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Interband transition in non-transition metals, connected with Bragg reflections of electrons, are con
sidered. An expression is obtained for the interband conductivity a. It is shown that the presence of 
Bragg reflections leads to the appearance of maxima in the dependence of the interband conductivity 
on the light frequency. The location of these maxima makes it possible to determine the pseudopoten
tial Fourier coefficients. The theory is compared with the experimental results obtained for alumi
num and indium. Satisfactory agreement is observed between theory and experiment. 

1. At the present time, the concept of the pseudopoten
tial, introduced by HarrisonC1 J and developed by anum
ber of authors, is frequently used in solid state physics. 
The theory of the pseudopotential operates with the 
Fourier components of the pseudopotential V g· These 
Fourier components have recently been determined 
from experiment, principally from the de Haas-van 
Alphen effect.C2 , 3 J However, a more direct and simpler 
method is the determination of V g from optical meas
urements. The connection of the values of V g with the 
conductivity at optical frequencies has been used by us 
in C4J. In the present research, a detailed consideration 
is given to the determination of the Fourier components 
of the pseudopotential from the results of optical 
measurements in the visible and near infrared portions 
of the spectrum. It will be shown that the structure of 
the absorption band in this region of the spectrum, de
termined by interband transitions, is connected with 
the presence of Bragg reflections. 

In semiconductors, the structure of the absorption 
band is connected with the presence of critical points. 
Initially, the role of critical points was studied by 
van Hove and Phillips C5 J for lattice vibrations. Later, 
similar ideas were applied by Phillips, Brust, et al.[sJ 
to the optical properties of solids. The critical points 
are determined by the condition Y'pEij ( p) = 0. Here 
Eij(p) =Ei(p) -Ej(p), where Ei(p) is the energy 
of the electrons in band i for momentum p. Usually 
the critical points are points of high symmetry in 
momentum space. Near the critical points, the con
stant energy surfaces are approximately parallel, 
thanks to which a peak is obtained in the combined 
interband density of states dY/ dw. Here dY is the 
number of states in the frequency range of the inter
band transitions from w to w + dw. 

In polyvalent metals, the presence of Bragg planes 
leads to the result that finite portions of these planes 
possess singular features. For this reason, a large 
number of electrons will take part in the corresponding 
interband transitions. This number is larger than in 
transitions which are connected with the presence of 
isolated critical points. This leads to the result that 
the structure of the absorption band in the region of 
the spectrum of w close to 2 IV g I is essentially de
termined by the presence of these planes. 

We shall assume that the inequality 

(1) 

is valid, where EF is the Fermi energy corresponding 
to free electrons. This means that one can use the 
approximation of weakly coupled electrons. Taking 
also into account the additivity of the cohductivity a 
associated with interband transitions, we can consider 
the contribution of each plane to this quantity independ
ently. 

2. We consider the intersection of the sphere of 
free electrons by a single Bragg plane (see Figs. 1 and 
2). The wave functions of the electrons near the Bragg 
plane are satisfactorily described by the sum of two 
plane waves: 

( .P-2Pg ) exp 1---r .. 
li ' 

here p = ng/2, where g is the reciprocal lattice 
vector lior the Bragg plane considered, p is the mo
mentum of the electron. Here the wave functions of the 
electron in the lower and upper bands, normalized to 
unit volume, are equal to 

( P ) I P- 2pg J 
1jJ2=a21 exp ihr +azzexpl i-1i--r ; 

(2) 

a11 = 2-'1•(1 + x'- x·y1 + x2)-'l,, a, 2 = a11 (x- y1 + x2 ), 

(3) 
a21 = 2-'/, ( 1 + x2 + xyT-t- x2 ) -'h, a22 = a21 (x + 11 + x'); 

x=pg(pg-PJ_)/miVgl. (4) 

Here m is the mass of the free electron, Pl the pro
jection of the vector p on the normal to the Bragg 
plane. 

The difference in energy between the upper and 
lower bands for vertical transitions in the presented 
band scheme is equal to 

It is convenient to introduce the notation 

(5) 

(6) 

For the calculation of the interband conductivity 
associated with the Bragg plane g, we use the follow
ing relation (for simplicity, we limit ourselves to ·a 
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FIG. I. Intersection of the sphere of free 
electrons with a Bragg plane. The Bragg plane 
coincides with the plane PyPz· The plane 
M; M; is parallel to the Bragg plane. 

cubic crystal):1> 

- w8fiw 1 e2 w i 
cr, =--=-- = ----= J I(¢./ VAI¢2) I'6(LIE- fiw)d3p, (7) 

e2 8n2 m2c2fi2 e2 

A(t) = 1/ 2 (Ae-;wt + A'e;"'t). (8) 

Here wg is the transition probability with energy dif
ference LlE under the action of light of frequency w; 
E is the electric field of the light wave; A ( t) is the 
vector potential of the electromagnetic field. The bar 
denotes averaging over time. Here the Hamiltonian of 
interaction of the electrons with the electromagnetic 
field is used: 

:Jf;(t) = t(fie /me) VA(t). 

We have neglected terms proportional to A2 • 

Equation (7) does not take into account relaxation 
processes. In this case, the following relations hold: 

and 

(9) 

- 2n 1 e'fi2 w dY 
CJg =---~I(¢./ VAI¢z) I'=--, (10) 

fi 4 m2c2 e2 dw 

where dY/dw is the combined interband density of 
states. 

It follows from (2) and (3), if we neglect the depend
ence of A on the coordinates, that 

1 1 
I~"'" VA I .p,) I'= hz1 + i' (Apg)'. (11) 

For calculation of the combined interband density of 
states, we turn to Fig. 1. We consider the plane M{M~ 
parallel to the Bragg plane. For it, Pl = const, and, 
according to (4) and (5), x = const and LlE = const. We 
need to determine a region on this plane for which the 
lower state is occupied and the upper free. Such a 
region is the ring contained between the two circles 
which result from the intersection of the Fermi sur
face with the plane under consideration. In Figs. 1 and 
2, this ring is M{M~, on the Bragg plane itself, this 
ring is M1M2. For it, x = 0, and the difference in the 
energies is minimal and is equal to 

(12) 

The combined interband density of states is equal to 

.!:!d - dpl. 
dw w- 28 (2nfi) 3 ' (13) 

1 >In Eq. (7), there has been omitted from the integral a factor equal 
to the difference in the probabilities of filling the initial and final states, 
inasmuch as it is equal to unity for our case (hw ;:;> kT). 

FIG. 2. Ring between the 
circles obtained from in tersec
tion of the Fermi surface 
with the Bragg plane (M 1 M2 ) 

and the plane parallel to it 
(M{M;). 

Here S is the area of the ring M{ M~ in momentum 
space. It is not difficult to find that 

S = 4nml Vgl111 + x'. 
Taking (4) and (9) into account, we obtain 

dY m' 
for w > w8 , ----==== 

dw 4n21ipg fw2 - wg' 

dY 
-=0 
dw 

for w < wg. 

(14) 

(15) 

A similar relation was obtained by Harrison l?J for 
the combined interband density of states. His expres
sion differs from (15) inasmuch as he used the expan
sion in the small parameter x and did not take into 
account the change in the area of the ring S with change 
in x. 

It follows from ( 10), (11), and (15) that 

e2pg cos2 Ag 
(Jg = 

4nfi2 (16) 

Here Bg is the angle between E and p . For poly
crystals, one has the mean value cos2 ~g = Y3. Consid
ering all the physically equivalent Bragg planes { g}, 
we obtain 

e2 wi 
CJ{g) = --ngpg · (17) 

12nfi2 wl'w2 - wi 
Here ng is the number of physically equivalent planes 
g. This formula is valid also for cubic single crystals. 

The total conductivity is 

( 18) 

Summation is carried out over all planes that make a 
contribution to the interband conductivity. The curly 
brackets for the index g will be omitted below. For 
w >> wg, we have 

(19) 

3. It follows from (17) that the interband conductiv
ity is suddenly "turned on" at w = wg and goes to 
infinity at this point. Both these circumstances are 
connected, first of all, with the fact that an approxima
tion is used in which the wave function of the electron 
is equal to the sum of only two plane waves. This 
means that each time the action of only a single Bragg 
plane is considered. Account of the simultaneous ac
tion of several planes leads to a finite value of the 
maximum. It can be expected that the width of this will 
be of the order of IV g I /E F· Second, we have neglected 
relaxation processes, which also lead to a finite value 
of the maximum and to an increase in its width. 
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Account of relaxation processes is apparently more 
important than account of the simultaneous action of 
several planes. An experiment carried out by us for 
indiumC4 J and lead[aJ shows that t::.w/wg ~ 0.2 even 
for helium temperatures ( t::.w is the half-width of the 
maximum). Upon increase in the temperature, this 
quantity increases. 

Short lifetimes of the excited states can be con
nected with the strong inter-electronic interaction. 
This interaction is much greater than the correspond
ing interaction for electrons situated on the Fermi 
surface, inasmuch as the energy of the ground and 
excited states differ from E F by an amount that is 
much larger than kT. Moreover, since the constant 
energy bands are parallel, the phase volume in which 
the electron can be scattered is large if the energy 
conservation is satisfied. 

Another reason for a decrease in the lifetime of the 
excited states is the interaction of the electrons with 
the phonons. It is well known that the interaction of 
electrons near a Bragg plane with the static potential 
of the lattice, by virtue of the corresponding phase re
lations, is so great that these electrons cannot propa
gate through the crystal. Therefore, it can be expected 
that the interaction of these electrons with phonons will 
be much greater than the interaction of the electrons 
situated far from the Bragg plane. 

Correct account of relaxation processes demands the 
setting up and solution of the kinetic equation for the 
case under consideration. So far as we know, such a 
program has not been carried out to date. However, in 
first approximation, one can take into account the re
laxation processes with the help of replacement of the 
6 function in Eq. (7) by the Lorentz function cp. We use 
the relation 

li{~) = lim•q>(s) as v-+0, 

where 

(20) 

One can assume that, in first approximation, y does 
not depend on the frequency 2 ). 

In what follows, it will be convenient to use the 
dimensionless quantities 

w' = 10 I (Og, y' = '\'I nwg. 

ln these variables, 

~I nwg = l'1 + x'- w'. 

Using (7), (20), and (22), we get 
- 1 eZ 

(21) 

(22) 

ag = 12 n2fi2 ngpgl, (23) 

y' f dx 
1 = -~, ;fi +x"£(l'1 +x'-w')'+v'•( (24) 

Calculation of the integral carried out above gives 
no difficulties, inasmuch as the expression for the in
homogeneous integral can be obtained from tables.C9 J 
For a specific value of y ', the integral I is a function 
of w '. We shall consider the function I ( w '), assuming 
y' to be a parameter. The calculation shows that I ( w ') 

2 )Similar results are obtained if we use other appropriate expres
sions for .p(~). 

FIG. 3.Dependence of the quantity 
t = Wmax/ Wg on 'Y '. 

has a finite maximum in the region w' ~ 1. The shift 
of the position of this maximum is determined by the 
coefficient t = Wmax/ wg, the value of which is shown 
in Fig. 3 as a function of y '. Using the graph of this 
drawing and the experimental value of the frequency 
Wmax• which corresponds to the maximum of the con
ductivity, we can determine the pseudopotential Fourier 
component V g from the formula 

(25) 

As is seen in Fig. 3, the shift of the maximum is small. 
The greatest shift amounts to ~6%. Therefore, the co
efficient t can be assumed to be equal to unity to 
within 5-6%. 

Figure 4 shows the dependence of the maximum 
value of the integral I for different values of the 
parameter y '. It follows from Eq. (23) and Fig. 4 that 
the value of the maximum a max depends only on the 
relative value of y' = yj iiwg and on the product ngPg· 

Figure 5 gives the dependence of the value of I on 
w' for different values of the parameter y '. It is seen 
that the curves are asymmetric. It can be expected 
that these curves will describe the experimental re
sults sufficiently well in the region of w' <..< 1 - y ', 
these formulas are not valid, inasmuch as the replace
ment of the o function by the Lorentzian function at 
these frequencies is too rough an approximation. In 
the region w' - 1 >> y ', the asymptotic dependence 
(19) is obtained regardless of the relaxation processes. 
If the value of y' is known from experiment and ng 
and Pg are not known, then one can use another form 
of this expression: 

- - n ( wg )' Og{w} = (ag)max-1- - . 
max \ W 

(26) 

Here ( aglmax is the maximum value of the interband 
conductivity and Imax is a quantity determined from 
Fig. 4. 

FIG. 4. Dependence of I max on the 
parameter 'Y· 
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FIG. 5. Dependence of I on w 'for different values of the parameter 

The parameter y' which characterizes the relative 
diffuseness of the energy level, can be determined if 
the form of the dependence I ( w ') is known. It is 
better to determine it by using the long-wave part of 
the curve I ( w '). We consider a point on the curve 
I ( w ') whose abscissa is equal to w.fnax - Y'. We de
note the ordinate of this point by Iy '· The results of 
calculation of Iy' for different values of the parameter 
y' are given in Fig. 5, where the ratio Iy '/I max is 
plotted along the ordinate and y' along the abscissa. It 
is seen from Fig. 6 that for y' < 0.4 the ratio Iy r/Imax 
""0.7. This means that in the zeroth approximation one 
can determine y' from the experimental dependence of 
a( w)' determining the abscissa of the point whose 
ordinate amounts to ~7o% of the maximum ordinate, 
according to the relation y' = t(wmax- wy)/wmax· 
Here wy is the abscissa of the point mentioned above. 
Further, this value of y' can be made more precise 
by the method of successive approximations with the 
use of Fig. 6. 

4. Let us compare our results with experiment. 
The structure of the interband transitions is most 
clearly marked, as our measurements have 
shown,C4,a,IOJ at liquid helium temperatures. Therefore, 
for the corresponding comparison, it is desirable to 
use the results of the measurement of optical constants 
at low temperatures. Unfortunately, such measure
ments have been carried out only for a small number 
of metals. Below we give a comparison of the calcula
tions with the experimental results for aluminum and 
indium. 

Aluminum is a very favorable object for such a 
comparison, inasmuch as a strong band, associated 
with V 2oo, is situated in the region of 0.85 J.l, well 
isolated from other bands. Unfortunately, there are no 
low temperature measurements in this region. This 
band has been investigated in most detail at room tern-

FIG. 6. Dependence of the value of 
Ir 1Imax on r '. 

FIG. 7. Dependence ofa200 on w for 
aluminum. The solid curve for a is drawn 30 ~-+--r. 
through the experimental points; the 

dashed CUrve is U 200 (room temperature). I ---t+/'L-j%---1 
20 r-

10 I 
0 ~,--1 -.:.L.-----::-~-:7 

0 2 hUJ,eV 

perature by Shklyarevski1 and Yarovaya,CuJ the results 
of whom are in good qualititative agreement with the 
results of Schultz and Tangherlini.[12J In addition to 
these researches, one can also point out the work of 
Ehrenreich, Philipp and SegallP3J in which the band 
mentioned has also been investigated. However, the 
results of the latter research are represented in the 
form of a graph, from which it is not possible to deter
mine either the parameters or the shape of the band of 
interest to us with any precision. 

With the help of the data of [uJ , we computed the 
total conductivity a= a + ae, where ae is the contri
bution to the conductivity from the free electrons. The 
quantity ae was determined from the results of our 
measurements of the optical constants of aluminum in 
the infrared region of the spectrum3> [l4J from the 
formulas of [a] . In the region of the maximum of a, the 
contribution of the electrons to the conductivity is 
small, less than 10%. The interband conductivity thus 
determined is equal to a= a2oo + alll. The contribution 
of the band alll in the spectral region of interest to us 
is less than 10%. It was determined by extrapolation 
according to the law 1/ w2 of the curve a( w) in the 
region 0.62-0.83 eV (2.0 - 1.5 JJ.). 

In Fig. 7 the dependence of a on w for aluminum is 
shown by the continuous curve, and &2oo ( w ) by the 
dashed curve. The maximum of this band is located at 
nw = 1.50 ± 0.01 eV. The determination of the quantity 
y~00 , ~hich is carried out by the method described 
above, gives y~00 = 0.09. Here t = 1.04 and V2oo 
= 0.72 eV. This is an excellent agreement with the 
value V200 = 0.76 eV obtained from the de Haas-van 
Alphen effect inC2 J. Comparison of Fig. 7 with Fig. 5 
shows that the shapes of the theoretical and experi
mental curves are very similar. 

In aluminum there is a second band associated with 
the potential Vlll. The maximum of this band is located 
in the vicinity of 0.4 eV. Inasmuch as ae here is 
several times larger than a and, moreover, Y' for 
this band is relatively large, one can consider only the 
location of this maximum. Using the results obtained 

3 l The following parameters relating to electron conductivity were 
used: Nopt=7.02X 1022 cm-3 ,v= 1.2 X 1014 sec-1 ,/32 =0.168, . 
(3JA.2 = 3.3 X J0-4 1l-2 . The calculation of ue was carried out accordmg 
to Eqs. (9)-(1 0) of [4 ]. 
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40 

FIG. 8. Interband conductivity 
a in indium, associated with Bragg 
reflections. The solid line passes 
through the experimental points, 
the dashed lines are the bands 
a,,, anda200 .T= 4.2°K. 

previously in[HJ, and taking into account the contribu
tion from ae and Uzoo, we find that the maximum of 
au, is located at tiw = 0.44 ± 0.06 eV. Considering the 
error in the determination of Wmax• one can neglect 
the difference of t from unity. Then Vlll = 0.22 
±0.03 eV. This also agrees excellently with the value 
obtained by AscroftC2 J from the deHaas-van Alphen 
effect: Vlll = 0.24 eV. 

In indium, measurements at liquid helium tempera
tures show that there are two clearly marked bands in 
the region 0.6 and 1.5 eV. Their identification is not so 
unambiguous as in aluminum. Inasmuch as in indium 
there should be eight { 111} planes, four (200) and (020) 
planes and two (002) planes, we assume that the princi
pal maximum in the region of 1.5 eV is associated with 
the {111} planes, the second maximum with the {200} 
planes. We did not find the third maximum up to 0.1 
eV. 

Figure 8 shows the experimental values of the inte
band conductivity &. Both bands intersect. Their dis
tribution was completed in the following way. We as
sume that the contribution of au, in the region of the 
maximum of Uzoo is negligibly small. This allows us 
to determine the value of r:foo from the experimental 
curve. Furthermore, according to Eq. (26), the contri
bution of the band azoo was calculated in the region 
tiw > 1. 2 e V. This allows us to find the band all1. Then 
in the region tiw < 1.2 eV the values of alll are found 
by linear extrapolation. This in turn made it possible 
to find the band Uzoo more precisely. In Fig. 8, the 
bands au, and &zoo are shown by the dashed curves. 
After separation, we found y{" = 0.16 and Y:ioo = 0.25. 

The location of the maxima of these bands allows 
us to determine the values of the Fourier components 
of the pseudopotentials. For the band Uu1 , the value of 
tiwmax = 1.48 ± 0.02 eV, and according to Eq. (25), 
with the use of Fig. 3, we get IVu, I= 0.70 ±0.01 eV. 
For the band &zoo, the value of hwmax = 0.60 ± 0.02 eV, 
and IVzoo I= 0.28 ±0.01 eV. The determination of these 
quantities by the deHass-van Alphen effect has evidently 
not been carried out. In the work of Mina and 
Kha1kin,C15 J these quantities were found from cyclotron 
resonance. The authors obtained IVllll = 0.31 ±0.09 eV, 
I Yzoo I = 0.25 ± 0.05 eV. The values of V zoo found from 
both experiments are identical. The divergence for V u 1 

is significant. It greatly exceeds the errors of meas
urement. The reason for the divergence is not yet 
clear to us. 

The found values of y' allow us to estimate the ab
solute value of the maxima of a and compare them 
with the experimental values. For the {200} band of 
aluminum, calculation gives O'max = 24 X 1014 cgs units, 

with the experimental value 46 x 1014• For the {111} 
band of indium, the calculated value is umax = 17 
x 10'\ the experimental, 34 x 1014• For the second 
band of indium { 200 } , the calculated value 4 > is O'max 
= 12 x 1014• The disparity of the experimental and 
theoretical absolute values of a is by about a factor of 
two. This can be connected with the broadening of the 
experimental curves because of the simultaneous ac
tion of several planes, which was not taken into account 
by us. Account of this circumstance leads to a de
crease in y' and an increase in the computed values of 
O'max· 

The experiment shows that the diffusing of the levels 
of is large in all cases. Even at liquid helium tempera
tures, for indium, the collision frequencies "g• deter
mined from y ', are equal to "'" = 7 x 1014 sec-', 
Vzoo = 4 x 1014 sec -1 • This greatly exceeds the collision 
frequency of conduction electrons, which is equal to 
0.6 x 1014 sec_, for indium. This question should be 
discussed separately. 

Thus, it can be assumed that the experiment con
firms the theory. The structure of the absorption band 
in the visible and near infrared regions of the spectrum 
for polyvalent metals is determined on the basis of the 
interband transitions, which are connected with Bragg 
reflections. The optical properties permit us to deter
mine the Fourier components of the pseudo-potential 
with great accuracy. The results of this research also 
show that for nontransition metals, the approximation 
of weak coupling serves also for the description of in
terband transitions in the visible and infrared portions 
of the spectrum. 

In conclusion, we express our gratitude to L. V. 
Keldysh and R. N. Gurzhi for discussion of the results 
of the present research. 
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