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The effect of Coulomb collisions on the intensity and direction of the spectral shift in a turbulent plasma 
is considered. A mixed kinetic-hydrodynamic approach is developed which permits the study of those 
cases when the virtual (difference) waves produced in nonlinear scattering are in the region of frequent 
collisions. It is shown that in this case Coulomb collisions significantly affect the intensity as well as 
the direction of the spectral transfer. 

INTRODUCTION 

THE theory of nonlinear wave interaction in a turbulent 
plasma has been rapidly advancing lately (see [l-3 J ). 

The influence of the Coulomb collisions of the particles 
on the nonlinear interaction was not investigated in 
these references. The purpose of the present paper is 
to fill this gap. 

It must be noted from the very beginning the Coulomb 
collisions in a turbulent plasma can be significant even 
if their influence is negligibly small in the linear ap
proximation. The reason for it is that in nonlinear scat
tering there takes part a virtual wave whose frequency 
is the difference between frequencies of two interacting 
waves, and can be much smaller than the effective col
lision frequency lleff, whereas the frequency of each of 
the waves is much larger than lleff· For Langmuir os
cillations, such a difference is particularly small in the 
case of large phase velocities: 

liTe 
Vre= f-. 

me 

At the same time, the process of nonlinear scatter
ing leads to a decrease of w_ by increasing Vph· One 
can expect in this connection that, regardless of the ini
tial spectrum of the oscillations, the spectral transfer 
will bring them into that region of wave numbers where 
the collisions are significant. 1 > This naturally raises 
the question whether the collisions can change the direc
tion of the spectral transfer. As is well known,[ 4 J in a 
turbulent liquid, the scale of the pulsations decreases, 
which is diametrically opposite to the situation that 
takes place in a collisionless turbulent plasma. It must 
be noted here, however, that in the nonlinear interac
tion in a plasma, which was described above, only a 
virtual wave falls into the region of the frequent colli
sions, whereas in a liquid all the interacting turbulent 
pulsations fall in that region. Therefore the question of 
the direction. and intensity of the spectral transfer calls 
for a special investigation. An analysis performed by 
us, based on model collision integrals shows that the 
intensity and the direction of the transfer can change, 

1>However, as shown by the subsequent analysis, in a number of 
cases there arises, besides the criterion w_ ~ lleff• also the criterion k_vT 
< ~'eff, i.e., "eff > Wgo (VTe/Vph). It is of importance in what follows 
that both inequalities begin to be satified for large values of vhp· 

but the result depends on the chosen model for the col
lision integral. [5 J It was also noted in [5 J that in the 
case of isotropic turbulence the collisions can change 
the dispersion properties of the interacting waves. 

In the present paper we consider the problem of non
linear interaction in a fully ionized plasma on the basis 
of the collision integral in the Landau form. [&J It should 
be noted that the obtained results can also be applied to 
the interaction of waves in a dense plasma, for example 
a solid-state plasma or a spark plasma produced in the 
focus of a laser. [7] 

1. GENERAL RELATIONS 

For weakly-damped waves, the nonlinear effects are 
determined, in the weak-turbulence approximation, by 
the components of the nonlinear current 

j/2> (k) = ~ S;;t(k, k 1, k2)E•.;Ek,t6(k- k,- k2)dlc, dk2, (1.1) 

j;(3\k) = ) ~ijt,(k, k" k2, ka)Ek,;Ek,tEk,,6 (k- k,- k2- ka)dk, dkz dka. 

We shall assume, without loss of generality, that the 
functions Sijl and ~ijls satisfy the following symmetry 
condition: 

S;;z(k, k,, k2)·= Sil;(k, kz, k,), 

r,ijls(k, k,, k2, ka} = r,ijst(k, kt, ka, k2}. 
(1.2) 

Maxwell's equations with allowance for (1.1) and also 
with allowance for the ordinary linear current lead, 
after averaging over the statistical ensemble of the tur
bulent pulsations, to a nonlinear equation for the squares 
of the amplitudes of the fields and of the longitudinal 
waves. 2 > Defining 

kukt; 
(E1°(k1}E;"(Ic2)>= IE•, j26(kt + k2) -k-, 

12 

(here E 0 are the first-approximation fields), we write 
the aforementioned equation in the form 

s(k) IE• 12 = IE•I 2 ~ akk, IE•, j2dk, (1.3) 

where 

~[ ~ J at,•, =- ~(k,k,,k,-k1)-----S(k_,k,-k,)S(k,k~.L) . (l 4) 
w m~(k~ • 

2>we neglect here effects of scattering via a virtual transverse wave, 
since usually they are important for a plasma of almost relativistic 
temperature[']. 
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Neglecting the collisions, akk1 describes the effects of 

induced decays and induced scattering, and f3kk k de-
l 2 

scribes effects of spontaneous decays. When collisions 
are taken into account, such a subdivision is not strictly 
valid. Equation (1.3) assumes the simplest form in the 
case when the decays are forbidden by the conservation 
laws, for example for Langmuir waves. Then Eq. (1.3) 
has the form of a nonlinear dispersion equation. The 
corrections to the frequency of the Langmuir waves 
are small by virtue of the weak nonlinearity, and there
fore 

ae 1 e(k, c•l) = e(k, wk + w') ~ w'- , 
awl Ol=Olk 

I w' / _ 
I Wk ~1. 

The real and imaginary parts of w' determine re
spectively the dispersion properties and the intensity of 
the spectral transfer of the interacting waves. We note 
here that, for sufficiently large Vph » VTev'mi/me, the 
dispersion of the waves is determined by the first term 
of (1.4), and the contribution of the second term is small 
as a result of the large values of E. As to the imaginary 
part of w', the most effective, without allowance for col
lisions, is scattering by ions, determined by the second 
term of (1.4), which describes nonlinear scattering, and 
1/E, which enters in (1.4), describes the virtual longi
tudinal waves referred to above. It is easy to show that 
in the absence of collisions the second term of (1.4) can 
be written in the form 

Ime1 
~ St j;j2-82. (1. 5) 

It follows therefore that since lm Ei ~ o(w_- k ·Vi), 
Eq. (1.4) actually describes scattering by ions. It 
should be noted that the contribution of the ions to S1, 2 
and E is negligibly small, since these functions con
tain in the denominator the ion mass raised to a large 
power. Allowance for the collisions modifies the pic
ture as follows: The ion-ion collisions make a contri
bution to E1 and IE 12, and the electron-ion and elec
tron -electron collisions change the functions E and S. 

2. GENERAL EXPRESSIONS FOR NONLINEAR 
PLASMA CURRENTS 

1. Since the frequency and wave vector of only the 
virtual wave fall into the region of the frequent colli
sions, it is necessary to use a new kinetic-hydrodynamic 
approach to determine the nonlinear polarizabilities 
S(k_, k1, -k2), S(kl, k2, k_), E(k1, k2, k1, -k2), and 
E(kl, k2, -k2, k1), (k_ = k1- k2). If all the frequencies 
are in the frequent-collision region, then we can use the 
well known hydrodynamic equations (see [Bl) to deter
mine the components of the nonlinear currents. The 
case when the frequencies of all the waves are larger 
than the effective collision frequency has by now been 
thoroughly studied (see [l, 21 ). However, neither method 
is suitable for our purposes. We develop here a kinetic
hydrodynamic approach which makes it possible to cal
culate the components of the nonlinear currents in the 
case when 

I W-- k-VTod ~ Veff. ~ I Wt,2- kt,2VTa I, a = e, i. (2.1) 

Let us illustrate this method by using as an example 
the calculation of the nonlinear polarizability 

S(k_, k1, -ka). We expand the distribution function in 
powers of the electric field: f = fo + f(l) + f< 2) + f< 3 ). + ·· .• 
The kinetk. equation for the Fourier components f~) 
with allowance for the collision integral is of the form 

(!) ea (kafo/av) 
-i(w--kv)fak+-Ek =lak(1,0)+Iak(0,1), (2.2) 

ma k 

Here 

Ia. = ~la.a.', a= e,i, 
a' 

and Iaa' is taken in the Landau form:[61 

faa•= _ 2rr.Le'_!_ 5{/a(v) ata•(v') _ /a•(v') ata(v) }u--dv 
· ma. 8vi ma.' iJv/ ma. iJvi 11 ' 

(2.5) 

(2.6) 

L is the Coulomb logarithm; I(m, n) denotes that it is 
necessary to take in the collision integral f<ml(v) in 
lieu of f(v) and fml(v') in lieu of f(v'); Ik(m, n) is the 
Fourier component of the function I(m, n). 

In the case when w coincides with the frequency of 
the turbulent oscillations, the collision integral can be 
accounted for by ordinary perturbation theory. The 
equation in which w is equal to the difference in the 
frequencies of the turbulent pulsations must be solved 
by a method similar to that of Enskog. [91 Equation 
(2.2) for the determination of S(k_, k1, -k2) has in first 
approximation the solution 

(2.7) 

By substituting this expression into the right side of 
(2.2), we take into account the corrections of order 
11 I w « 1. [1111 Allowance for these corrections is essen
tial, since according to (1.4) the nonlinear interaction 
is determined by the symmetrical combination 
S(k_, k1, -ka) + S(k_, -ka, k1), in which the contribution 
of (2. 7) is of relative order w_/ w0e and the contribu
tion of the corrections is of order lleff/W0 e » w_/woe· 
Integrating (2. 7) we obtain, with allowance for the cor
rections terms, the following expression for the first
order electron current: 

• (1) e2noi ( . Ve) 11) 
/k = Ek-- 1-l- == en011j, , 

mew ro 

4 - Lnoe' 
v.=-l'2rr.--

3 m2 v3 ' 
e Te 

L is the Coulomb logarithm. 

(2.8) 

Th~ solution of (2.3) should cause the collision inte
gral to vanish in first approximation. We separate in 
the collision integral the largest terms, and move the 
remainder to the left side of (2.3), which we shall take 
into account by perturbation theory. The main terms in 
the collision integral are 

I .. (O, 2) + 1 .. (2, 0) + 1.1(2, 0). 

Neglecting terms of order (me/mi) « 1 we get 
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(2.9) 

and Ikei(O, 2) is negligibly small because it contains 

fik ~ 1/mf. It is convenient to separate from (2.9) the 
small term 

~1.,,(2,0)= 4nL.e;;o(~) S(vv')/.:!> (v')dv' 
me Tev 

and transfer it to the left side. 3 > Then the zeroth
approximation equation takes the form 

(2.10) 

1...,(2, 0) + J.,,(O, 2) + 1..;(2,0) - M .. ,(2,0) = 0. (2.11) 

It is easy to verify by simple substitution that Eq. 
(2.11) is satisfied by the function 

(2) v (2) 3 ·2 1' (2) 

(2)o_ {n" , ~"---(1 __ v_)-"--} 
fe> - foo ---;;;; T p2 2 ::Jv2 . Te ' 

Te Te 

(2.12) 

where 

(2> S (2JO . "<•> - 1 S (2)0, dv n4 = }k dv, "k -- .VJR , 
no (2.13) 

1 2 (2) 
(2) s mov (2)0 ne 

T,=-3 - 2-t. dv----T., 
no no 

no ( v2 
) 

foo = v3 (2n)'1, exp - -2;,.- ; 
Tc 1·e 

n0 and T e are the unperturbed density and temperature 
of the plasma. The function (2.12) is the first term of 
the expansion of the difference of two Maxwellian func
tions 

ti2>0= n (!!!:.!_)''• exp(- (v- V)• me\_ -no(~)';, exp(- m,v•) 
2nT 2T I 2nTe 2Te ' 

(2.14) 

n = S (too+ f\2J0) dv, V = S (!00 + j(2>0 )vdv, 

1 S m.v2 
T =- (too+ f2JO) -dv 3 2 . (2.15) 

Since (2.12) does not contain the moments of the first
order distribution function, 4> the system of equations 
obtained with allowance for the small left-hand side of 
(2.3) differs greatly from the hydrodynamic equations. 
Integrating (2.3), we obtain the equations for the mo
ments of the function f{f> (which coincide, just as in the 
Enskog method, [9 J with the moments of the function 
fk2)0 ): 

- ium,<2>= -no(kV~>), 
(2.16) 

-m,noiwV~~ + ika(nork2> + T,n,~2))+ ik~n~~.h 

S k,an~!> 
- e E.,-k-

1
-8(k-kt- k2)= R,,a, (2.17) 

- 3/znoiwT,(2> + noT.i(kV,(2J) + i(kq.~) 
k y(f) 

-enoSE., ~1·'~(k-k1 -k~)dk1 dk2 =0, (2.18) 

where 

(2.19) 

3lThe relative order of (2.1 0) is (wjkvre), as can be verified by 
using the results of a solution of (2.3). 

4 )lt is easy to ShOW that iff= foo + f( I) + f(2) in (2.15), then (2.14) 
does not satisfy (2.11 ). The more general statement can also be made. 
Any function f<2l0 containing moments of first order order cannot satisfy 
Eq. (2.11). 

is the analog of the friction force and the thermal force 
in ordinary hydrodynamics, 

(2.20) 

is the analog of the electronic heat flow due to the col
lisions, and 

<•> r [ 1 ]t'2)d kpnapk = m,) Va (kv)- 3 ka1.72 eh V (2.21) 

is the analog of the electronic viscosity. 
Usually the left side of (2.18) contains besides q and 

k also a quantity 

i m v2 

Q = J'Tle;(2)dv, 

which represents the heat released by the electrons as 
a result of their collisions with the ions. Accurate to 
terms of first order in f~k• we have Q = -3(me/mi) 
X veTk>n0 

In order to close the system of equations (2.16)
(2.18), we need to express fjf> in (2.20) and (2.21) in 
terms of the sought quantities nk>, vk>, and Tk> . 
Let us examine the complete equation for if:> with 
allowance for the small terms transferred to the left 
side of (2.3). Then we put in the left side, approximately, 
fk:2 > = fk2 >0 in accordance with (2.12), and in the right side 
we take into account the small correction to ff:> 0 , which 
is conveniently represented in the form fk2 > = f< 2 >0 

+ foo<l? (foo<l? « if:> 0 ). As a result, the left s1de of the 
sought equation becomes equal to 

{( 
V 2 5) rf> ( vn V~e ) yf\ /oo ---- -i(kv)+ 3 ---1 v,--

3v•Te 2 Te 2 V3 V2 Te 

1 , U;; . 3 Ve , ( ViV; )) {2 22) +-(Rv)+--(W; -A-·0)---A .. a8·+b- f 
noTe 2v2 Te J tJ 4 {t) 1J 'J v2Te ' .. 

A,;' =A,;+ A;,- 2/38,;Aii, 

w,; = ik,v.~> + ik;V~~- 2f3i(kvf>)8';, 

(2.24) 

(2.25) 

(2. 26) 

The last term of (2.22) is obtained from Iee(1, 1), and a 
and b in this term are complicated functions of 
y = (vI .f2 VTe), which are of the order of unity when 
y ~ 1. The expressions for a and b are not presented 
here since, by virtue of the fact that a~ b ~ 1, the en
tire terms in question is of the relative order 

1 ( k2_v~.) 
-max(!)_,-- <1 

Ve Ve I 

(see below) and is neglected. 
By virtue of the symmetrization of Aij with respect 

to k2 and k2 , the first term of (2.23) is small compared 
with the second ( ~ w_/veff), which is of the order 
(velwoe)Ab and can be discarded under the same as
sumptions (veff(Y ~ 1) ~ ve). We note that the terms 
containing Aij and Ab have the character of correc
tions to the tensor W ij of the rates of displacements 
connected with the presence of the fields Ek1 and Ek2• 

In this approximation, both the left and the right sides 
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of (2.3) assume the standard form which was used, for 
example, by Braginskii.[81 Using the results of that 
paper, we can write in lieu of (2.19)-(2.21): 

Rk = -m,nove·0.51Vfl- 0.71inokTl.2l, 

(2l . <2l noTe 
qk = 0.71noTeVk - 3.16tkTk -, 

me'Vf! 

(2.27) 

(2.28) 

(2.29) 

Using (2.27)- (2.29) as well as (2.8) in the system (2.16) 
- (2.19), we obtain the sought-for longitudinal current 

. Vk2~k-
J~~ =en0 lkJ 

(2.30) 

This result has been written out with accuracy 
-1 ( 2 2 I ) ve max w_, k_vTe ve , 

k_•v:. ( iro-) Q=-iro-+0.51v.+i-- 1-2.96- , 
(i)_ Q. 

(2.31) 

3 . k_•v:. 
Q.= --tCil-+3.16- --. 

2 Ve (2.32) 

To estimate the order of the discarded terms, it is 
sufficient to calculate, say, A~13 , since the remaining 
terms are of the same order. By virtue of the fact that 
the tensor properties of A~{3 coincide with the tensor 
properties of W a{3• allowance for A~f3 leads only to the 
fact that (2.29) will contain Waf3 - A~f3 in lieu of W a{3· 
From this we get in lieu of (2.30) 

<'> S nolk-le3 
/k = Ek,Ek,6(k_- k1 - k2 )dk1 dk2 --:--:-::-

- m."Cil,.•Q 

x {(u1 v.- 0.49 )~~~ + 1.46 (k.:..k,) (~k,)}. (2.33) 
Q. . k,k, k,k,k_-

It follows from (2.33) that the result (2.30) is valid if 
the following inequalities are taken into account 

From (2.30) follows the sought-for expression for 
S(k_, k1 , -k2): 

(2.34) 

(2.35) 

2. Let us proceed to find S(kl, k2, kJ. In this case, 
the collision integral is decisive in (2.2). Using En
skog's method in lieu of (2)2), and putting k = k_, we 
obtain a system of hydrodynamic equations, which have 
in the Fourier representation the form 

-iw-ne~~ + ik.:..V~~ n0 = 0, -i(J)_n~~-+ ik.:..V~~ no= 0, 

· v <1>e ·k ( T<1> + T <1> ) ·k <'Je (k ) -tr.o-meno tt_a = -t -a no ek._ enek._ -z. -fllta.~ -

k~ (1) 
-enoEk_ik-i-Rk a, 

-3/2 i(J)_n0T.~~ +n0T.i(k.:..V~~)= -ik.:._q~~. 

(2.36) 

where 

<1>e __ 0 71 T (V<t>e_ y<1>1)- 316 noTe 'k T11l qk--.noeh k. l-ek, - - - meve -

(1)e noTe ( . (1)e • ..lf)e 2 (1)e ) 
:tap=;= -0,73-~ zk_,yk_P+zk_pVit_a- ;3 ilcV,_IIap , 

(1Ji __ 096 noT; ·(k y<1ll +k -0,1lf _ 2k y<1)fl\ ) (2 37) 
3tafl - • 'Vi Z. -a k_tl . -13 li_a 3 - k_ ap, . • 

In order for Eqs. (2.36) with constant Te and Ti to be 
valid, it is necessary either that the frequency w_ be 
larger than the reciprocal temperature relaxation time 
(me/mi)ve, or that the plasma be isothermal, Te = Ti· 

Solving the system (2.36) and (2.37), we obtain 

k y(l)CI 
v<'>" - --=---..!!=____ (2.3 8) 

k_ - Jk_j ' 

where 

( k_2vT-")( 1 me 1 ) x=1+ 0,51v.+1.22-Q-· -+-------:----:- , 
e We m"ro" (2.39) 

k_2vT•'( iffi_) 
Cile = -iCil- + i-;:::-- 1-1.71-g~ , (2.40) 

k_2vT;2/ i(J)_ iCil- T. Cil-) 
Cil;=-iCil-+i-~t1-- -1.28-+0.71i--- ,(2.41) 

(i)_ \ U; Vi T; u. 

(2.42) 

With the aid of (2.38) we can find both S(kl, k2, k_) and 
the linear dielectric constant E(k_) of the plasma. We 
have 

4 (v(l)e y<lll) • • 
e(k_) = 1 + i nnoe L- k_ = 1 + i~+ i~. (2.43) 

Cil_EL XID_Cil6 XCil_Cill 

On the other hand, neglecting the collision integral in 
(2.3) 5> we get 

= ~ s k,v dvEt., ( k• 8/~~. ) II ( k1 - k'- kz) dk' dkz 
m. k1 i(Cil1- ktv) kz av 

ie2 s k,k, 1 (1) (2 44) 
~ ---- ---Ek,nk_et'l(k,-k_-k2)dk_.dk2• • 

ma k 1k2 Cilt 

In (2.44) we neglected the Doppler corrections to w1• 

Their inclusion results in small corrections of relative 
order w_/CJ..>1 • 

From the first equations of (2.36) and (2.33) we get 

i.e., the SOU!~ht 82 is 

S,(k., kz, k-) = ieanolk.:..l (k,k,)-. 
k 1k,me2WOeXCileCil-

3. We turn to calculate the sum 
1:(k1, k,, k., -k.) + ~(/'" k,, -k,, kl). 

(2.45) 

(2.46) 

(2.47) 

5>1n this case it is sufficient to confine oneself to this approximation, 
unlike the calculation of S(k_, k1 , -k2 ) when the collision integral must 
be taken into account in first order of perturbation theory. This is the 
consequence of the fact that in the nonlinear interaction ( 1.4) there is 
no symmetrization with respect to k1 and k2 in S(k1 , k2 , k_). 
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. Neglecting the Doppler corrections and the collision in
tegral in (2.4) we have 

j~3) = e) :v fk~dv 

e2 r kv ( 1-t ot't.') ) 
""'- E., -:--k -k - 0 - 6(k-k1 -k_)dk1 dk_dv 

me HO tV 

or, using (2.30), 
(3) 1. 71v.noe• r h = J dktdk2 dk8 E.,E.,E.,· 

me~O>Oe 

~ (k2k3) I k2 + kallk- ktl {kk,)l'J(k- k,- kz- ita) (2•49) 
Wo.2kkt(w- Wt)k.kaQ (k. + ka) Q.(kz + ka) 

We note that the sought sum (2.47) is symmetrical with 
respect to the indices 2 and 3, thus justifying the use of 
(2.30), in the derivation of which we used essentially 
this symmetry property. From (2.49) we get 

! (~ (k1, kz, ~C., -kz) +~ (k., kz, -k., kt)) 

1,71v.noe•k-2 (ktkz) 2 

W- kt2 kz2 me" wo.3 QQ. (2. 50) 

3. SPECTRAL TRANSFER OF WEAK LANGMUIR 
TURBULENT PULSATIONS 

We shall assume that the intensity of the Langmuir 
pulsations is so small that the change of thei; disper
sion properties due to the nonlinear interactions can be 
neglected.6 l The term "weak Langmuir pulsations" will 
be used from now on in this sense. For weak waves ' 
w_=%vh(k2 - k~)/woe· 

The spectral transfer is determined by the imaginary 
part {1.4): 

~·· = Im s~'(kt,kz) 1Ek,J 2dk2, IE •• I·= IEk,J 26(w-wk,), (3.1) 

where 

~'(k.,kz) = 2ni{~(kt. kz, k~, -kz)+ ~(k4k2, -kz, kt) 

- Bni S1(k_,k,,-k2 )S2 (k1,k2,k_)} (3.2) 
w_e(k-) · 

Using (2.35), (2.46), (2.43), and (2.49) we can obtain 

( 1- e.(k-)-i) . (3.3) 
e(k-) 

The first term of (3.3) corresponds to the contribution 
of the current of the third power in the field, and the 
second term corresponds to the second power, and 
E(k_) = Ee(k_) + Ei(k_) + 1. If we neglect the ionic term 
in E, then these contributions cancel each other com
pletely when Ee » 1. The resultant compensation effect 
is similar to the compensation of the nonlinear and 
Compton scattering in the collisionless case. C2 l 

6lLandau absorption of Langmuir waves is assumed to be expo
nentially small, whereas absorption due to collisions is of the order of 
v •. 

Since w_ « k_vTa, the region of applicability of 
(3.3) has, in accordance with (2.1), the form 

(3.4) 

By virtue of these inequalities, the phase velocities of 
the waves are sufficiently large, and the Doppler cor
rections in (3.3) are negligibly small compared with the 
ionic contribution. Then 

~'(kt. kz) = -i 1.71vek-2e2e,(k-) (kt~2) 2 . 
wo.kt2krm.zw_QQ.s(k-) (3.5) 

Under the conditions w_ « k_vTi> i.e., of sufficiently 
large phase velocities, if 

(3.6) 

we get in the case of 

max (v.Z, 'lltWo.) > k_2vTl > Ve'II;T./ T1, (3. 7) 

the value 

i 8 
Y•· = IE., j• TtiEk, j• 

S 0,69'11e2w-T;(k,kz) 2 JEk,J 2 dk, 
= -(J)o. ..,;JILJ 2Te(1+5/sT./Te) 2kt2kz2 nomevTl (3.8) 

The inequality (3.7) is satisfied if (Te/Ti)5 « m/me, 
which always takes place for an isothermal plasma 
(Te = Ti)· We emphasize that, just as in the absence of 
collisions, C2 l the redistribution is such as to decrease 
the frequencies of the turbulent pulsations. We note 
that the condition for the appearance of the nonlinear 
interaction (3.8) is (see footnote 6 l) Yk »lie· Recogniz
ing that T e cannot differ greatly from Tit we obtain 
for Te~Ti 

i.e., it is necessary to have W/n0Te > v'me/mi. The 
question whether the change of dispersion under such 
intensities can be small calls for a separate analysis 
(Sec. 5). 

In the other limiting case, when (3.6) is satisfied but 
(3. 7) is violated, namely 

(3.9) 

we have 

r (ktkz} 2 0.12w-v.S JEk,J 2dk2 

Y•• = (J)o. J k,•k2• k_•vT.' 4nn0T.(1 + 5/s T;/T.p · (3.10) 

In this case the direction of the spectral transfer 
corresponds to an increase of the frequencies of the 
turbulent pulsations. The region in which (3.9) takes 
place vanishes if (3.6) is violated. Thus, in order for 
(3.10) to take place it is necessary to satisfy (3.6) with 
a large margin. 

To estimate the degree to which (3.6) is satisfied, it 
is convenient to rewrite this inequality in a different 
form, introducing the number of electrons in the Debye 
sphere 

(3.11) 

We then have in lieu of (3.6) 
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( T )'''( m. )'" 1~ND~ T: me . (3.12) 

For an isothermal plasma Te"" Ti, the plasma density 
should be sufficiently large, and its temperature should 
be small. When Te » Ti, condition (3.12) is satisfied at 
much lower temperatures and larger densities. The 
spectral transfer prevails over linear damping if the 
following inequality is satisfied: 

(3.13). 

Let us consider now the nonlinear interaction under 
the conditions of an inequality that is the inverse of 
(3.6), 

(3.14) 

We have 
r 0,13vb>iiD-m;(ktkz) 2 IE~t,l 2 dkz 

Vk, = -(J) .. J 4lk....lmevTi-(1 +.T;iT.) 2kt2k.f 4nnoT. · (3.15) 

The order of magnitude of the increment (3.15) is 

W Ve'Vi m; 
V'"""' noTe v, lk-l 2vT." m.' 

Consequently 'Y > lie when 

(3.16) 

We note that the formulas obtained in the present 
section are valid also in the case when account is taken 
of the change in the wave dispersion due to the nonlin
ear interactions, provided only w_ « k_vTi· 

4. CHANGE OF DISPERSION OF LANGMUIR WAVES 
WHEN w_ « k~vh/lle 

Besides changing the spectral transfer, the collisions 
can greatly alter the spectra of the Langmuir waves if 
the phase velocities are sufficiently large. The correc
owk of the Langmuir-wave frequency is 

&o .. ,=Re)~'(k.,k2)IE~<,i•dk2• (4.1) 

Since 

(4.2) 

where w _ is the frequency difference of the Langmuir 
waves with allowance for (4.1), we get 

r t.7h•.•<k•k•)'IE~<,I•dk. 
6(jk, = -CDoeJ 4rtnoT.k_2vTe2 (1 + eT;/T.)k.2kz• · (4.3) 

Here E =% when (3.6) is satisfied and E = 1 when the 
inequality inverse to (3.6) is satisfied. The order of 
owkl is 

v,2 W 
&ok- w .. ~-T-. 

•-·VTe no e 

When account is taken of owk, an appreciable change 
can take place in the frequency difference w _ of the 
turbulent pulsations, from which the large term woe 
drops out: 

It follows therefore that the change of the dispersion 
due to the nonlinearity is significant when 

(4.4) 

On the other hand, by virtue of (4.2) 

(4.5) 

It is obvious that in an unbounded plasma one can always 
find small k such that ( 4.4) is satisfied. In a bounded 
plasma kmin ~ 1/a, and by virtue of W /n0T e « 1 we 
have 

which, gene1rally speaking, can also be satisfied. 
We note that the results obtained in Sec. 3 are valid 

when 

(4.6) 

This inequality is in contradiction with (3.13), indicating 
that the breaking up of the turbulence scale, described 
by (3.10), can occur only against the background of the 
more intense process wherein they are absorbed as a 
result of the collisions. Let us take further account 
of the chan~~e of the wave dispersion in (3.10). By vir
tue of the fact that owk is inversely proportional to k, 
the sign of w_ coincides with the sign of k1 - k2• This 
shows that (3.10) describes a spectral triangle which 
likewise leads to a breaking up of the turbulence scales. 
When (4.5) is satisfied we get 

a( w )2 ~·." v-(J) .. -T -k. ;;· 
no • Pre 

(4.7) 

This increment is larger than lie if 

which, together with (4.5) yields lie « k_vTe and con
tradicts (3. 4). This again indicates that the breaking up 
of the turbulence scale occurs against the background of 
the more intense process of their dissipation. 

We note that (4.6) does not contradict the condition 
of the applilt:ability of (3.8), but if the dispersion is de
termined by the nonlinear interaction, i.e., if (4.4) and 
(4.5) are satisfied, then to estimate the intensity of the 
spectral transfer it is necessary to replace w_ in (3.8) 
by w_: 

( W )• v.• ( T; )4 T1 
y :~ -- w .. •-,-- 1 +~ -, 

noT. k_ Vxe'v; T. T. (4.8) 

which is larger than lie when 

__!_, > k_2vT.'( m, )''• ( Te )''• ( 1 + T; )" • 
noT. COOeVe m; T; T. 

(4.9) 

In this case the spectral redistribution is such that the 
turbulence scales increase. However, comparing the 
conditions (4.9) and (4.5) we see that the interaction 
(4.8) is possible only against the background of intense 
damping. Similarly, under the same assumptions as for 
(4.8), we obtain an estimate for the nonlinear increment 
(3.15): 

(4.10) 

which exceeds 11 e if 

(4.11) 
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Comparing the conditions (3.16), (4.5), and (3.14) we find 
that the estimate (4.11) is valid if the following inequali
ties are satisfied 

Time Vi ms -->->-, (4.12) 
T, m; WOe m1 

which are contradictory. Thus, the interactions which 
occur under conditions w_ « k:V4elve cannot lead, in 
general, to a noticeable distortion of the energy distri
bution over the spectrum. 

5. DISPERSION AND SPECTRAL TRANSFER IN THE 
PRESENCE OF INTENSE TURBULENCE 
(w_ » k~vh/ve) 

We note that this case is of greatest interest. If 

(5.1) 

then 

(5.2) 

The change in the pulsation spectrum is determined by 
the equation 7 > 

/j S 3.841 Ek, 12 (ktkz) 2k-2vTe"dkz 
Ulk 1 =WOe 

4rrnoT,k12kz2w_2 (2.14 + T;/T,) · 
(5.3) 

It must be noted that the right sides of (5.2) and (5.3) 
represent the imaginary and real parts of the disper
sion equation for the corrections to the frequency of the 
Langmuir oscillations due to nonlinear interactions. It 
is seen from (5.1) that the imaginary part of this equa
tion is small compared with the real part, and the solu
tions of the equations obtained from (5.3), 

(5.4) 

are in-~eneral complex and have imaginary parts, as 
can be seen from the very form of (5.4) that are of the 
same order as the real parts. In this case the non
linear instability that leads to the spectral transfer is 
due to the solutions of (5.4). In connection with the fact 
that the solution of (5.4) is difficult, we confine our
selves to a qualitative investigation of this solution, 
which enables us to estimate the characteristic times 
and to determine the direction of the redistribution 
process. 

Let us assume that the noise spectrum is concen
trated in some wave-number region near k2"" kzo. We 
consider first the limiting case k1 » kzo. Then (5.4), 
assuming 6wk » 6wk yields 

1 2 

1 1Ek,l'(ktkz)2dk, (55) 
(15wk.)3 =- 3ll4wOekt'VTe2 J 4nnoTekt"kz2(2.14 + T;/T,) • 

For the unstable root we have 

I Ek, 12 (ktkz) 2dkz ]'" . 
4nnoT,kt2k22 

(5.6) 

7l An equation coinciding with (5.3) can be obtained as a dispersion 
equation for the electric field of weak waves excited by intense turbul
ence (the phases of the weak waves are arbitrary). This remark pertains 
to all the dispersion relations considered here. 

As seen from (5.6), 6wk increases with increasing ku 
1 

thus justifying the assumption that 6wk » 6wk when 
1 2 

k1 » k2• An estimate of the increment (5.6) when Te 
~ Ti is of the form 

We note that the real part of 6 wk is of the same or-
1 

der as the imaginary part, and this, the spatial disper-
sion of the Langmuir oscillations is almost completely 
connected with their nonlinear instability. We note also 
that (5.2) yields an estimate of the nonlinear increment 
due to the imaginary part in the dispersion relations 
(which is analogous to the kinetic instability in the lin
ear theory), y' = k2 vTe/ve. On the other hand, by vir
tue of (5.1) and of w_ ~ y, and consequently of y' « Y, 
i.e., within the framework of the initial premises (5.1), 
the "kinetic" instability can be neglected. Condition 
(5.1) is satisfied if 

(5.7) 

It must be specially emphasized that the condition 
for the smallness of the collisions is in this case not 
limiting, since when y « ve there also occurs a "non
linear dissipative instability." Indeed, to take into ac
count the absorption of the Langmuir waves due to the 
collisions, it is sufficient to replace the left side of 
(5.3) by 6wk + ive and when 6wk » 6wk we obtain for 

1 1 2 

the increasing root 

Yk =Iml\wk = 1.39kJVTe__····[wOe ~ IEk,l 2 (ktkz) 2dk2 ]''' 

' ' (2.14+T<fT,)'h Ve l,nnoT,k12kl · ·(5.B) 

We then get in lieu of (5. 7) 

(5.9) 

Let us consider now 6wk « 6wk. We then get from 
(5.4) 1 2 

~ 3.84IEk,l 2 (ktkz) 2k-'vddkz 
llwk, =WOe 4nnoTekt2kz2 (2.14+ T,.f~) (6w.J 2• (5.10) 

Estimating 6wk from (5.10) and substituting in (5.2), 
we obtain a contradiction to the initial premises. Thus, 
the spectral transfer in the entire investigated region is 
such that the turbulence scales are broken up. 

6. DISCUSSION OF RESULTS 

Summarizing our analysis, we note that the investi
gated region was bounded by the conditions ve » k_vTe• 
Vi» k-VTi, and also W- « k-VTi, w_ « k_vTe· It is 
precisely in the region w_ « k_VTi where the nonlinear 
interactions of a collisionless plasma are the strongest. 
This is the reason for the interest in this region in the 
presence of collisions. At the same time, the employed 
condition w_ « k_VTi is not fundamental and it is easy 
to obtain also from the derived general formulas con
crete expressions for the nonlinear interactions when 
W- » k_VTi· 

Let us summarize the results briefly. 
1. We have observed that the spectral transfer, 

heretofore considered in a collisionless plasma, is a 
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particular case of a more general nonlinear instability. 
Such an instability can have both a kinetic and a hydro
dynamic character. In the former case it is determined 
by the imaginary part of the nonlinear dispersion equa
tion, and in the latter case by its real part. 

2. Just as in the linear theory, the increments of the 
kinetic instabilities are as a rule smaller than the in
crements of the hydrodynamic instabilities. In particu
lar, as shown by the analysis, the nonlinear kinetie in
stabilities under frequent -collision conditions are 
therefore usually suppressed by the linear damping for 
virtual waves. 

3. The nonlinear hydrodynamic instability becomes 
manifest in a broad region of the plasma parameters 
and leads to a qualitatively new effect: a change takes 
place in the direction of the spectral transfer. This 
takes place in the phase velocity region 

Vph / Vre "}> Nv. (6.1) 

In practically the entire investigated region, the spec
tral transfer leads to a breaking up of the scales of the 
turbulent pulsations. 

4. A nonlinear hydrodynamic instability develops 
also in the case when its increments are much smaller 
than the collision frequencies. This leads to a new im
portant conclusion, consisting in the fact that there is 
no damping of the Langmuir waves due to collisions in 
the region of applicability of (5.10), and nonlinear dis
sipative instability takes place even in the case of very 
frequent collisions. 

5. The usual subdivision of nonlinear interactions 
into decay interactions and induced-scattering proc
esses becomes meaningless. At the same time, charac
teristic resonance effects, corresponding to the vanish
ing of the denominator of (3. 5), can appear in the spec
tral-transfer effects. If 

1 (!)_ 

Im~(k1 , k2)- Im e,.(k_) + e;(k_) =in lw-lll(ee(k-)+ e;(k-) ),(6.2) 

then such processes are connected with the vanishing 
of the Green's function of the virtual wave and, conse
quently, are analogous to processes in which the Lang
muir waves break up into low-frequency ones. The 
corresponding term (6.2) consequently describes the 
spectral transfer of the Langmuir waves due to their 
decays into sonic waves that are located in the region 
of the frequent collision ws « ve, vi and are deter
mined by the dispersion equation 

(6.3) 

We note that both the spectrum of the "collision" 
sound of the plasma and the spectral transfer due to the 
decay of the Langmuir waves into such a sound can be 
readily obtained with the aid of the results (2.43) and 
(3.5). In such a redistribution process w_ = kvs and in 
order of magnitude w_ = k_vTi· The condition w_ 
« k_vTi which was used above is not of fundamental 
character. It is also easy to write out formulas for the 
change in the dispersion and the spectral transfer when 

w _ = kv s and w _ » k_ vTi. However, the condition 
w_ « k_vTe is quite important, i.e., the entire calcula
tion must be repeated anew by the method developed 
above if it i.s violated; it is then necessary to solve 
(2.11) without separating the term (2.10), which is no 
longer small under these conditions. The violation of 
the condition w_ « k_vTe is possible, naturally, only if 
the nonlinear change of the dispersion of the Langmuir 
waves is very large. 

Finally, when Te » Ti, there exists a broad region 
of values of the wave numbers of the turbulent pulsa
tions, for which 

(6.4) 

In this case we can use the known expressions for S1 
and S2 of a collisionless plasma, and use the quantity 
(2.43) for £i(k). 

The obtained effect of the change in the direction of 
the spectral transfer is of great significant from 
the point of view of many problems, particularly in the 
problem of effective turbulent plasma heating, the effi
ciency of interaction between beams and a plasma, etc. 
Besides these questions, which are connected with vari
ous applications of the observed change in the spectral 
distribution, attention must be called also to the fact 
that an increase of the density of the redistribution at 
small values of w11 for which collisions must be taken 
into account, can change the overall estimates of the ef
ficiency of the nonlinear interactions. 
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