan and Yu. L. 
Klimontovich for valuable comments and to M. Ya. 
Alievski1 for useful discussions of the paper. 
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