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We assume that there exists a similarity for correlations of quantities which fluctuate strongly near a 
second-order phase transition and that it is possible to describe these correlations by a single corre­
lation radiuc rc· We study the dependence of rc on the thermodynamic parameters and on the ratio of 
the powers occurring in the singularities of the thermodynamic quantities. The meaning of the constants 
occurring in the theory is discussed. 

1. INTRODUCTION 

IT is well known that in second-order phase transition 
(PT) points and in critical points thermodynamic quan­
tities such as the heat capacity, the susceptibility, and 
the compressibility have a singular part which indicates 
the non-additivity of the thermodynamic quantities in a 
PT point. As an example, we consider the susceptibility 
of a system in an external field H when the extra term 
in the energy which is connected with the external field 
has the form 

En= -H S m(r)dV, (1.1) 

where m(r) completely determines the configuration of 
the system. We determine the susceptibility x: 

X= T~ln(exp (- EH )) 
o!J2 , T . 

(1.2) 

Here and henceforth (A) =A denotes an (ensemble) 
average of the quantity A in the equilibrium state of the 
systemYJ 

(A)= ( ~ e-E/T rJ ~ e-EITA ), 

{m} {m} 

(1.3) 

E is the energy of the system and depends on the con­
figuration { m}. 

If the values of m(r) are finite the singularity in x 
may appear by virtue of a slow decrease for large 
lr - r 1 I of the correlation 

<p,(r-r') = ((m(r) -iii)(m(r') -iii)>, (1.4) 

X= ~ ~ <pm(r)dV. (1.5) 

By virtue of the principle of the reduction of correla­
tions(2J Eq. (1.4) decreases for lr- r 1 1 » rc with in­
creasing lr - r 1 I so fast that we can restrict ourselves 
in (1.5) to integrating over a region with linear dimen­
sions ~ rc· The correlation radius rc introduced in this 
way is sufficiently well defined only if it is large and if 
(1.5) diverges for larger ~ rc so that rc is the cut-off 
radius for the integral in (1.5). One can completely 
analogously introduce a correlation radius for the 
correlations of any quantity b(r) while for a rigorous 
definition one uses the usual formula 

r,b = Si!r[<Pb(r)dV ~~ 'Pb(r)dV, 

(jlb(r- r') = ((b(r)- li) (b(r')- o)>. (1.6) 

For different quantities b the radii reb may turn out 
to be different. If all r cb are finite, then for a system 
of volume V >> r~, where a is the dimensionality of the 
space, the thermodynamic quantities are additive. The 
manifold of points in which some rc = oo is the manifold 
of points of second-order phase transitions (or critical 
points). In those points some of the thermodynamic 
quantities lose their additivity however large the volume 
of the system, so that their dependence on the volume 
and the other parameters is singular. It has been shown 
recently that there is a connection between the singu­
larities of different quantities. [3 - 7 l This connection is a 
consequence of the phenomenological theory based upon 
the similarity assumption for correlations at large dis­
tances near phase transition points. In[ 5 ' 6 J the thermo­
dynamic relations of the theory were studied. The aim 
of the present paper is a more complete analysis of the 
behavior of the correlations required by the theory. It 
turns out that part of the assumptions of papers[5 ' 6 l are 
the consequence of the other assumptions. 

2. SIMILARITY HYPOTHESIS FOR THE CORRELA­
TIONS OF STRONGLY FLUCTUATING QUANTITIES 

Near PT points the value of r c is by definition arbi­
trarily large for strongly fluctuating quantities. We 
assume that the correlation radii are of the same order 
of magnitude for all strongly fluctuating quantities so 
that we shall talk about a single correlation radius of 
the system. Let bi(r) fori = 1, 2, ... be a set of strongly 
fluctuating quantities and let hi be the corresponding 
external fields reckoned from the critical value. The 
energy of the system for a given configuration {m(r)} 
has the form 

E =Eo {m(r)}- ~ h, ~ bi(r)dV. (2.1) 

The distance to the PT points is defined by the variables 

(2.2) 

and the values of hi. 
Let us consider an isolated PT point when rc - oo as 
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T- 0 and hi- 0. The basic assumption which we shall 
use is an assumption that for r~1 = 0, r >> ro, where ro 
is a fixed length (interaction radius), it is possible to 
write 

<pbi(r-r')= ((b;(r)-tii)(b;(r')-tii)) =Cb,/Jr-r'Ja<, (2.3) 

where 0 < a1 ~ a. Near the PT point the behavior (2.3) 
is assumed for lr- r 'I<< rc while for lr- r 'I» rc the 
correlations decrease sufficiently rapidly (faster than 
lr - r 'Ia). For the cases which at the present time are 
rigorously or approximately solved (Ising model, per­
fect Bose gas[ 1 J, ... ) the correlations have indeed the 
form (2.3). For other cases the behavior (2.3) is a 
plausible assumption leading to consequences which are 
reasonable and do not contradict experiments. Also 
possible are cases (the magnetic moment for an anti­
ferromagnet) where for some quantities the correlations 
oscillate. We shall assume that in those cases there 
exist other quantities (e.g., the energy density) for which 
the behavior of the correlations obeys (2.3). 

We assume that parameters with the dimension of 
length, such as the interaction radius for the system, 
are finite. In the transition point we may expect at dis­
tances r >> ro that the correlations are determined by 
constants connected with the properties of the system 
at the transition point and the magnitude of the distance 
r. In that case the power indices ai can be found from 
dimensional relations. For such a behavior the theory 
turns out to be a variant of Kolmogorov's theory of 
universal similarity .[8 l 

Different arguments in aid of the behavior (2.3) of 
the correlations were given in[ 5 - 7 ' 9 ' 10 J. For the case of 
a wave field methods of estimating diagrams, which 
were developed in[ 9 J, show that the power-law behavior 
may be reconciled with the microscopic equations of the 
system. The concrete value of a in such a matching 
must be found from the equations not used for matching 
the power-law estimates. 

Let the PT point be T = 0, hk = 0. We consider a sys­
tem where all these quantities except one hi vanish and 
rc = rc(hi). A characteristic length appears in the reg­
ion of large distances. When ro << r << rc the correla­
tions should remain constant, within r/ r c• by virtue of 
the continuity of the correlations in the PT point. We 
shall assume that the correlation functions for r >> ro 
and r c finite have the form 

<jlb=r"Cb(r/r,). (2.4) 

We consider the sphere (or circle for a two-dimen­
sional system) S(R) with radius R and calculate the 
average fluctuation of the quantity 

B;(R)= ~ (bi(r)-b;)dV, B;2 (R) = 'Pb; (r- r') dV dV', 
rES(r) r,r'EB(R) ( 2, 5) 

integrated over the region S(R). In the PT point or when 
ro « R « rc we find 

B;'(R) = { const·R2a-a,, 
const·R"InR, 

if ai <a, 
if a;= a. 

(2.6) 

If O!i ~ a, the fluctuations turn out to be strong and the 
mean square fluctuations increase faster than the vol­
ume of the region, which is a consequence of the strong 
correlation. 

In the following we need an estimate of the quantities 
Bf!l(R) and accordingly of the correlation functions. To 
take into account the requirements of the principle of 
the weakening of correlations we introduce irreducible 
correlation functions (semi-invariants, see[l 1 l): 

ll" (' 
Qb,n(r! .... ,rn) == ln(exp j A.(r)b(r) dV). (2.7) 

bA. (r1) ... bA. (rn) 

Forb = m the correlations (2. 7) are the same as the 
correlations Q of[ 5 J. 

We write the probability distribution of the quantity 
B(R) in the form 

dW(B) = W(B)dB. (2.8) 

It can be found if in the Gibbs distribution we sum over 
all configurations with a given value of B(R). Comparing 
(2.6) and (2.8), we find 

B2 (R) = ~ B2W(B)dB = const·R2a--«,; (2.9) 

If the probability distribution (2.8) is a Gaussian dis­
tribution, (2.9) completely characterizes this distribu­
tion and the quantities 

an 
(,,Bn (R)) = a;, n In (e'B(Rl) (2.10) 

vanish for n > 2, r\ = 0. This is an expression for a 
weak correlation and corresponds to fluctuations far 
from the PT point. We shall assume that for 
ro « R ~ rc the distribution (2.8) is not Gaussian. 
The probability density (2.8) is essentially non-vanish­
ing in the range of values B ~ v'[B2(R)] so that 
Bm = ..f[B2(R)] is a quantity characterizing the spread 
of the probability distribution. 

The similarity hypothesis can be formulated as fol­
lows: The probability distribution for the quantity 
Bi(R)/Bm is in aPT point independent of R if R » r 0 • 

Near the PT point, when one of the quantities T or h 
is non-vanishing, the quantity rc is finite though large: 
rc » ro. The probability distribution for the quantity 
B(R) depends not only on R but also on the thermody­
namic quantities T or h. 

When R increases from ro << R << r c to R >> r c• the 
evolution of the distribution function for B(R) near the 
PT point can be described as follows: 

When R increases to R >> r c• the fluctuations in the 
quantity B(R) become basically Gaussian (up to terms 
of order rcfR « 1). This is connected with the fact that 
the fluctuations in volumes V ~ r~ separated by large 
distances r >> rc are independent of the magnitude of 
rc· For a system with an interaction which vanishes 
rigorously when r > ro it is natural to expect an exponen­
tial decrease of the correlations for distances r >> rc· 
For a< a, we obtain for (B2 (R)) with R » rc, instead 
of (2.6), apart from terms small of order rc/R 

(2.11) 

For a = a we find 

(TJ2 (R)> = con8t ·R" In r, .. (2.12) 

For quantities f3(r) whose fluctuations in the PT point 
do not become strong the usual dependence 

({~ [fl(r)-j3jav})=const·R" (2.13) 

is valid instead of (2.11) and (2.12). The contribution of 
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order (2.13) to (B2 (R)), which is connected with corre­
lations at small distances r ~ ro, always exists but when 
a :::s a it turns out to be small compared with the con­
tribution of distant (r ~ rc) correlations. When a> a, 
on the other hand, this contribution turns out to be 
dominant. 

It is well known that the probability distribution can 
be given by its moments. One checks easily that the 
properties of the distribution (2.8) formulated in terms 
of the behavior of the moments (2.13) are the same as 
the properties assumed inr 5 ' 6 J. The quantities (( B2n(R) )) 
of (2.10) can be found from B2n(R) and for them the 
following relation holds 

(2.14) 

If the probability distribution is different from a Gauss­
ian one, then D2n f 0. The quantities ((Bzn(R))) can be 
expressed in terms of the correlations Q of (2. 7) as 
follows: 

(2.15) 
riES(R) 

Let us formulate the similarity assumption in the 
correlation language. In aPT point the correlations 
Qb (r , ... , r ) are for lri- rJ·I >> ro homogeneous , zn 1 zn 
functions of the distances lri- rj I of degree -na: 

Qb,2n (Art, ... , ).rzn) Qb,2n (rt, ... , l'zn) 

Qb,z"(l,r;- h;) Qb,2n (r;- r;) 
(2.16) 

We introduce a distance R: 
R2 = ~ lr;- r;l 2• (2.17) 

l>j 

The correlations Qb,zn can be written in the form 

(2.18) 

Near the PT point the quantity rc is finite. For large 
distances there is a characteristic length and the homo­
geneity of the correlations Q2n must disappear. When 
ro « lri- rj I << rc the correlations do not change, 
apart from terms of order lri - rj 1/ rc by virtue of their 
continuity in a PT while they must vanish for lri - rj I 
» rc· If the finiteness of rc is connected with the fact 
that only one of the thermodynamic quantities is different 
from its critical value, one may assume that when ro 
« lri- rj I « rc the homogeneity property occurs when 

we make simultaneously the changes ri - A.ri, and 
rc- A.rc. We note that when lri- rj I > rc the form of 
the correlations is unimportant, since from general con­
siderations it follows that the contribution from such 
distances is negligibly small. The form of the correla-· 
tions Qb,zn is according to our assumptions as follows: 

1 ( r, r, rzn ) 
Qb.2n(rj, ... ,1'2n)= R_na <pb,2n\]f' R' ... , --yj ' (2.19) 

where as y - oo 

([Jh, 2n (y; rr, .. 0' f2n) -----'r (flb, 2n (rt, ... , f2n)' 

while as y - 0 this function tends fairly rapidly to zero. 
We find from (2.19) for 

<{B'") = lim <{B'n (R) }> 
R-= 

for finite rc 

(2.20) 

where the D2n are constants and V the volume of the 
system, 

(2 .21) 

In the case where a = a, Eq. (2.6) acquires a logar­
ithmic factor ln(R/ r 0). The formulation of the similarity 
for the distribution function must in this case be 
changed. We choose a fixed number A. < 1 and restrict 
the integration in (2.5) to the interval A.R:::; lr- r'l:::; R 
(the contribution of fluctuations of scale R). Using this 
procedure for all ((B2n)) we can retain the old formula­
tion for the quantities obtained in this way. The formu­
lation of the similarity hypothesis in terms of the corre­
lations Q is not changed. 

3. BEHAVIOR OF THE CORRELATION RADIUS AND 
OF THE RATIO OF THE SUSCEPTIBILITY POWER 
INDICES 

Assuming that the correlations of the quantities bi 
are characterized by a single correlation radius rc we 
can find the dependence of r c on each of the quantities 
h, T when the other quantities are equal to their critical 
values. We consider first of all the case when all ex­
ternal fields are absent and the finiteness of rc is con­
nected with T f 0; rc = rc(T). We define the energy den­
sity dr) when there are no external fields 

Eo {m(r)} = ~ e(r)dV. (3.1) 

Generally speaking, E(r) can not be given unambiguously 
by the definition (3.1). We have assumed that there is 
such a way of defining E(r) that the value of this quan­
tity in the point r depends on the configuration {m(r')} 
only when lr- r 'I :::; ro (finite interaction radius ro in the 
system). For instance, for the Ising modelr 1 J 

e(r)= u(r) ~ J(r-r')u(r'), (3.2) 
r' 

where one assuf!!eS that J(r) = 0 when r > ro. For the 
average energy E we find 

( ~ I 

E= T; lnZ, Z = ~ exp j eir)~~ {'r-1) I. (3.3) 
{m} [ c 

(The summation is over all configurations of the sys­
tem.) Using (2.10) we find easily that when T « 1 

[)2 
T,2 - <{Eo2ny = <{E;n+'y. (3.4) 

iJr:' 

Substituting the behavior (2.20) into (3.4) we find for 
rc(T), if a 7 fa, 

(3. 5) 

The constants are different for different n. We obtain 

(3.6) 

If a= a (in the known cases this is, apparently, always 
the case) we get for n = 1 

[)2 
-8~2111 rc = const. rca, rc = const· r2.1a. (3. 7) 
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The specific heat of the system in the case a: I a is 

(3.8) 

If a:= a, 

c ~VA ln-r, (3.9) 

where A is a constant. 
The connection between the behavior (3. 7) of the 

correlation radius and the logarithmic behavior (3.9) of 
the specific heat was discovered inl 5 J. Using (3 .8) or 
(3.9) and (3.4) we can find the quantities ((Egn)) in terms 
of ((E~)). 

Repeating the derivation of Eqs. (3.6) and (3.8) for an 
arbitrary quantity we find under the same assumptions 

-2/(2a--a,) 

r,(h;)= roh,hi (3.10) 

where hi is a dimensionless field, acting on bi, a:i the 
power index in the correlation function: 

q;;(r~r') = ((b;(r) ~IJ,)(b;(r') ~IJ;)) ~ [r~r'[--«<, (3.11) 
r0 <;' [r~r'[ <r,. 

The susceptibility Xi = <iF/ ohf, where F is the free 
energy of the system in an external field hi, is apart 
from a regular factor the same as the quantity «Bf)) 

lim ((B2 (R))). From Eqs. (3.10) and (3.11) for the 
R-oo 

quantities bb for which the correlations are described 
by Eq. (3.11) with a correlation radius common to all, 
we find 

(3.12) 

Formula (3.12) is the connection between the singulari­
ties of the different thermodynamic derivatives. For 
the relations of the powers in (3.10) to (3.12) it is neces­
sary that the constants D in (2.20) are non-zero. This 
means that when R ~ rc the probability distribution 
(2.8) must differ essentially from a Gaussian distribu­
tion. One obtains easily for the case of a Gaussian dis­
tribution the limits on the power indices in the form of 
inequalities. 

The behavior of the correlation radius rc(h) can be 
interpreted as follows. The asymptotic behavior of the 
correlations when lr - r 'I >> r c' 

lim (b(r)b(r'J>=(b) 2, (3.13) 
11'-t•'j-HXl 

determines the average value of the quantity b. Let us 
consider the quantity 

x(r) = b(r) ~ (IJ),., (3.14) 

where (b)'< is the average in the PT point. The corre­
lation (x(rJx(r0) is for lr- r'l ~ rc of the same order 
as for lr- r 'I» rc· Therefore we get from (3.11) 

(3.15) 

The quantity x = b- (b)c is connected with the suscepti­
bility x through the relation 

(3.16) 

Comparing (3.15) and (3.16) we get the estimate 

which is the same as (3.6). In this way we found inl 5 J 

the dependence of the correlation radius on the magnetic 
field for a ferromagnetic. 

Formula (3.15) gives an estimate of x also for the 
case when the finiteness of rc is connected with another 
field h or with the temperature T and provided symme­
try requirements do not lead to x = 0, as is the case, 
e.g., for the spontaneous moment in the Ising model for 
T > 0. In the last case any arbitrarily small field (for 
a system with V - oo) lifts for T < 0 the degeneracy so 
that the spontaneous moment below T c has a tempera­
ture dependence described by Eq. (3.15): 

(3.17) 

The considerations used in deriving (3.17) are due to 
Ryazanov. [UJ Indeed, the derivation of Eq. (3.17) re­
quires the analysis of the behavior of the singular part 
of the thermodynamic potential also under the additional 
assumptions given inl51 • 

The power indices determine the behavior of the 
correlations at large distances r, ro << r << rc· By 
virtue of the continuity of the correlations at such dis­
tances these quantities are continuous in the transition 
point, i.e., they are constants for each PT, which are 
the same for T > 0 and for T < 0. In the case of a logar­
ithmic dependence of the specific heat this logarithmic 
divergence is determined by the asymptotic behavior of 
the correlations for ro << r << r c and the logarithms 
occur therefore with the same coefficients for T > 0 
and for T < 0. The behavior of the correlations for 
r ~ rc is different forT> Tc and forT< Tc so that if 
the specific heat is c ~ In T, then a discontinuity may 
be added to the logarithmic singularity. To estimate 
this discontinuity quantitatively we need additional as­
sumptions, for instance, such as were used inl10 1 • As to 
order of magnitude, the discontinuity in the specific heat 
and also the coefficient of the logarithmic singularity 
are the same, from dimensional considerations, as the 
regular part of the specific heat. For the susceptibility 
with a power-law singularity in the PT point one can 
have different coefficients in the regions above and be­
low Tc· 

4. DISCUSSION OF THE VALUES OF THE CONSTANTS 

We have already noted that the structure of the theory 
is close to the structure of Kolmogorov's theory of uni­
versal similarity. lSJ In such a kind of theory important 
conclusions can be obtained from dimensional relations, 
provided one knows the parameters which determine 
equilibrium. The appearance in the PT point of a hier­
archy of scales from ro to the size of the system gives 
us a possibility to write the fluctuations of strongly 
fluctuating quantities as a superposition of fluctuations 
of different scales. One can give arguments favoring 
the statistical independence of fluctuations with very 
different scales (see, e.g./ 9 ' 10 1), but the degree of their 
independence requires the solution of the microscopic 
problem, which up to the present time has not been 
possible to do mathematically without errors. Models 
based upon the hypothesis of statistical independence 
were studied in[12 ' 131 , and a formulation of the hypothe­
sis in terms close to those of the theory of turbulence 
was given in[lo 1 • Basic for the theory is the statement 
that the fluctuations of scale R are determined by the 
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magnitude of the scale and by constants which deter­
mine the equilibrium and which are common for all 
scales. 

To introduce a scale we construct a sequence of divi­
sions of the space in cells with dimensions dn = x.ndo, 
A> 1: 

do~ rc, d1 =),do, d, = 'Ad1 = ?,2do, ... , dn = 'A"do,... (4.1) 

We write the fluctuations of the quantity 
B = f(b(r) - b)dV as a superposition of independent 
fluctuations of scale dk, k = 0, 1, ... , N; a characteris­
tic dimension for the change due to fluctuations in b for 
a fluctuation of scale dk is dk. The choice of divisions 
(4.1) is stipulated by the requirement to obtain as 
r- A.r the same structure of the divisions in scale. 

For ( B2) = (( B2 )) we get 
N 

(4.2) 
h=-0 

where (Bk:) is the mean square fluctuation of scale 
dk, dN ~ rc. We introduce p = 1/dk, dp = -p ln A.dk, and 
in (4.2) we change to integrating over p: Po= 1/do, 
Pc = 1/rc, 

Po 

(82)=-1-\ dp(Bp2). (4.3) 
ln'A · p 

Pc 

When Bk = 1, we find the number of scales N(V) in the 
volume V << r~: 

(4.4) 

Let us consider the fluctuations in the energy E in 
the system. For the case of a small correlation radius 
rc ~ do the whole contribution to ((E 2)) is connected with 
the small scale ~ ro and ((E 2)) ~ VpT 2 , where V is the 
volume of the system, p the number of particles per 
unit volume. We assume that (Ek) has the same form 
for any k < N and for rc » ro, i.e., 

(4.5) 

Under those assumptions we have for V ~ r~ 
VT 2 '-7 2 V 

{E'~ ~ _c_ N ( V) = _•_,_:_ In-. 
roa roa In A roa 

(4.6) 

The behavior (4.6) means that rc ~ T-z/a, and corre­
sponds to Ryazanov's hypothesis of uniform temperature 
spread. [ 10 J 

Another interpretation of (4.5) is connected with the 
probability distribution of the quantity ~(r) = E(r) -'E. 
The probability P[ Ho) Hr)] for a value of the product 
~(0) ~(r) can be written in the form 

P[£(0)\;(r)] = P[£(0) ]P,coJ[s(r)], (4. 7} 

where P[ ~(0)] is the probability for a value ~ in the 
point r = 0, P ~ <ol[ ~(r)] the probability for a value ~ in 
the point r for given ~(O). For Ho) ~ ~0 = ( e>112 we as­
sume that 

(s(r))o= \ sh(s)ds(r) 

is determined by the magnitude of T c and the distance r: 

<s(r)>o ~ T, I r". (4.8} 

For ~o we find from dimensionality considerations 

(4.9) 

and 

(4.10) 

which is equivalent to ( 4. 6). 
In the assumptions (4.5) or (4.8) the exponent a in 

(2.3) for the correlations in the energy density is 

a= -2/ a. (4.11) 

To estimate the correlations in the moment m it is 
necessary to know the connection between the energy 
and the moment. Such a connection is determined by 
the effective interaction in the system and from dimen­
sional considerations it must have the form 

E ~ Vgm•. (4.12) 

The "coupling constant" g is connected with the proper­
ties of the system at small distances ~ ro. For a system 
with binary interactions the interaction energy is given 
in the form 

E ~ g2 ~ m'(r)dV. (4.13) 

When averaging over small distances ~ ro it is possi­
ble that an interaction of the form 

E~gh~ m2h(r)dV, 

!Zh ,...._,. g2nm2(2n-h) ~(n-1) T~n+t. 
(4.14) 

may appear where the bar across indicates averaging 
over a scale of order ro. For a wave field[ 9 J the con­
stants gk correspond, e.g., to the contribution of dia­
grams with wn f 0 or p ;2; 1/ ro in diagrams with 2k boson 
exits. 

We assume that the interaction (4.12) is determined 
by one of the quantities ~: 

(4.15) 

We evaluate the change in the energy ~\l>(R, M) when the 
moment M(R) fluctuates in a region with linear dimen­
sions R in the PT point. The estimate 

~<D ~ M(R)h, 

is valid for ~\I>, where h is the field producing the mo­
ment M(R). For a not too weak field we can use Eq. 
(3.12) whence follows that 

(4.16) 

and 

(4.17) 

The structure of (4.17) is obvious and is determined by 
the requirement of additivity of ~\I> for a given moment 
m = M(R)/Ra. Expression (4.17) determines the effec­
tive interaction of the fluctuations of scale R and fixes 
the magnitude of the "coupling constant" g. Comparing 
(4.17) and (4.15) and assuming that this effective inter­
action is determined by the quantity gk we get 

a=a/k, k=2.3,... (4.18) 

Fixman[14 J proposed the spectrum (4.18) on the basis of 
considerations which were similar in concept. One can 
give arguments[ 10 ' 14 J in aid of the statement that for 
a= 3 the case k > 3 is impossible. 
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