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It is shown that in a metal, in the presence of a quantizing magnetic field, electron-gas longitudinal 
oscillations exist with an acoustic dispersion law. The number of acoustic branches is one less than 
the number of Landau levels below the Fermi surface. Their velocities lie in intervals between the 
allowed electron velocities along the magnetic field on the Fermi surface. 

1. INTRODUCTION 

CHARGE -density oscillations are possible in an elec
tron gas-the Langmuir longitudinal oscillations. A 
change in the particle density in such a wave is accom
panied by the appearance of a strong electric field. 
This leads to the result that the frequency of oscilla
tions cannot be less than the limiting plasma frequency. 
Many authors [l,z] have shown that longitudinal waves 
of the acoustic type do not exist in the plasma of a 
metal with a single type of carrier. However, Pines 
and SchriefferC3 J have shown that in metals where 
there are electrons and holes, which differ widely in 
mass, there exist weakly damped longitudinal waves of 
the acoustic type. These can be called acoustic plasma 
oscillations. In our previous work,C4 J such waves were 
considered in particular for the case of bismuth. It 
was noted there that the presence of electrons and 
holes is not obligatory for the existence of acoustic 
plasma waves. They also exist when there are two 
sorts (or more) of electrons. In the acoustic plasma 
waves, there are almost no oscillations of the charge 
density. The charge which arises because of a change 
in the concentration of carriers of a single type is al
most totally compensated by the corresponding change 
in the concentration of carriers of the other type. For 
low collision frequency of ions and lattice (and of the 
ions with one another), the wave damping is basically 
Landau damping connected with the acceleration of 
particles whose velocity is equal to the phase velocity 
of the wave. In order that this damping be small, the 
masses of the different carrier types must differ 
widely. 

A very special situation arises in a quantizing mag
netic field. On the one hand, this field in quite natural 
fashion splits the carriers into groups related to the 
different Landau levels, which guarantees the possibil
ity of quasineutral oscillations. On the other hand, as 
Gurevich, Skobov and Firsov have noted,C5 J as a conse
quence of the discrete nature of the electron velocity 
along the magnetic field on the Fermi surface, Landau 
damping exists only when the velocity of the longitudinal 
wave propagating along the magnetic field is close to 
one of the allowed electron velocities (giant absorption 
oscillations). Therefore, if it were shown that the 
velocities of the acoustic plasma waves lie in the inter
vals between the allowed electron velocities, then such 

a wave would not experience Landau damping. It will be 
shown below that this is precisely the case in a quan
tizing magnetic field. It is shown that in this case, as 
many sound plasma branches exist as there are inter
vals between the Landau levels below the Fermi sur
face. The velocities of these waves are determined by 
Eq. (24). They are separated from the allowed electron 
velocities along the magnetic field by a quantity of the 
order of the ratio of the distance between the Landau 
levels to the Fermi momentum. Equation (26) gives the 
conditions under which this distance is sufficient to 
make the damping of the waves small. 

The basic results referring to the acoustic plasma 
waves in a quantizing magnetic field were published by 
us earlier, together with S. L. Ginzburg,C6 J who came 
independently to similar conclusions. 

2. DISPERSION EQUATION AND ITS INVESTIGATION 

Longitudinal electric oscillations of an electron gas, 
both of the optical and of the acoustic type, are de
scribed by the dispersion equation 

e(w, k) = 0, ( 1) 

where E is the dielectric constant, computed under the 
assumption that the electric field in the wave is directed 
along the wave vector. Equation (1) is equivalent to the 
Poisson equation 

ikE= 4np I eo. (2) 

Here p is the charge density determined by the field of 
the wave E. Thus, to find the spectrum of the plasma 
oscillations, it is necessary to compute p. The charge 
density is associated with the perturbation of the 
density matrix fnn ( p) in the following way: 

1 d•J eH 
p = e .) -{lz'"?h ~ fnn· 

n .... Jt c n 

(3) 

Here the n refer to the Landau levels, and p is the 
quasimomentum of the electron along the magnetic field. 

We shall assume that the wave vector k, meaning 
also the electric field E, is directed along the magnetic 
field H. Here only the diagonal part of the density 
matrix fnn ( p) is perturbed, and we can write for it the 
equation 

(-· + )f ( )+ 'k•("ij ( }+ E·(nl fnn(epn+k!2)-fnn'(cpn-k/2) =O. 
to) v nn [J t ,z; 11n P · e V lilcv(n) 

(4) 
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Here v(n) = ot:~/op, En is the electron energy at the 
n-th Landau level, an"! fo is the Fermi function. The 
quantity v describes the relaxation; in what follows, 
this quantity will appear only in estimates. 

Using Eqs. (3) and (4), we can obtain the following 
expression for p: 

p = i(p' ~ ip"), 

, e3mEH "' I Un +2 ~ s2 1 p = ~ --- L.J In ---
4n2f7,3k2c n Un -2 ·- s2 ' 

where s = w/k is the phase velocity of the wave, 

(5) 

'1,+ = lln + Jz!:, Un- = lln ~ }z!:_, (6) 
2m 2m 

{ 2 [ 1 1 \ ]}''' II n = - Bp ~ n +- )liQ . 
111 \ 2 

(7) 

The velocity Un is the longitudinal velocity of the elec
tron on the Fermi surface in the n-th Landau level; Ep 
is the Fermi energy, and Q is the cyclotron frequency. 

The quantity p" which determines the damping 
differs from zero (and is equal to 1T) only in the inter
vals u ~> < s < u ~>. This behavior of the absorption 
was first noted by Gurevich, Skobov and Firsov, and 
was called by them giant oscillations.CsJ This behavior 
of p" takes place only. in the absence of collisions when 
v = 0. In the presence of collisions, the dependence of 
p" on s will be described not by a step wise but by a 
smooth, bell-shaped curve which has a maximum near 
un and a width of the order of v/k (if v/k > lik/m). 
Apparently, the shape of the maximum cannot be ob
tained accurately with such a rough allowance for the 
relaxation processes. However, this form will not be 
of interest to us, since we shall always assume that s 
is distant from un by an amount greater than v/k. 
For the same reason, v is set equal to zero in Eq. (5) 
for p '. 

In addition, we shall assume for simplicity, that 
s - Un » llk/m. Then Eq. (5) takes the form 

, 3noe2 

p = 4eFk' kE g(s), 

where 
liQ ( 1 1 \ g(s)=~~.~ --+--.-~; 

2TnVp n Un- s ll 1, -t- S 

here no is the concentration of electrons, vF 
= (2EF/m)1f2. 

(8) 

(9) 

For oscillations of the acoustic type, the frequency 
of which is much less than the plasma frequency, we 
can assume that the dispersion equation (2) reduces to 
the equation 

g(s) = 0. (10) 

Equation (9) shows that this equation has a solution in 
the intervals between each two neighboring velocities 
uu- Thus, there generally appear as many different 
acoustic branches as there are Landau levels. How
ever, in the derivation of Eq. (9), we have assumed 
several conditions to be satisfied. In order to establish 
what limitations are placed on the value of the magnetic 
field, temperature, frequency of oscillation, etc., it is 
necessary to know how close the roots of Eq. (10) are 
to the ''dangerous" points un. 

3. SOLUTION OF THE DISPERSION EQUATION 

We shall assume that liQ << EF and shall consider 
the two groups of roots separately. 

1. The group of roots sn which fall in the intervals 
between several unchanged values of un. These values 
correspond to Landau numbers near the maximum. The 
velocities un in this group are of the order ( lirl/m)l/ 2 
and the distances between them are of the same order. 
We shall show that the sum over n, which enters into 
(9), can be replaced by an integral under these condi
tions, isolating, however, one "dangerous" term 
(Uno - Sf\ Where no is the number of that velocity 
uno which is near the value of s. We see that for this 
group of roots, the values of sn will be separated from 
the "dangerous" points by a distance than is much less 
than the spacing between the neighboring velocities un. 

We divide the sum over n into two parts, isolating 
from them the "dangerous" term 

(11) 

Here uno is the Landau velocity near the desired value 
of s; .61 includes terms for which N - n < n1; N is 
the maximum Landau number; n1 is some large num
ber. The sum .61 thus includes terms with compara
tively small velocities un. The sum .62 includes all 
the remaining terms. Inasmuch as the summation over 
them begins with a number corresponding to a suffi
ciently large velocity, the adjacent terms in them will 
differ from one another. Thus, for the first terms of 
the sum .62 we obtain the estimate 

(liN-n,~ s)-1 ~(uN-n,-1 ~ s)-1 

(uN-11 1 -s)-1 ll1 

Thus this sum can be replaced by an integral. Integra
tion leads to the following expression 

nwF [· s Vp + s liN-n, s Us-n,+'] (12) 2: 2 = ·-- 2--ln--~2-~+-In---- . 
hQ VF Up-S VF Up UN-n 1 - S 

The last three terms contain a small parameter s/vF; 
therefore, 

2:: 2 = 2mvF I liQ. 

We now estimate the value of .61 and show that it 
can be discarded. In fact, 

Lt < (2hQjm)'h' 

so that 

}:: 1 I 2:: 2 < (hQ I 4ep) 'hn1. 

(13) 

Although we have assumed n1 to be a large number (in 
practice, several units), under the assumption liQ 
<< EF one can put .61 << .62. Thus, 

liQ 1 
g(s)= ~1~-. ~~~-. (14) 

2mup Unn- S 

The dispersion equation g ( s) = 0 leads to the following 
expression for the velocity sno of the acoustic plasma 
waves associated with the no-th Landau level: 

Sn 0 = Uno + /iQ / 2mVp. (15) 

This expression is valid for a Landau level with quan
tum numbers no close to the maximum. Here uno 
- uno+1 ~ ( lirl/mvF) 112, so that 

i.e., the difference of the velocity of the no -th acoustic 
branch from uno is much less than the interval between 
the neighboring Landau velocities, as was assumed. 
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2. We now consider those roots of the dispersion 
equation which fall between the values of the Landau 
velocities corresponding to the quantum numbers are 
far from the maximum. In this case, the sum entering 
into Eq. (9) is again divided into two parts, separating 
two "dangerous" terms in it: 

~=(un,-t-s) '+(u,,-s)-'-!-~t-f-2:,. (16) 

uno+ 1 and uno are those Landau velocities between 
which lies the desired root s. The sum ~1 includes 
terms for which the Landau number n lies in the range 
no - nz < n < no + n1 (except for the "dangerous" ones 
that have been separated). Here n1 and n2 are certain 
large numbers. The sum ~2 includes all the remaining 
terms. This sum, just as the previous, can be replaced 
by an integral, so that 

ITlVFf S Vp+~ S S-U.no+1l 1 +UnJ-1-n,-lln,l~-1+n 1 ] 
2:: 2 =-12---ln--+-ln--- - --·- ·---- . 

JiQ L Up Up-S Up Un 0-n 2 - S 1)F 

(17) 
For calculation of the sum !:1, we make use of the 

fact that the velocity un can be written in the form 

(18) 

Then 

(19) 

where 

(20) 

The finite sums in Eq. (19) can be expressed in terms 
of the logarithmic derivative of the factorial, wC 7J: 

2:, = _mu,,, {'l'(n, + 1- z) + 'l"(z) -1¥(n1 - 1 + z)- '11 (1- c)}. {21) 
h~! 

The quantity z lies in the range 0 <. z <. 1; the numbers 
n1 and n2 are large. Using the asymptotic expansion 
for '11, we get 

n, + 1- Z llno-1-n,- S { 22) 
'F(1-z+nz)-'l.'(n1 -1-!-z)=ln ,:::;]n. ----. 

111- 1 + Z S- Uno+1! 1-1 

Thus, by using Eqs. (9), (16), (17), (21) and (22), we 
finally obtain 

s l!;c+s lln 0 [1 1 1 _ "'(-)] 
g(s)=-;~ln-.--.-1-l--;---:- -::-+-::-= +'1(1-")- r "" . 

2z;F '·F-·' 2v,. ~ .. 1 

(23) 

where z is connected with s by Eq. (20). The argument 
of each function lies in the range 0 to 1 (inasmuch as 
we are seeking the root s = sn0 , which lies between the 
Landau velocities sn0 and sn0 + 1). The function '11 ( z) 
is tabulated in [7J. In the term with the logarithm in 
Eq. (23), we can replace s by uno· Then the dispersion 
equation g ( s) = 0 gives the connection between z and 
the parameter un0 /vF· This dependence is shown in 
the drawing. 

Using Eq. ( 20), we can write for the velocity of the 
no-th acoustic branch: 

Sn, = lln, + _Jz_Q_ a., (24) 
nLVp 

where a= ZVF/un0 is the numerical coefficient which 
is shown in the drawing as a function of un0 /VF· One 
can show that Eq. (24) in fact gives the velocity of all 
acoustic branches if nn <.<. EF), since it is identical 

Dependence of the quantity a= 

ZVf/Uno on un0/Vf. 

C( 

!.0~-------------, 

1,0 

with Eq. (15) when uno/vF << 1. It is seen from (24) 
that the departure of the velocity from the "dangerous" 
point uno is nn/mvF in order of magnitude. 

We now discuss the criteria upon whose satisfaction 
the acoustic branches of plasma oscillations along the 
magnetic field will not have any significant damping. 
The region of the giant absorption peak has a finite 
width nk/ m. Moreover, it is smeared out by collisions 
and by the temperature. We require that the sound 
velocity be separated from the center of the peak by a 
quantity much larger than all these widths. This means 
that 

hk 
S -ll{LO ;:.>-, 

m 

v 
s-1Ln 0 ~k' 

T 
S- Un,1 ~~--,- --1 

lnllnJ 

where T is the temperature in energy units. 

(25) 

With account of Eq. (24), we can write down the 
following criterion for the existence of weakly damped 
oscillations: 

hQ Vp 
-';>--. 

T a1ln 
(26) 

It is seen that all these criteria are most rigid for 
velocities uno appreciably smaller than the Fermi 
velocity; it is much weaker for uno ~ VF· However, 
for typical metals, the second of the conditions (26) is 
difficult to achieve. 

We note that although the detailed analysis was given 
for the more realistic case nn <.< EF, it is clear that 
acoustic plasma waves exist when nn ~ EF, i.e., when 
there is a small number of Landau levels (two or more) 
below the Fermi surface. In these cases, the disper
sion equation (10) must be solved numerically by using 
the general formula (9). 

4. ACOUSTIC PLASMONS IN BISMUTH 

The Fermi surface of bismuth is nonspherical. It 
consists of a single elongated (hole) ellipsoid of revo
lution, oriented along a threefold axis, and three elec
tron surfaces. The latter can be approximated by tri
axial ellipsoids with axis ratios 1:1.4: 15, while the 
long axis is almost perpendicular to the threefold axis 
and the middle axis is almost parallel.CaJ The disper
sion equation for acoustic plasmons in bismuth can be 
written in the form 

1 1 
--g.(s)+-g,(s)= 0, (27) 
P-eF ehF 

where EeF and EhF are the Fermi energies of the 
electrons and holes. We shall assume that the magnetic 
field and the direction of propagation of the sound wave 
are directed along the threefold axis. We shall not 
carry out the calculations for the ellipsoidal surfaces, 
but shall only write down the results. The formulas 
for g ( s) obtained in the previous section remain un
changed. By n must be understood the cyclotron fre
quency and by vF the Fermi surface in the direction 
of the threefold axis. The mass m means the mass 
along this axis, i.e., m = 2EF/v~. 
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The dispersion equation (27), together with the ex
pression (23), shows that two systems of acoustic 
plasma branches are possible in bismuth. The electron 
branches will have velocities less than the electron 
velocity VeF in the direction of the threefold axis; the 
hole branch velocities are less than the analogous 
velocity VhF for holes. We note that VeF >>VhF· 
Equation (27) is valid only for frequencies much less 
than the plasma frequency ( 4rrnoe2/ mE:o )11 2; it must be 
kept in mind that Eo ~ 100 for bismuthPJ 

The methods for excitation of acoustic plasma waves 
require special consideration. In the isotropic case, 
for excitation of electromagnetic waves (as always in 
the excitation of longitudinal waves), it is required that 
there be a component of the electric field perpendicu
lar to the surface of the sample. 
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