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Conditions are derived for the hydromagnetic stability of an arbitrary equilibrium plasma configura­
tion confined by a quasi-uniform magnetic field. 

1. EQUILIBRIUM, VARIATIONAL PRINCIPLE, AND 
COORDINATE SYSTEM 

THE equations of equilibrium of a plasma in a mag­
netic field Bare 

Vp = [jB], j = rotB, divB = 0. (1.1)* 

We shall examine confined plasma configurations whose 
magnetic surfaces form a system of imbedded toroidal 
surfaces surrounding the magnetic axis. From (1.1), it 
follows that the vectors j and B lie on the magnetic sur­
faces that coincide with the surfaces of constant pres­
sure p. 

For the intrinsic stability of an ideally conducting 
plasma, it is necessary and sufficient that the potential 
energy(tJ 

ow= -i- ~ { (rot[sB])' + yp(divs)' +(sVp)divs 

+ [j£] rot[sB]} a.. (1. 2) 

be positive for arbitrary displacements ; that satisfy 
the condition that ~ 1 be zero on the plasma boundary ~. 

To obtain the conditions of stability, it is convenient 
to use a system of curvilinear coordinates x1 , x2 , x 3 , 

related to the magnetic surfaces in such a way that 
coordinates x1 and x 2 change along the magnetic surfa­
ces, while x3 changes in the perpendicular direction. For 
the coordinate x 3 it is convenient to select the running 
volume V enclosed by the system of magnetic surfaces, 
reckoned from the magnetic axis V = 0, which is a 
closed space curve s. In this system, the vectors j and 
B will each have two nonzero contravariant components 
ji = {j', j2 , 0} and Bi = {B1 , B2 , 0}, while Vp has only one 
covariant component ilp/ilx3 = vg(j 1B2 - j 2B1). 

As was shown in [z,JJ, it is possible to introduce a 
"natural" surface coordinate system, in which x1 = e 
and x 2 = !; are the cyclic coordinates with unity periodic­
ity, the determinant of the metric tensor is g = 1, and 
the contravariant components of j and B are respectively 
equal to 

i' = {i, i, 0}, (1.3) 

Here differentiation with respect to V is denoted by a 
dot, J(V) and I(V) are the longitudinal and azimuthal 
currents, while <I>(V) and x (V) are the longitudinal and 
azimuthal magnetic fluxes inside the magnetic surface 
bounding the volume V. 

The length element which defines the metric of this 
coordinate system can be written as 

dr = e1d;c1 + e2ax2 + e3ax' = [Vx2 Vx']ax• 
+ [Vx'Vx1]ax2 + [Vx1Vx2]ax3• 

(1.4) 

Here gik = ei · ek, ai = a·Vxi, ai = ei ·a, ajaxi = ei ·V, 
and the vectors ei can be represented as 

e.= p-1 (cDj- JB), e, = p-1(.iB- xi), 
(1.5) 

ea = k1e1 + k,e, + V VI I V V /2. 

From the equation j = curl B it follows that the functions 
k1 and k, satisfy the following "magnetic differential 
equations": 

.. e2 (. 2 ) Bvk1 =-x-
1 
vv 

1
• J- iVvr rvv, (VVVJ BJ , 

Bvk,=-iD+ IV~I' (j-iV~I' rvv, (yv'v)BJ). 
(1.6) 

2. CONDITIONS FOR HYDROMAGNETIC STABILITY 

If f and F denote the vectors 

f =rot [sB] + B divs + D1;3, F = [je], (2.1) 

where D and e are defined by their contravariant com­
ponents Di = {oB1/ox\ ilB2/8x3 , 0}, ei = {0, 0, 1} in the 
given surface coordinate system x 1 , x 2 , x 3 , then we can 
show that the following identity holds: 

div (6F)S3B = (sF)f' + (fFW, (2.2) 

Equality (2.2) permits us to transform the expression 
(1.2) into 

6w =~ ~ {(rot[sB] +!iels'l'+yp(divs)'+[je](D-[ie]) (s3) 2} a ... 
2 (2.3) 

We observe that the expression (2.3) differs from the 
corresponding expression obtained in (3 J in that the vec­
tor n = VV/IVVI' is replaced bye= vg(Vx1Vx2]. 

Denoting the derivative with respect to x3 = V by a 
dot, we introduce the surface functions 

P=iciJ-ii, Q=trb-J£, s=xdi-ci~. (2.4) 

The function 
. a ax 

S= <D'---av a<D 

describes the shear of the magnetic lines of force on the 
neighboring ~~~n.t:;tic surfaces, while the function n, 
which equals p<I>/<I> for S = 0, characterizes "minimum 
B." 

In the natural coordinates x1 = e, x2 = !; , x3 = V, 
formula (2.3) becomes 

ow= ~ ~ {(rot[i;BJ+[ie)S')'+YP(div£,) 2 -(Q+(ie]2)(s3) 2}a ... (2.5) 

A. The resulting expression (2. 5) for the potential 
energy ow permits us immediately to obtain a sufficient 
condition for the stability of the plasma 
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Q + [je)2 ~ 0. (2.6) 

Let us introduce the notion of a quasi-uniform mag­
netic field, assuming small quantities of order E con­
taining the derivative of the magnetic field with respect 
to V, i.e., we set B = B(x1 , x2 , EV). Thus the quantities 
j, p, and S will be of order E, while 0 will be of order 
E2 • Since the vector e = e3 when g = 1, and it follows 
from (1.6) that the coefficients k1 and k2 are small quan­
tities of order E, we have, to terms of order E, 

e ~ VV I I VVI'· (2.7) 

Consequently, under the condition of quasi-uniformity 
of the magnetic field, the sufficient criterion for stabil­
ity (2.6) can be written in invariant form 

Q+i'/IVVI'~O. (2.8) 

B. The condition of quasi-uniformity also permits 
us to obtain a necessary and sufficient criterion for 
plasma stability. 

Let us denote the contravariant components of the 
displacement ~ by ~ i = {~ e' ~ t' ~ y} and introduce the 
combinations !J. = <i>~ e - x~ t and T/ = j ~ e - i~ t. Then 

(2.9) 
s = e!(;e + e,~, + easv = p-'(l'i- lJB) + ~vea. 

The expression for curl[~ xB] can be written as 

rot[sBJ= ( 8" _ __<)_~vx)e,- ( 8 f-t +__<)_sviD)e,+(B'nv)ea. (2.10) 
8\; 8V ·89 8V 

Representing ~V and !J. by expansions in the nonuniform­
ity parameter E: 

sv = !=.v0 + e!;v1 + ... , (2.11) 

and also expanding <i> and x in EV, we obtain 

rot [!;B] = { 0 ~ 0 - X~v0 + e (~'- X~v'- X~ V!;v0 )}e, as as av 
{ iJf!O . . (Of!' . . .. iJ )} 

- - + <Dsv0 + e, - + <D!;v 1 + <D- V£v0 e, 
89 ' 89 iJV (2 2) 

+ {B'nv0 + e(B'nv1 + VDVSv0)} ea. · 1 

We shall seek a sufficient condition of stability by the 
method of successive approximations in the parameter 
E. In the zeroth approximation, the quantity ow> 0 if 
curl [~ x B] "'- 0. The requirement curl[~ x B] = 0 reduces 
to the equations 

BV!;v0 = 0. (2.13) 

These equations can be satisfied only if, in the zeroth 
approximation (in which S = 0), all the lines of force are 

• 0 0 
closed: n.P = m,X, and moreover,~ y = ~y(u, V), where 
u = m8- nt, so that B·Vu = Ol3l. 

Further, let us write the vectors B, j, and curl[~ xB] 
as 

B = a,[eBj + Mei] + y,e, j = a2 [eBj + ~,[ej] + y,e, 
(2.14) 

rot (sB] = aB + bj + ce, 

where the coefficients ai> t\, and Yi are equal to 

[eBJ[ej] [eB]2 eB 
a, = -- Pe' , ~~ = pe' , y, = ~ , 

[je]2 [eBJ[ej] ej (2.15) 
a,= --pe' , ~' =-Pe' , '\'2 = ~, 

and the coefficients a, b, and c are defined by the formu-

las (2.12). In these notations, 

(rot[sB] + [je]!;y )2 = {( ba,- ba, _h + ~v _c:• )[eB) 
' B• ~~ 

(2 .16) 

+~(a+ b ~- ~v )!c[Be]] + (c + y1a + y2b)e }~ 
e ~~ ~~ 

Since all three vectors in the braces are mutually ortho­
gonal, expression (2.16) can only decrease if we discard 
the last two vectors. Thus, to first approximation in E, 
we obtain 

(rot [sBJ + [je]~v0 ) 2 ~ -f -1- (Bv f!i + S ~ V\;v 0 + [je][Be]sv• )'. 
Be]'' iJV 

(2.17) 

In addition, discarding the positive term yp(div ~ )2 in 
(2.5), we have 

6w~.- I -- BVI''+S-Vsv"+[je][Be]Sv0 1{1( iJ )' 
2 J [Be]2 iJV 

-IQ + [je]') (~v') 2 fdr. (2.18) 

Let angular brackets denote the average along the 
closed line of force B: 

<J>=~t~/~~- (2.19) 

Integrating along the line of force in (2.18) and using 
Schwarz inequality ( a2 )( b2 ) :=.- ( ab ) 2 , where 

a= (Bv ~'' + S ~ V£v0 + [je][Be]Sv0) /I[BeJI, 
' 8V 

b = I [Be] I. 
we get 

6w ~ __!_ \ { ([Be]')-t ( S ~ V~v0 + (je][BeJSv0 )' 
2 • \ iJV 

- (Q+(je]2)(~v0) 2 }a-r. 
Moreover, since the boundary condition ~VIL; 

yields 

(2.20) 

= 0 

\ ~(Vt;v•nv•dV= I (!;v 0 ) 2 dV+~\ V~(!;v0 ) 2 dV 
· iJV .l 2 · 8V 

= _!__ r ($v0) 2 dV, 2 .l . 
(2.21) 

application of the Schwarz inequality 

(~v0 ) 2 dV ~ ( 0VV~v' )'av ~ { \ ~v0~ (V~v') av}' 
,iJ . iJV 

=--.!.{\ (sv0 ) 2 dv}' 1 . 
(2.22) 

leads to the following sufficient criterion of stability: 

(S /2 + (jej [Be] )2 - ( (Be)2)(Q + (je]') ~ 0. (2 .23) 

Under the condition of quasi-uniformity of the mag­
netic field, criterion (2.23), according to (2. 7), assumes 
the form 

( S jB )' <· B2 
· < j' ) 

\z+Tvvf' - -IVVI') Q+IVVI' ~O. (2.24) 

It can be shownl4 J that the necessary and sufficient 
criteria for stability with respect to local disturban­
cesl3'5'6J can be transformed into the same form. Thus, 
inequality (2.24) is a necessary and sufficient condition 
for the stability of a plasma in a quasi-uniform magnetic 
field. 
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3. STABILITY OF THE PLASMA IN THE NEIGHBOR­
HOOD OF THE MAGNETIC AXIS 

It is convenient to write the stability criterion (2.24) 
in the form 

S' ( S < jB > < B )' t;+\ IVVI' -Q IVVI' ) 

_(I _ _i~><~>-< jB ·)'\ \ IVVI 2 IVVI' IVVI2 );:;>-O. (3' 1) 

Here the first term defines the stabilizing action of 
shear, the first term in the parentheses describes the 
stabilization by minimum-B, while the term in the 
second parentheses is positive by the Schwarz inequal­
ity. We note that averaging along the line of force may 
be replaced approximately by an averaging over the vol­
ume of an infinitesimally thin layer between neighboring 
magnetic surfaces 

(j) ~ d~ ~ f d-r:. 

In the neighborhood of the magnetic axis V- 0, and 
all quantities appearing in (3.1) may be expanded in 
powers of V. In this connection, the terms appearing in 
the first parentheses are of order 1/V2 and it suffices 
to calculate them in a rough approximation, whereas the 
second parentheses contain mutually compensating terms 
of order 1/V4 , and care must be exerted in calculating 
them in order to preserve all quantities of order 1/V2 • 

Using the approximate relations 

1 ~ iv ~ j.,a, (3.2) 

where a is the cross-section area, and Bs and js are 
taken on the magnetic axis s, we obtain 

( 3. 3) 

To calculate the second parentheses in ( 3.1), we take 
into account the fact that js(s) = const · Bs(s) and repre­
sent j and B as 

j =·j, +ito B= B,+B,, (3.4) 

where j, and B1 are small quantities of order V. 
Up to terms of order 1/V2 , we have 

< j2 
) '( B2 

) < jB )' 
IVVI' · .. [VVI' IVVI' 

~ (-~ \/ j,ZB12 + B,'j,2 - 2(i,B,) (i1B1)) (3.5) 
' IVV[ 2 / \ [VV[ 2 I 

<I :·;I 3J2

- < ~~~~,)' + 2< ~~·t1.><! ~B:\ 2 ) 
It is possible to show that the last three terms on the 
right side are of order unity and they can be neglected. 
To transform the remaining terms, we use the equil­
ibrium equation [Vp[ 2 = j2B2 - (j · B) 2 expanded in B1 and 
j,: 

I Vp[' ~ j,%2 + Bs'j,2 - 2(j,B,) (itBt)- (j,B,)' (3.6) 
- (B,j1) 2 + 2 (j,B1) (B,j1). 

As a result, we find 

( j2 > < B2 > < jB )' < 1 \ \IVY~" IVV[' - IVVI' ~ [VV['/ 

• { •2 + (J.i•B'- B,it) 2 > }. 
p I VV[ 2 

Here the expression in the parentheses can also be 
written as 

(3. 7) 

(isB,-B,j1 ) 2 ~ (j, iJB,_B, iJj'l 2p'=(B,'p!__f_._)', (3.8) 
' iJo iJp ! iJp B,, 

where p is the distance from the magnetic axis s. 
If the longitudinal flux <I> is taken to be the argument 

of all the surface functions, then the stability criterion 
in the neighborhood of the magnetic axis s can be written 
as 

1 ( x" )' ( 1 ) { V" ) 4 V'. + Tv<D[' p' ( B,zV'- p' 

<( a · ' 
-B,• ,,ra-p~,) /lVI!>[' )};::>-o, (3.9) 

where the primes denote differentiation with respect 
to <I>. 

Let us consider separately the stability condition for 
configurations without longitudinal current js ~ 0, and 
for axisymmetric configurations, which cannot have 
equilibrium without a longitudinal current. 

A. In the absence of a longitudinal current js = 0, the 
stability condition (3.9) reduces to the minimum-B re­
quirement: 

- p' ~ R,2V" I V'. 

Representing the plasma pressure p as 

p = Po(1- 11> I<!>~). 

( 3.1 0) 

(3.11) 

we obtain a condition on the ratio of the plasma pres­
sure to the magnetic pressure (3 = 2p/B~: 

~ ~ -211>~ V" I V'. (3.12) 

B. For axisymmetric configurationsl71 we have 

B, =/A ('ll) ·I r, j, = rp' (¢) -JA ('¢)/A'(¢) I r, 
'll = -x /2n, 

(3.13) 

where r is the distance from the axis of symmetry, 
R- r = p cos w, R is the radius of the magnetic axis. 
Since<)! is proportional to V, then according to (3.9), we 
get 

1 x" )' ( p' ) -d-v, + 1v<Df2 

{ 2 V"_ '( 16n2B,Z< (r-R)'))} 
X B, V' p 1+7 - [VI!>[' ;:.:>-0. 

(3.14) 

The stability condition (3.14) is valid for all arbitrary 
axial sections of magnetic surfaces. 

For magnetic surfaces with circular cross sections, 
where <I>~ Bs7TP 2 , V ~ 27T 2Rp 2 , the stability condition 
(3.14) can be written asl"l 

1 x" )' ( p' { V" , 2 )} 4h~, + TV<Di') B,'y;-d 1+ x'' ;:.:>-0. (3.15) 

For cylindrical geometry this condition becomes 
Suydam's criterion [QJ. For toroidal geometry, it re­
duces to a bound on the longitudinal current: Rjs/Bs:::::: 2. 

The author is greatly indebted to Academician M. A. 
Leontovich for discussions on this work. 
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