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A theory of second-order absorption involving the excitation of two quasiparticles in a strong electro­
magnetic field has been developed. The dependence of the susceptibility of such a process on the elec­
tric field has been obtained. Such a dependence appears in fields which are, generally speaking, much 
weaker than atomic fields. The characteristic critical field is estimated for different cases: excitation 
of two phonons, of a Frenkel exciton and an intramolecular phonon, of a Wannier-Mott exciton and of 
optical and acoustic phonons. 

1. INTRODUCTION 

THE most frequently occurring process of absorption 
of light in a medium can be described in the following 
manner. A photon excites an atom, a molecule or some 
quasiparticle in a solid (electron, exciton, phonon etc.), 
and this quasiparticle in its turn distributes its energy 
over the numerous degrees of freedom of a solid (for 
example, excites phonons with different propagation 
vectors), and this leads to heating of the medium. At 
the same time it follows from the conservation laws that 
the photon energy .li w coincides (within the limits of the 
width of the absorption line) with the energy of the quasi­
particle 

hw = hw(kj), (1) 

while the propagation vector of the photon q coincides 
with the propagation vector of the quasiparticle 

q=k. (2) 

If we take into account the circumstance that the propa­
gation vector of the photon (in optics and at lower fre­
quencies) is much smaller than 1/a, where a is the 
period of the lattice, then it follows from this that the 
usual process of absorption involves quasiparticles in 
a very narrow long wavelength part of the Brillouin 
zone (k "'=' 0). 

At the same time one can demonstrate many exam­
ples of absorption processes of a different type (in view 
of the lack of a unified terminology we shall refer to 
them as second order absorption processes). In the case 
of this type of absorption the photon excites two quasi­
particles at once: phonon-phonon (['J, p. 419), magnon­
magnon [2J, exciton-phonon (indirect transitions in semi­
conductors, cf., [3 J, p. 166). The conservation laws in 
this case have the form 

( 3) 

where we have denoted by n w(kj) the energy of the quasi­
particle of the j-th kind with propagation vector k. 

The study of second order absorption enables us to 
obtain information on quasiparticles with propagation 
vectors over the whole Brillouin zone (as follows from 
relations (3)). 

1n this paper we consider second order absorption in 
a strong electromagnetic field when the change in the 
absorption coefficient under the action of this field is 
significant. Before constructing a rigorous theory in 
subsequent sections we present simple considerations 
indicating the existence of such a dependence. For the 
sake of definiteness we consider the case when the pho­
ton frequency is equal to the sum of the frequencies w, 
and w2 of quasiparticles 1 and 2: w = w, + W2. The num­
ber of photons nph absorbed per unit time, as can be 
seen to follow from simple balance equations, is equal 
to 

-liph = w(nph(n1 + 1) (n2 + 1) - nphn1n2 ] ;:z:; wnph (n, + T!2 + 1). (4) 

Here we have neglected the term wn,n2 since according 
to our assumption nph > n,, n2. (This term essentially 
describes the spontaneous emission of two excited 
quasiparticles n, r= 0 and n2 r= 0.) 

Usually the experimentally observed second order 
absorption is described by the right hand side of (4) with 
n, and n2 equal to their thermodynamic average values 
n? and ng. In a sufficiently strong photon field nph » 1 
the values of n1 and n2 themselves begin to depend on 
nph· Indeed, the balance equations for n, and n2 in the 
same approximation have the form 

n1 =- y1 (n1 - n10) + wnph(n 1 + na + 1), (5) 
n2 = - y~(n2- n2°) + wnph (n, + na + 1), 

where y, and y2 are phenomenologically introduced 
damping constants. A straightforward analysis of equa­
tions (5) (for a given value of nph shows that in the case 

wnph < "\'1'\'2 I (y, + '\'2) 

there exists a stable stationary solution of these equa­
tions: 

nt0 + n2°+1 
n, + na + 1 = --------.-. 

1- wnph(Y, + Y•) /Y1Y2 
(6) 

From (4) and (6) it follows that for values of wnph 
comparable to y, Yd( y, + y.) the absorption coefficient 
depends in an essential manner on the number of photons 
(or on the square of the amplitude of the field) and in­
creases sharply. (For sufficiently large values of n, 
and n2 formula (6) ceases to be valid since one must 
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take into account the omitted nonlinear terms n1n2.) For 
wnph > Y1 Y2/( Y1 + r2) the stationary solution (6) is un­
stable and generation of quasiparticles of frequencies 
w 1 and w2 occurs. This is essentially parametric exci­
tation of oscillations of frequency w1 and w2 under the 
action of a pumping signal of frequency w = w1 + w2. 

2. GENERAL CONSIDERATION OF PROCESSES IN­
VOLVING THE EXCITATION OF TWO QUASIPARTI­
CLES 

Before we proceed to consider specific second order 
absorption processes we consider a general scheme 
which we shall then apply to different cases. 

Let the Hamiltonian for a system of quasiparticles 
interacting with the electric field E have the form 

11 
H = ~hw(kj)a;+(k)a;(k) -~ ~. -~b(q) 

kJ ,q,k,k,J,J 

-k-k') (kk') x{Ab ( . ., a;+(-k)a;,+(-k') +Ab' .. , a;(k)a;-(k) 
· I I · •I I 

( -kk') +Bb . ., a;+(-k)a;·(k') 
' I J 

k k') } +Bb'( ~, a;(k)a;,+(-k) tl(k+k'+q) 
J J • 

and the polarization have the corresponding form 

ft {[ ( -k -k') Pa=2 ~ Aa . ., a;+(-k)a;.+(-k') 
kj,k'j' J J 

+Bb ( . . ) a;+(-k)a;-(k') ei<k+k'J•+herm. conj.\ -kk' J 
\ J !'· J 

Here Ab and Bb are functions of k and j the form of 
which is determined in each specific case; aj and aj 

(7) 

(8) 

are the creation and annihilation operators for particles 
of the j-th kind. They satisfy the commutation relations 
for Bose- particles; 

[a;(k), a;•+(k')] = t~;;•tl(k- k'). 

The function t.(x) differs from zero and is equal to unity 
for x equal to zero or to one of the reciprocal lattice 
vectors. It is assumed that all quantities are normal­
ized per unit volume, and Eb(q) is the spatial Fourier 
component of the electric field. 

The Hamiltonian (7) can describe second-order ab­
sorption; the terms which are responsible for the usual 
absorption in (7) have been omitted. From the Hamil­
tonian (7) follow the equations of motion for the quanti­
ties ( aL(k1)aj 2(k2)) and others which determine the aver-

age polarization (8). Solving these equations under the 
condition that the frequencies of the electric field satisfy 

w ::::::; w;, (k1) + w;, (kz), (9) 

and assuming that this condition is not satisfied for any 
other values of j (for a given w) and neglecting small 
nonresonant terms we obtain 

[n;, (ki) + n;,(kz) + 1] t; (k1 + kz- q) 
X w- w (k1jt) - w (k2 iz) + i [y;, (k1) + '\';, (kz) J' 

(9') 

where yj(k) is a phenomenologically introduced damping 

constant. Here nj(k) = ( aj(k)aj(k)) is the average num-

ber of quasiparticles for which in turn one can write 
equations the solution of which in the same approxima­
tion has the form 

. (k) + . ( -k) + 1 = _n;, 0 (k1) +n;,0(q-kt) + 1 (10) n31 1 n32 q t 1 _ 11 , 

where 

(11) 

while nj(k) = [exp(nwj(k)/kT)- 1r is the equilibrium 

value of the number of quasiparticles. 
We further introduce the susceptibility describing 

the second order process: 

Then from (8)-(11) we obtain 

Xab(q,w) = _!;,- ~Aa' (kt q-:-kt) Ab (k1 q-k1) 
~ .... 'li h.· •}i 1'2.) 

w--,- w;, (k1)- w;,(q- k1)- i[y;,(ki) + y,,(q- kt)] X . 
[w- w;, (kt)- w;,(q- kt)l" + [y;, (k1) + y;, (q- k1)]4 

n;,•(k1) + n;,"(q- k!) + 1 
X . 

1-l'j 
(12) 

The imaginary part of this expression describes second 
order absorption which in accordance with the elemen­
tary considerations stated in the Introduction increases 
as 11 approaches unity. 

In an analogous manner we obtain the expression for 
Xab(q, w) for w ~ wj1(kt)- Wj 2(q- k1): 

Xab(q,w)=- fL4 ~[Ba(q-:-kt ki)+Ba'(kt q-/.zki)] 
k, ]2 ]I ' /1 

x[B (k1 q-kt) B, (q-kt k1 )] 
b' . • + b • . 

]I /2 ' /2 Jt 
[w- w(ktit) + w(q- ktfz)l- i(y;;(kt)+ Y;,(q- k1)] 
x~---7~~~~-~~~~~~~~~~~~ 

[w- w(k1i1) + w(q- ktiz)J' + [y;, (k1) + y;,(q- kt)J2 
n;,O(q- k1)- n;,0 (k1) 

X--·------ . , 
i±l']t 

(13) 

where w(kd,) > w(q- kd2) and the plus sign refers to 
the usual equilibrium situation when nt > nL, while the 

minus sign occurs in the case of the "inverted" situa­
tion when nL < nj2. In the latter case "negative absorp-

tion" or induced emission occurs at a frequency w. 
The quantity 11 1 has the form 

= I ( q - kt kt ) B • ( k, q - kl ) ,. 
1J1 Bb . . + b . . 

l2 ]! ]I ]2 

X JEb (q, to) J 2 [y;, (k,) + '\';,(q- kt) ]' 
x·{4y;, (kt)Y;. (q- kl)}-1{[w- w(kti1) + w(q- k1hll2 

+[y;,(kt)+y;,(q-k1)]2}-•. (14) 

In the usual equilibrium case an increase in the field 
IE 12 leads to a decrease in absorption-i.e. to satura­
tion: the absorbed power in a sufficiently strong field 
111 >> 1 ceases to depend on the field, while the imagin­
ary part X~b(q, w) is inversely proportional to the 
square of the absolute value IEb(q, w) 12. Here and 
subsequently we take E(q, w) to denote the external 
macroscopic field of the electromagnetic wave in a 
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crystal. This means that in calculating the energy spec­
trum of the quasiparticles we should not take into ac­
count the long wavelength electromagnetic field (i.e., we 
are dealing with "mechanical excitons" if we utilize the 
terminology of Agranovich and Ginzburgl41 ). This also 
means that q and w are independent variables, and the 
relation between these two quantities arises in the 
course of the solution of the problem of the character­
istic waves in the crystal. 

However, it should be kept in mind that the essential 
difference between real and mechanical excitons will be 
apparent only in the narrow long-wavelength part of the 
Brillouin zone and, correspondingly, only in a narrow 
part of the zone of two-particle absorption. Moreover, 
since, generally speaking, second-order absorption is 
not associated with the points of intersection of the dis­
persion curves for photons and quasiparticles the 
macroscopic field of the wave in the crystal at a fre­
quency (3) may be not significantly different from the 
field in vacuo. 

We further note that the occurrence of absorption at 
this frequency leads to the complex nature of the vector 
q = q1 + qz. The investigation carried out above, strictly 
speaking, is valid for qz << q1 (i.e., when absorption 
over one wavelength is small). However, in the prac­
tically interesting cases when q « 1/a and we neglect 
spatial dispersion, q can be set equal to zero and we 
can keep in mind the fact that the solutions so obtained 
are valid subject to a very weak restriction on the mag­
nitude of the absorption q2 << a-1. 

In an analogous manner we can carry out a general 
investigation of the second order Raman effect-the 
Raman-induced scattering involving the excitation of 
two quasiparticles. In this case in the Hamiltonian (7) 
one must replace Eb(q) by Eb(q)Ec(q') and, correspond­
ingly, instead of Ab one must introduce the quantity 
Abc· The theory of the second order induced Raman 
effect involving phonons has been given by Genkin, Fa1n, 
and Yashchin l51 . 

We now proceed to a discussion of different specific 
cases of second order absorption. 

3. EXCITATION OF PHONONS 

The phonon Hamiltonian describing the processes in 
which we are interested can be written in the adiabatic 
approximation in the form (cf., for example, [11 , Sees. 
17 and 21, and l5J) 

1 
H = Z ~'[P(kj)P(-kj)+ w2 (kj)Q(kj)Q(-kj)] 

kj 

1 +-3 

XQ(k:Jj3)L\(k1+kz+k3) -~ ilfa(kj)Q(kj)Eb(q)L\(q+k) 
kj, q 

Ma (k,iJ, k,jz)Q(k,iJ)Q(kzj,)Ea (q) L\ (kt + kz + q), 

(15) 

where Q(kj) and P(kj) are the normal coordinates and 
momenta describing the j-th branch of oscillation; Q(kj) 
is expressed in terms of the creation and annihilation 
operators: 

Q(kj) = l'-11-.-[a(kj)+ a+(-kj)]. 
2w(kJ) 

(16) 

Treating the field E as given and considering for the 
sake of simplicity the most important case q = 0 we ex­
press Q(Oj) (for the optical branches) in terms of 
Eb(w)e-iwt and substitute it into the energy terms des­
cribing anharmonism (the second sum in (15)). Further 
utilizing formula (16) we reduce the energy of interac­
tion with the field Eb(w)e-iwt to the form (7) where now 
we have 

( k k') Mb (kj, k'j') 
Ab -

' j j' - 2l'w (kj) (lJ (k'j') 

_] <D(Oit,kj,k'j')Mb(Oj') (17) 
;, ' [ffi2 (0if)- ffi2 - iwy;, (0)] l'w (kj) w (k'j') 

The second order absorption associated with the first 
term in (17) was discussed inl5J, and that associated 
with the second term (involving acoustic phonons) was 
discussed inlSJ. Here we give only the estimates for the 
critical field Ecr for which 11 in (11) and 1/1 in (14) be­
come close to unity, while the absorption coefficient 
depends in an essential manner on the field. In accord­
ance with l5' 71 the estimates for the coefficients <I> and 
Ma have the following form: 

Ma(ki) ~ ffi(kj), Ma(kj, k'j') ~ w(kj)ffi(k'j')Eat-1, 

lll(kj, k'j', k"J'') ~ w(kj)w(k'j')w(k"j")Eat-1, (18) 

where Eat ~ e/a2 , e is the electron charge, a is the 
lattice period. From this and from (11) and (14) (for 

11 R< 1) we obtain 

E ~ E [ y;(k)y;-(- k) ]''• for w2 < w2 (0J·), 
cr at (J) (kj) <U ( _ kj') 

E ~E [ y;(k)Y;·(-k) J''•_y;(O) for w2 ~w2 (0J.). (19) 
cr at w(kj)cu(- kj') w(Oj') 

4. EXCITATION OF FRENKEL EXCITONS AND 
INTRAMOLECULAR PHONONS IN MOLECULAR 
CRYSTALS 

In the papers by Rashba, Braude, and Sheka l8 ' 9 J in 
order to explain the spectra of a number of molecular 
crystals a theory of second order absorption has been 
developed involving the excitation of electron and intra­
molecular vibrational excitations. Roughly speaking, 
this case corresponds to a transformation of a photon 
into an intramolecular electron-vibrational excitation 
which dissociates into an exciton and a phonon which 
propagate through the crystal independently of each 
other. (Under certain conditions a bound electron­
vibrational excitation appears which propagates through 
the crystal as a single particle.) In the theory of 
Rashba lBJ the energy of interaction with the electric 
field is determined mainly by the dipole moment opera­
tor which corresponds to a transition in an isolated 
molecule 

where d is the matrix element for the electron-vibra­
tional transition within the 'molecule n; 1/J~ is the crea­
tion operator for an electronic excitation and <p~ is the 
creation operator for a vibrational excitation. 
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Making the transition to the momentum representa­
tion>) 

'i'n = N-'1;~ 'i'keilm, 
k 

QJn = N-% ~ cpkeikn, 
k 

we introduce the polarization operator 

kk' 
(20) 

Thus, comparing (20) with (8) we arrive at the conclu­
sion that the role of Ab in this case is played by 

A(kk')=2db 
b j j' fi 

and, in accordance with (11), we obtain for the critical 
field introduced in the preceding sections 

(21) 

where Ye(k) and Yf(k) are the damping constants for the 
exciton and the phonon. For a matrix element for the 
intramolecular transition of order a the critical field is 
of order 

(22) 

where we is the characteristic frequency for an elec­
tronic intramolecular transition. 

5. EXCITATION OF WANNIER-MOTT EXCITONS AND 
PHONONS 

We now proceed to a discussion of the possible de­
pendence of the absorption coefficient on the excitation 
of Wannier-Mott excitons and phonons. We shall be 
dealing with the so- called indirect transitions in semi­
conductors. The theory of such transitions for weak 
electric fields has been developed by Elliot[lOJ (cf., 
also[3 J, p. 153). 

The Hamiltonian describing excitons and phonons 
interacting with one another in an external electric field 
has the form 

H = ~ fiw(kv) bv+(k)bv(k)+ ~ fiw (fa)[aa+(f)aa(f)+ 1j,] 
kv fa 

+ L: itl (f- k + k') Gat(vk, v'k') bv+(k) bv•(k')[aa (f)- aa+( -f) J 
kv. k'v', of 

(23) 
vb 

where b~(k) is the creation operator for an exciton in 
the v-th exciton band with propagation vector k, a~(f) is 
the creation operator for a phonon of the a-th branch 
with the propagation vector f; the constant Mb(v) 
= ffldbllo' where N is the number of cells per unit vol­
ume, dbva is the matrix element of the dipole moment 
for the transition 0 - v for one exciton. 

The discussion then proceeds in complete analogy 
with Sec. 3. The electric field with propagation vector 
q ~ 0 excites excitons with k ~ 0: 

bv .= Mb'(v) Eb(Ul)e~irot b: = Mb(v) Eb(w)e i<ot (24) 
h(<uv-w) · ll(wv+<u} 

where the index minus denotes the part of bv propor­
tional to e-iwt and Wv = w(vO). Substituting (24) into 

'lin contrast to[ 8 ] we consider for the sake of simplicity the case of 
a single sublattice. 

(23) we bring the energy of interaction with the field 
Eb(w)e-iwt into the form (7), where now we have 

Ab·(-k -,f) =-iL Gaf(v-k,v'O) fi Mb(v') . 
, V a v' ( Ulv• - W) 

From here it is easy in this case to determine the 
parameter 11 (11). We quote the estimate for the critical 
field (for which 11 ~ 1): 

Ecr ~ YVv(k)ya(-k) /I~ Ga+(~~~·:O~Jilh(v') I· (24') 

In order to make estimates we consider the case of 
the interaction of a Wannier-Mott exciton with acoustic 
vibrations (cf.,[3 l, p. 151): 

Gacoustk(v- k, v'O) = VZM~'Vu lkl '/, [qhEmm- q,Ennl, (25) 

where M is the mass of an elementary cell, u is the 
velocity of sound, Ezz is the deformation potential of the 
Z-th zone, % and qe are overlap coefficients of order 
unity. For the case of the interaction with optical 
phonons we have (per unit volume) ([3 J, p. 151) 

I --( 1 1 )''•lqe(k)-qh(k)l 
Gopt k(v- k, v 0) = y2nfiwae' 8co- e;; ---1k-1--. (26) 

where Eoo and Eo are the dielectric constants at high and 
low frequencies. Estimates obtained utilizing relations 
(24)-(26) yield for the interaction with acoustic phonons 

Ecr ~Eat!!'__ [ Vv(k}yu(- k)l'" fi I (w- Ulv} I (27 ) 
dvo Wv(k)wa(-k)U Eu 

and for the interaction with optical phonons 

E ~E ,.!!!__[ Vv(k)ycr(-k) 1'/, alkl 1.~_::-Wv I 
cr a dvo Ulv(k}wa(-k} lqc(k)-qh(k) I• Wv • ( 28) 

From this it can be seen that when w and w(vO) are 
sufficiently close (but when the whole discussion is still 
valid) and for dv0 ~ ea the critical field may be suffi­
ciently small. The most significant discriminating fac­
tor is the square root of the product of the ratios of the 
damping constants to the frequency. This quantity can 
be sufficiently small at low temperatures. We also note 
that the denominator lqe- %1 in the right hand side of 
(28) for small values of lkl (less than the reciprocal of 
the exciton dimensions) tends towards zero in the same 
manner as the numerator~ lkl. 

6. CONCLUSION 

We have examined the dependence on the electric 
field of the absorption coefficient in a second order 
process when two quasiparticles participate. Such a 
dependence manifests itself in fields which are, gener­
ally speaking, considerably weaker than the atomic 
fields. The characteristic critical field Ecr is of the 
order 

[ y,(k)y2(-k) ]'" 
Eat k , 

w,( )w2(-k) 

where y., w1 and rz, W2 are the damping constants and 
the frequencies of the corresponding quasiparticles. It 
is of interest to note that the condition E > Ecr is essen­
tially the condition for the parametric excitation of os­
c.illations at frequencies W1 and w 2 under the action of 
pumping of frequency w "'=' w1 + w2 • In this case oscilla-
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tions of frequency w 1 and W2 must be generated. An in­
vestigation of such generation (which has not been 
carried out in this paper) is considerably more compli­
cated and requires the inclusion of nonlinear interactions 
between the oscillations w1 and w2• In contrast to the 
theory presented in this paper in this case it is essential 
to consider not only the interaction with the oscillations 
wj(k) and Wj'(-k), but also with oscillations involving a 
number of other propagation vectors k' ;o' k which satisfy 
the resonance condition. 

It should be noted that the parametric generation of 
quasiparticles of the type described above was first ex­
perimentally observed in the well known experiments of 
Damon, Bloembergen and Wang on the saturation of 
ferromagnetic resonance accompanied by the appearance 
of an instability of the spin waves-magnons liiJ. Utilizing 
the results of Suhl's theoryl12 J it is not difficult to make 
an estimate that the critical magnetic field in this case 
is equal to 

where M is the saturation magnetization, Ni-L ~ Neav/c 
""' Eatv/c; Yk and wk are the damping constant and the 
frequency of the spin wave; 1-L is the Bohr magneton, 
while vIc is the ratio of the velocity of the orbital elec­
tron to the velocity of light. Because the condition for 
ferromagnetic resonance was simultaneously satisfied 
this field was in fact still smaller by a factor y/wH 
where 'Y is the line width for the ferromagnetic reson­
ance, while WH is its frequency. 

Thus, in ferromagnetic systems the situation is most 
favorable due to the presence of the factor vy/cwH which 
is an additional one compared to the processes discussed 
above. Nevertheless, it should be emphasized that it is 
quite possible to attain the fields Ecr with the aid of 
lasers. The field Ecr• as follows from the estimates 
given above, is always smaller than the fields Eat• 
while the latter, as is well known, can be attained in a 
focused laser beam. It is possible in principle to ob­
serve the effect described above in all crystals in which 
second order absorption is observed (in particular, in 
direct transitions). Difficulties can be associated with 
the necessity of an exact coincidence of the band of two­
particle absorption with the laser frequency, and this 
sharply reduces the choice of suitable crystals. Experi­
mental difficulties can also arise because of processes 
leading to a destruction of the crystal in such fields. 

In conclusion we note that generation in a Raman­
laser is essentially also a process analogous to those 

considered above. Indeed, here a photon of frequency w 
also excites two quasiparticles, one of which is a photon 
of frequency w1, while the other one is a phonon of fre­
quency Wf w = w 1 + Wj. Here induced emission occurs 
at the frequency w1. From the same point of view we 
can also discuss the processes described above and 
consider that at frequencies wj and Wj' (w "'==' wj + wj') 

induced oscillations (arising in the process of excitation 
by the fields of oscillations Wj and Wj') of frequencies 
wj and Wj' occur. This same remark also applies to 
processes with_ w = w j - w j'. , 

The author ts grateful to V. L. Broude and E. I. 
Rashba for very useful discussions. 
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