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The double-time Green's function technique is used to develop a theory of resonance and relaxation 
spin-phonon absorption of ultrasound in paramagnetic crystals. A chain of equations is obtained for 
the Green's functions of the spin operator components for S = % and S = 1. This chain is fauna to be 
closed if only one-quantum phonon absorption and emission proeesses are eonsidered. The absorp­
tion coefficient is found as a function of the frequency and the applied magnetic field. A relation is 
established between the absorption coefficient and the paramagnetic spin-lattice relaxation times. 

THE resonance absorption of sound by paramagnetic 
spin systems is established as the most effective 
method for studying the spin-phonon interaction (see, 
for example,li, 2 J). Comparatively recently, KutuzovC3 J 
discovered the relaxation paramagnetic absorption of 
ultrasound, which depends on the value and direction 
(relative to the axes of the crystal) of the constant ex­
ternal magnetic field. 

Theoretical consideration of the resonance effect 
and its quantitative estimate were first published by 
Al'tshuler as early as 1952.[4 ] Further theoretical re­
searches were principally devoted to detailed calcula­
tion of the probabilities of spin-phonon transitions for 
specific paramagnetic crystals. However, the formula 
obtained by Al'tshuler [ 4J for the coefficient of reso­
nance sound absorption contains, in addition to the 
transition probabilities, also the function g ( w) of the 
absorption line shape, which was not computed; certain 
assumptions made relative to its shape made it possi­
ble, for example, to compute the moments of the ab­
sorption curves.CsJ It is especially important to know 
the function g ( w ) in detail to find the frequency de­
pendence of the relaxation sound absorption. 

The goal of the present research is the quantum 
statistical calculation1 > of the sound absorption coef­
ficient as a function of the frequency for arbitrary di­
rection and polarization of the sound wave relative to 
the crystallographic axes and applied external magnetic 
field. 

In analogy with the tensor of paramagnetic suscepti­
bility, we introduce the fourth rank tensor Xiklm ( w) of 
paraacoustic susceptibility, the imaginary part of which 
determines the sound absorption coefficient as a func­
tion of frequency in an anisotropic crystal. Both the 
resonance and the relaxation interactions of the sound 
waVll with the paramagnetic centers are described by 
certain combinations (determined by the experimental 
conditions) of the components of this tensor. 

The experimental determination of the components 
of Xiklm essentially reduces to the measurement of 
the constants of spin-phonon interaction. 

I) A semi-phenomenological calculation of the relaxation sound 
absorption for the one-dimensional case has been performed by 
Kochelaev. [6 ] 
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1. GENERAL RELATIONS 

In the approximation of the deformation potential, it 
is convenient to connect the general expression for the 
operator o:f interaction of the electron spin S with pho­
nons with the spin Hamiltonian in the following way: 

:JeciJJ = f3H;I5g;nSn + S;oD;•S• (i, k = x, y, z), (1) 

where ogik and oDik are the variations of the tensors 
g and D of the spin Hamiltonian with the elastic vibra­
tions of the lattice, which depend linearly on the de­
formation tensor eik: 

(2) 

The tensors F and G can be found from experi­
ments on the sound absorption [?J or by the method of 
uniaxial static deformation.CaJ The problem of the 
number of :independent components of the tensors F 
and G permitted by the symmetries of the crystal was 
considered in detail in C9 , 10J. It was shown in [9 J that 
one can always neglect the tensor og (for spin S > Y2) 
in comparison with oD. Obviously, oD = 0 for S = %. 
In what follows, the cases S = % and S >% will be 
considered separately. 

By means of (1) and (2), it is easy to write down the 
operator h ( t) of interaction of the electron spins with 
the sound fi.eld. For this case, it is necessary to sub­
stitute in (2) the values of the deformation created by 
the standing ultrasonic wave 

u; = 2A; cos qr cos wt (i = x, y, z) (3) 

at the point of location of the spin. ( Ai are the com­
ponents of the polarization vector and q is the wave 
vector.) 

Thus, for S = Y2, 

where 

az = Az/1 A I, (]k = qk/ I q I are the direction cosines of 
the polarization and of the wave vector of the sound 
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wave. The tensors a~!) and a~~) can be called the 

the magneto acoustic stresses. Finally, we introduce 
the tensor Xiklm -the paraacoustic susceptibility, 
which connects the magnetoacoustic stress with the 
static deformation: 

In an alternating acoustic field (3), this tensor be­
comes the complex function x ( w) = x' ( w) - ix "( w ) 
and its imaginary part determines the energy of ab­
sorption as a function of the frequency: 

(E)= Ull~k!m(ro} el~(r}el~ (r) · 

(6) 

(7) 

By ( E ) is meant the mean energy absorbed in a 
unit volume of a paramagnet whose transverse dimen­
sions are much greater than the wavelength of the 
ultrasound (this condition is always satisfied). The 
superior bar indicates the averaged value of the prod­
ucts of the components of the deformation tensor pro­
duced by the standing wave in a unit volume: 

{~bk} = aibk + biak is the symmetrized product. 
The average. elastic energy passing through a unit 

area in one second is equal to I = %pv3 

(8) 

= pA2wZ.. cos 2 k · r ( v is the speed of the sound wave). 
From (7) and (8) we get for the absorption coefficient 

(E) ro " 
K(ro) = -1 = - 3 {a;qk} {azqm} liA!rn(Ul}. 

pv (9) 

Using the linear quantum statistical theory of irre­
versible processes,C11J it is easy to obtain an. expres­
sion for Xiklm ( w) in terms of the double-time re­
tarded Green's function.C12J For this purpose, it is 
sufficient to find the solution of the equation for the 
matrix density p ( t) of a paramagnetic system with 
the Hamiltonian :J£ + h ( t), which is linear in the ex­
ternal field of deformations eik ( t ). We have 

XtA!m(ID) = 2lt9";ktm(ro), 

where 3"iklm ( w) is the Fourier component of the 
retarded Green's function: 

3"tkrm(t, t') = -ili-16(t- t')Q-1 Sp {exp (-H / kT) · 

X[O';A(t)crzm(t')- O'rm(t')O'tA(t)]} ""'{O'tA(t) lcrrm(t')}. 

(10) 

(11) 

Here Q is the statistical sum for the canonical Gibbs 
ensemble, 

a(-r) = {1 -r>O 
0 -r<O 

O'tk (t) = exp (ili-1:J£t) O'tk exp ( -ili-•:Kt) 

are the Heisenberg representation of the operator aik 
with the Hamiltonian :J£ which does not depend explicitly 
on the time. 

The imaginary part of the retarded Green's function 
can be found with the help of the limiting relation [1aJ: 

Im 3" (ill) = 1/2lim {3" (Ul + ie)- 3" (ro- ie)}. (12) 
...0 

In the next section, we obtain the equation of motion 
for the Green's function (11) and find its solution for 
the specific form of the total Hamiltonian :J£ of the 
paramagnetic system. As a model, we select an ideal 
crystal with small concentrations of paramagnetic 

centers, In such a dilute paramagnetic, we can neglect 
the magnetic dipole-dipole interactions, and assume 
that each spin interacts with the crystalline lattice as 
with a thermostat. 

2. EQUATIONS OF MOTION FOR THE GREEN'S 
FUNCTION 

1. S = Ya· The total Hamiltonian for a single-parti­
cle spin-phonon interaction has the form 

fi-I:J£ =roo~ s.; + ~C!lq.(bq.+bqv+ 1/z) 
j q,• 

+ ~ s9."S-a.i[bq.exp(iqr;)-bq.+exp(-iqr;)]. (13) 

The first term is the Zeeman energy of the spins in 
an external magnetic field Ho ( tiwo = gf3Ho); the second 
term is the energy of the lattice; bqv and bqv are the 
creation and annihilation operators for phonons of fre­
quency Wqv with the wave vector q and polarization v; 
the last term is the energy of spin-phonon interaction, 
where S~ is a component of the spin localized at the 
point rj (a = 0, ± 1), 

e90" = 1/zili-1FtotzmH;[Iiroq•/2Mv."]'1•{arqm}, (14) 

M is the mass of the crystal, uv is the speed of 
acoustic phonons of polarization v. 

The function (11) which we need reduces to the 
Green's function of the components of the spin opera­
tors 

3"tklm(t,t')= ,1; FpotlkFqPlmHpHq(Soti(t) ISpi'(t')). (15) 
;,;• 

For convenience in subsequent calculations, we have 
introduced 

F pOiA = F patA, F P±ik = 1/2 (F pxiA ± iF p~tl<). 

The equations of motion for the operators sh have the 
form 

- bqv+exp (- iqr;)]. (16) 

In the derivation of (16), we have used the commutation 
relation 
S.,iSpi'-S~i'S .. i=l)if(-1)"+P(a-~)S~p (a,~=O, ±1). (17) 

We also introduce the Green's function 

(18) 

of the anticommutator of the spin operators. The 
Fourier component (18) is connected with the Fourier 
components of the Green's function in (15) by the rela­
tion C13J 

{S,.i(t) ISpf(t')} =·th.(liro/2kT){,.ilpi). 

Using (16), we find the equation of motion for the 
Green's function (18): 

i! (,.lpi') = : l),.,_pl)ii'(1 + aZ)O(t- t') 

(19) 

- aroo( .. ilpi) + ~ (-1)"'-Y(a +y)eq~ {(L; ;.I pi) exp(iqr1) 

(20) 

\ 
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In (20) there appear the "mixed" Green's functions of 
the products of spin and phonon operators: 

We first write out the equations of motion for the 
product of the operators: 

. d ; ± j ± 'at (Sa-y bqv) = [( -1)a-v(a- y)wo + Wqv]Sa-v bqv 

+ ~ ( -1) a-v--v' (a- y + y') e;~scLv-v• [bq•v•bqv exp (iq'r,,) 
q', v', y' 

(21) 

b + b ± ( . ' )} - "' a' si' si ( . ) - q'v' qvexp -1q r; + £..J Bqv -«' a-yexp ±lqr;• , (22) 
a.',j' 

The last term in (22) corresponds to the two-particle 
interaction of spins by means of the field of the pho­
nons. This interaction was considered in detail in [l4-lSJ, 

where it was shown that it falls off with the distance as 
I ri - rj 13 • Inasmuch as we consider a dilute paramag­
net, the last term in (22) will be discarded in the equa­
tions of motion for the Green's functions (21): 

d;±j' j f' 
idt (a-v; qv I~;}> = [ (- 1)a-v (a- y) Wo + Wqv](a-v; qv I~} 

+ ~ (- 1)a-v-v' (a- y + y')e;: •. {<Lv-v'; q•v•; ~vlh exp(iq'r;) 

- (Lv-v•; ;.,., ~~ t) exp(- iq'r;) }. (23) 

In Eqs. (23), the inhomogeneous term with o func­
tions has also been omitted. This term is linear in the 
operators b± and averaging gives a result that is dif­
ferent from zero only in higher order in the spin-pho­
non interaction. If we limit ourselves to the approxi­
mation that is quadratic in the spin-phonon interaction, 
it is possible to disconnect the chain of equations (20) 
and ( 23), assuming 

where 

(Lv-v•;q-;-v';~vlh ~ 6qq•6w•(nqv+ 1)(Lv-v·l~'), 

(a-~-v·: q;t'; ~I J) ~ ;'\qq•llw•nqv (a-~-v· I~), 

nqv = [exp(ll~v/ 2kT) -1]-1. 

(24) 

Using (24) with y' = -y in (23), we get a closed 
system of three equations which we write down for the 
Fourier components of the Green's functions entering 
into it: 

(w + wo)(ail ~i)m- ~ ( -1)<>-Y(a + y)e;v{(,Lv,"~vl ~i)w exp(iqr;) 
q, v, 'V 

+ (alv; .:l{}w exp ( -iqr;)} = ()ii' lla, -~ (1 + a2), (25) 

; ± ;• _ (-1)a(a-2y)e.~'exp(±iqr;) ; ;• 
(a-v; qvl ~ _:}!.,- + W- (-1)a-Y(a- V)Wo ± Wqv (nqv + 1/2 ± 1f2)<al ~ _:}! ... 

Then 
1/ .. 

1 
.,'- 1 _ll_ii_' ll_a;._' -.:.._~ (:....1....c+_a_2.:_) 

"-aJ pJ #oo =-
4n w+awo-Ma(w)' (26) 

where 

q, \1, 'V 

{ nqv + 1 nqv ·} 
X--- + -

w-(-1)<>-Y(a-y)wo+wqv w-(-1)a->(a-y)wo-Wqv ( 27) 

In Eqs. (26) and (27), w is the complex frequency. By 
means of the limiting relation (12) we find 

I 1/ •1 .,, _ I)H' lla,-~ (1 + a2)va(w) 
m,a' 1}3 ;w-

2n [w + awo- Ma(w)}2 + ya2 (w). 

Here Ma(w±iE) =Ma(w) 'fiya(w) (w isreal), 

Ma(w)=P ~ (-1)'(a+v)(a-2y)leqvvl• 
q,v,v 

{ nqv+1 nO" !'I X + • \ 
W- ( -1)"-V(a- y) Wo + Wqv W- (-1)a-Y(a- y)wo- Wqv j' 

ya(w)=n ~ (-1)'(a+v)(a-2y)leqvVI 2 

q,'Y,'Y 

X { (nqv + 1)6{w- (-1)a-V(a- y)wo + Wqv] 

+ nqvll[w- (-1)'"-:V(a- y) w0 - Wqv]}, 

P in front of the sum means that the corresponding 
integral is taken in the sense of its principal value. 

(28) 

(29) 

Finally, we get from (15), (10), (9) for the coefficient 
of sound absorption, 

Nw 
K((J))= (_-;;,}b-(ftw/2kT)FpaikFqalm {a;qkJ · (a1qm} HpHqga(w), (30) 

where the shape function is 

ga;(ro) = (1 + a2)Va(w) 
[w + awo- Ma(w)]2 + ya2 (w) 

It is seen from (30) that for a = ± 1, a resonance 
curve [aJ of the Lorentz type should be observed; here 
the shift of the resonance frequency Ma and the width 
y a are themselves functions of the frequency. For 
a = 0, the frequency dependence K ( w) has a relaxa­
tional character. Thus, both the resonance and the 
non-resonance absorption of sound are described by 
completely definite combinations of the components of 
the tensor Fiklm which are determined by the wave 
vector and the polarization of the sound wave, the 
direction of the applied magnetic field and the sym­
metry of the crystal. 

2. For an example, we consider a crystal of cubic 
symmetry (classes T d, 0 and Oh). The Hamiltonian 
(1) for S = Ya has the form [s] 

:!ftspb= 3Fu (SxHxexx + SyHyeyy + SzHze.,) 
+F.-[ {HySz}eyz + {HxSz}exz + {HxSy}exy]. (31) 

It is seen :from (30) and (31) that if the magnetic field 
is directed along the z axis, then nonresonance absorp­
tion should be observed for a longitudinal wave propa­
gating along the z axis. From (30), we get for the ab­
sorption coefficient 

NHo2 W't'o 
K(w) = 36F11L-p;;a·th(llw/2kT) w"To•(t- /\) + 1 , (32) 

where To and A, in accord with (29), generally depend 
on the frequency: 

'l'o-1 = Vo(w) = 2 ~ leqv+l 2 

q, v, a 

X {(nqv + 1)6(w- at:Ilo + ro0v)+ n0v ll(w- aw0 - w<?')}, 

L'l _ -~ "' I + I• { nqv + 1 n0v } 
- 2 £..JBqv + . 

W q, "·a W - awo + Wqv w - awo- Wqv (33) 

The value of the relaxational shift A can always be 

2> Resonances at a = ±I express the fact that the effect is symmetric 
relative to the inversion of the magnetic field (replacement of w 0 by 
-wo). 
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neglected. The ll function in (33) expresses the laws 
of conservation of the energy for processes, thanks to 
which the relaxation spin-phonon absorption takes 
place in the assumed approximation: namely, owing to 
the nonsecular part of the operator :JC sph• spin-phonon 
transitions take place with absorption of a magnon of 
frequency w0 , as a consequence of the reorientation of 
the spin, and a phonon of frequency w from an external 
generator, and with appearance of a phonon of frequency 
wq = w 0 + w in the lattice. Less probable (in the region 
of growth of the spectral density of phonons as a func­
tion of the frequency) is the process in which two pho­
nons are absorbed with frequencies w and wq, and a 
magnon is emitted with frequency w 0 ( wq = w 0 - w). 

In relaxation experiments, one usually measures the 
sound absorption coefficient as a function of the ampli­
tude of the applied magnetic field.C3 J In the approxima­
tion of the Debye model, from (33), T0-1 aH~(w + w0 ) 2 

and in the region w « wo, the dependence of the relaxa­
tion time on the frequency is not important, i.e., 
T ~~ ~ H~. 

The formula (32) does not coincide with the result of 
the semi -phenomenological calculation of Kochelaev ,CSJ 
according to which T = const, while K ~ N~~. The 
dependence of the absorption coefficient on the square 
of the concentration of paramagnetic centers is en­
tirely incomprehensible from the viewpoint of the 
physical model considered in [sJ. 

For a transverse wave propagating along the z axis 
and polarized in the direction of the y axis, resonance 
absorption is observed. The absorption coefficient 
from (30) is equal to 

K 00 = 2Fu! NHo! ~ ooth(lioo/2kT)ya(oo) . (34) 
( ) pv3 [oo+aooo-Ma(oo)]2 +Va2 (oo) a. 

Here y a< w) and Ma( w), defined in (29), are respec­
tively the width of the observed line and the shift in 
the resonance frequency. 

3. S = 1. We limit ourselves to a consideration of 
systems with tetragonal and trigonal symmetry of the 
internal crystalline field on a paramagnetic center. 
Then the total Hamiltonian can be represented in the 
form 

/i-1 :JC = ~ { oo0Soi + oonQoi + 2; Bqv-"' Qai [bqv exp (iqr;) 
j q •• 

- bqv+exp(-iqr;)] }+ ~ooqv(bqv+bqv+ 1/,), (a= 0, ±1, ±2). (35) 
q,Y 

Here WD = D n-1 ( D is the constant of fine splitting in 
the spin Hamiltonian); Qo =So - ( 7'3) S ( S + 1), 
Q±l = { SoS± } , Q±a = S±S±, 

where 
C±um = 1/z(Gxllzm± iG!J(llm), 

- Gyylm ± iGxylm), 
C±'Jbn = 1/z(G •• rm 

Cmm =··Gzzim· 

According to (5) and (11), it is necessary to calcu­
late the Green's function of the quadrupole components 
of the spin operators 

ff;klm(t, t') = ;3Ca.ik Gpzm(Qa.i(t) I Qpi'(t')}>. (36) 
;, j' 

Similarly to (18), we shall write the equations of 

motion for the fUlticomJI}utator of the g_uad.z;upole 
operators (( Q& ( t) I Q~ ( t') ))+ = ((al I j3l )) <S>. The 

superscript (s) in, lieu of (q) wi~l b~ used for the func­
tions ((Sh(t) IQb'(t')))+= ((aljj3'l))<S> which appear 
in the chain of equations. The operators Qa( t) and 
Sa( t) satisfy the following equations of motion: 

i .~ Q...f =-afl)o(J,l.-a~!+ ~ e:;(,;_i)"H(a-'- y)S~w 

q, V,j' 

q.'V.Y 

·[b'l" exp(tqr1)~ bq.+exp(-iqr;)], 

·as. ss· Q' z. dt a.' = -t;troo a - arov a.1 . 

In the derivation of (37) we used in addition to l17J the 
commutation relations 

{Qa.i, Q..,i)- = {)if(-1)a+a.'(a- a')S .. -~-a. 

(a,a'=0,±1,±2; la+a'l=1), 
(38) 

[S .. i, Q,..t]:.. == f!ii'Ca."'Q~+"'' (a= 0, ± 1; a'= 0, ± 1, ± 2; I a+ a' I= 2), 

where the coefficients C~' = - C -a' are taken from the 
~ -a 

following table: 

a' I~ I : 1-l 

~ l =~ I ! I =i (39) 

From (37), we get the equations of motion for the 
corresponding Green's functions: 

d 
idt{a.ijpi)<q> = {)ii' 6,., -It( (Q,.,, Q-p})- aw0 (,.ij pi)lq)- aoon (a.! I pi')<•> 

+ :;3 (-1)<»+«'(a-a')e;'[(.1.t,..;;.jpi)<•>exp(iqr1) 

f'l·"•a.' (40) 
d -(~W;qv+jp!)<•>exp(-iqr;)], 

idt (ail pi')<•> = 6ii' 6a. -p ({Sa., Q-a})- a<oo(a!l pi)<•>- a<on(aijpf)(q) 

+ ;3c:'e;""[(!t,.•; ;.fpi)tq>exp(iqr1)- (~a.'; ~.jpf)<ql exp(-iqr;)]. 
q,v,a.' 

If we write out the. equation~ ,of motion for the mixed 
Green's functions (( J ±I J )) <q,s> and make ap-

a+a';qv i3 
proximations of the type (24), we obtain a closed set of 
six equations which, after simple transformations, 
reduce to two equations for the Fourier components: 

[w + awo+P,._(w)]{cxijpi)~l+(awn- .R,.(oo)}(aijpi)!.'1 

== 2~{)ii'Oa.,-p<.{Qa.,Q--<r.}>, (41) 

[w + aooo + Ma.(oo)]{aijpi)~> +(awn-Na(oo))(a.ijpi)~> 

= 2~ {)ii'6a, -p\{Sa, Q-a}>, 

where Ma(w)= .~ (-1)"'(a+2y)C,.vjeqvvj•t...,qv(oo), 
q,v, '\' 

N,.(oo) = ~c .. v C~jeq~vlzcp .. vq•(lili\, 
q,'V,'\' 

q, 'V, '\' 

q,v,v 

\ 
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!a.,q•(w) = [w +(a+ y)wo + Wqv](nqv+ t) 
[w +(a +v)wo+ Wqv]2 -(a + y) 2 wv2 

+ [w+(a+y)wo-wqv]nqv 
(w +(a +v)wo- Wqv]2 -(a + y)wn2 

(a+y)wn(nqv+ 1) 
~a.vqv.(w) = [w +(a+ y)wo+ Wqv'J2-(a +Y) 2 Wn2 

+ (a+y)wnnqv· (42) 
[w +(a+ y)wo- Wqv]1 -(a +v)wn2 

It is expedient in what follows to seek a solution of 
(41) separately for the values I a I = 2 and I a I = 0, 1, 
inasmuch as the Green's functions with index (s) are 
identically equal to zero if I a I = 2. 

Moreover, for I a I = 2 (transitions with Am = ±2), 
the right side of the second equation in (41) vanishes, 
whence we immediately find 

; 'I .,, <q> 6ii' 6a., -P ( {Qa., Q-a.}) 
'"'' P' #"' = ---::-----'-'-_,...,_"--'--=---,::.--

2n w + awo + Pa.(w) (43) 

Finding the imaginary part of (43) is completely ana­
logous to (28) and we write down the final result for 
the coefficient of resonance absorption due to resonance 
transitions with A m = ± 2: 

where 4 (So2) Y±2(w) 
g±z(w) = --;:---:-;;---=-':.:::;=-:':-+-->-:-· 

[w ± 2wo- M±2(w)}Z + Y±22 

(44) 

Resonance transitions with Am = ± 1 correspond to 
solutions (41) with I a I = 1. Carrying out summation 
over y in (42) with the use of (39), we find that in this 
case 

q,v q,v 

(45) 
The solution of (41) and finding the imaginary part 

with the help of the limiting relation (12) lead to the 
absorption coefficient (44) with a = ± 1, and the shape 
function 

\ (+) 
ga.(w) = 3 (Qw Ya. (w) 

[w + awo- Wn + M<~>]2 + [y<!>J' 

+' [•/sS(S + 1)+ (Qo)Jy,t> 

[o> + awo + wv + M<;;->J2 + [y~J' 

corresponds to two resonance lines at frequencies 
w = Wo ± wn. Here M~1 = Re(Ma(w) ± Na{w)], 

y:;> =Im(Ma(w) ±Na(w)]. 

(46) 

And, finally, for a = 0, the system (41) reduces to 
the equations 

[ +P ( )J#II .,, <q> 11 ( ) 'I .. ,<•> llii"llop B w o w ,o p3 #(iJ - o w ('o3 p3 #fiJ = -----z;-- , 

-3Ro(w){oilpf)~qJ+!w+Mo(w)]{oilpi)<•>= {Jii'llop c, (47) 
"' 2n 

where 

B = •19(28 + 1) - "ls<Qo>, C = 2fa(So>. 

The solution of (47) reduces to the shape function 
go ( w) in (44) corresponding to relaxation absorption 
of sound: 

go(w) = B-rt(1 + -rt/-r•) . 
w2rt2 (1- ~o) + 1 

(48) 

The relaxation times T1 and Tz and the value of the 

non-resonance shift in (48) are determined from the 
expressions 

-rc1 = 4 ~ (yJ+>+ y~-l) (a= ±1, ±2), 
a. 

SP 
~•=;;;2 ~ Jeqv"'l 2 /oa.q•(w) (a=±1,±2), (49) 

q,v, Ct. 

where 

y~1 (w) = n ~ leqv"'l 2 {(nqv + 1)6(w + awo ± Wn + Wqv) 
q,v 

+ nqvll(w + awo± wv- Wqv)}. 

In (49) the reciprocal values of the relaxation times 
are expressed in terms of linear combination of the 
probabilities of all possible spin-phonon transitions 
between the spin levels S = 1. The frequency depend­
ence of the absorption coefficient for S = 1 is shown 
to be the same as for S = %( TJTz ~ 1), while the ob­
served relaxation time T 11 = 4 I; Tik -1 ( Tik -1 is the 

i >k 
probability of transition per unit time between the 
levels i and k). However, the dependence of T1 on the 
external magnetic field will be essentially different 
from the case of half-integer spin. If w <<. Wo << wn 
(initial splittings in a zero field greater than the 
Zeeman splitting), then T1 generally does not depend 
on the field. In strong fields, when w « w0 >> wn, 
T11 ~ H~. 

4. The paramagnetic ion is found in a crystal of 
trigonal symmetry (C3v, D3, D3d). Then the Hamilton­
ian (1) for S = 1 can be represented in the form 

!rt'sph = Qo{Gssezz -(Gu + G12) (exx + eyy}} 

+ 1/z ~Qa.{Gu[exy- ia(exx- euu)J + G .. (ex,- iaey,)} 
a=±l 

1 +4 ~ Qza.(Gu-Gtm) [2(exx-·eyy)- iaexy], (50) 
a=±t 

For a longitudinal' wave along an axis of third order, 
the relaxational absorption (a = 0) should be observed 
and, in accord with (44), 

.K(w) = 4G.; Nw th (l!w/2kT)g0 (w). (51) 
pv" 

If the wave vector of the longitudinal wave is directed 
perpendicular to the C3 axis, then resonance maxima 
should be observed against the background of the relax­
ation curve; in accord with (44) and (46), these reso­
nances should be proportional to G~1 g±1 ( w ) and 
( Gu - Glz) 2 g±z( w ). 

The coefficient G44 is connected with the resonance 
absorption of transverse waves propagating along C3. 
Here, the resonance transitions with Am=± 1 are 
excited in the spin system, and the absorption coeffi­
cient aG~4 g±1 ( w). Resonance transitions with Am 
= ± 2, can be excited by a transverse wave with wave 
vector parallel to the y axis besides the longitudinal 
waves in the xy plane. 
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