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The dynamics of the development of kinetic two-stream instability in a plasma may be determined by the 
nonlinear interaction of the excited Langmuir waves, and not by the quasilinear effects. For this, it is 
sufficient that the waves be confined in a finite volume, and their decay and transformation into other 
modes be weak. A nonlinear equation is found, which describes the evolution of the energy spectrum of 
the oscillations in this case, and an asymptotic (large time) stationary solution is obtained for the equa
tion. The solutions describe steady-state energy spectra of oscillations, which differ significantly from 
those given by quasilinear theory. 

1. INTRODUCTION 

A beam of charged particles passing through a plasma 
may excite Langmuir oscillations in it.[l-4 J For this, it 
is necessary that the directed velocity of the beam, u, 
be large compared to the thermal velocities of the plas
ma particles VT<e, i> 0 • In addition, the beam must be 
sufficiently rarefied and have a significant thermal 
spread: 

(1.1) 

where vTet is the thermal velocity of the electrons in 
the beam, and N 1 and N0 are the beam and piasma 
densities respectively. 

The dynamics of the development of the two-stream 
kinetic instability that arise under these conditions is 
customarily described within the framework of quasi
linear theory.ls,sJ In our paper, we show that the qua
silinear effects do not always play a determining role 
in the development of the instability. On the contrary, 
if we take into account the finite dimensions of the vol
ume occupied by the plasma oscillations then, as we 
shall see below, the determining factor may be the ef
feet of nonlinear interaction of the oscillations with 
each other. We derive an equation that describes the 
evolution of the energy spectra of the oscillations in 
such situations, and we find under some simple as
sumptions a stationary solution of this equation, which 
is significantly different from the stationary spectra of 
quasilinear theory. 

First of all, let us consider how the laws of conser
vation of energy and momentum appear in the model of 
two uniform semi -bounded mutually -penetrating plas
mas, used in [s, BJ to describe two-stream instability. 
Since the "wave -beam particle" system is regarded 
as an isolated subsystem in this case, the total fluxes 
of energy and momentum in it must be conserved. Thus 
the fluxes of energy and momentum of the wave at any 
point are determined by the change of the corresponding 
fluxes of the beam. For example, at steady state, the 
flux of energy of the wave at any point sufficiently far 
from the plasma boundary isl5 J 

{1. 2) 

where vg is the group velocity of the wave, f:k is the 
energy of the electric field in the wave with wave vec
tor k (for simplicity, the one -dimensional case is con
sidered here). Let f0 and f00 denote the distribution 
functions of the plasma and beam: f0 = f(O, v) is the un
disturbed distribution function at the plasma boundary 
(x = 0), f00 = f(oo, v) is the steady state distribution for 
large x (x- 0). In the model considered, the energy 
and momentum obtained by the plasma waves from the 
beam particles are carried by them with the group ve
locity vg from the boundary into the plasma to infinity. 
On the other hand, since in actuality the volume occu
pied by the plasma is finite and plasma oscillations do 
not get out of it, it is clear that for large x we must 
have '6 2f: k v g = 0. Thus, in the model cons ide red, it is 

k 
necessary to introduce some third subsystem, which in-
teracts with the waves and absorbs energy and momen
tum from them. Obviously, the conclusions of Vedenov 
et al.l 5J concerning the steady-state forms of the spec
trum and distribution function remain valid, if for ex
ample, on the second boundary of the plasma at x = L, 
the plasma waves are fully absorbed or transformed 
into radiation. 

However, in the case where reflection is important, 
we must expect the physical results to be completely 
different. In this case, a stable stationary state in the 
subsystem of waves and resonant particles can no long
er be realized, since, on the one hand, the state in 
which a beam passes unaltered through a plasma is un
stable, and on the other hand, the fluxes of energy and 
momentum for steady oscillations which occupy a finite 
volume and form a system of standing waves are equal 
to zero. Nevertheless, a stationary state becomes pos
sible if we consider the interaction of the oscillations 
with the nonresonant particles, i.e., the induced scatter
ing of the waves by the particles, which appears as a 
nonlinear effect (proportional to £k_). The nonresonant 
particles of the plasma may serve as the third subsys
tern, which absorbs energy and momentum from the 
oscillations. Obviously, this is accompanied by an ac
celeration and heating of the entire plasma mass. 

Thus, in the indicated situation, which is apparently 
realized most often, when the oscillations form standing 
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waves inside some volume, the nonlinear interaction of 
the waves between themselves may play a determining 
role. 

2. THE BASIC EQUATIONS 

In this paper, we examine the influence of induced 
scattering of waves by particles on the development of 
two-stream instability under the following assumptions. 

First, we assume that the beam passing through a 
region of oscillations experiences only weak perturba
tion, so that the linear growth increment of the oscilla
tions y(k) may be assumed to be independent of the en
ergy Ek and to be determined by the formula: [SJ 

3 

y(k) = ~ WLeO !J!_ I . (2.1) 
2 k2 i)V v~mjk 

Second, the linear dimension L of the region with 
oscillations will be assumed to be large compared to 
the wavelength .\ = 27Tk-1 (L » k-1), and the plasma in 
this region assumed to be sufficiently uniform, such 
that the kinetic equation for waves derived for un
bounded plasmas is applicable. 

The energy transferred by the beam particles to the 
plasma oscillations per unit time equals Wt 
~ 2 y (k)W(k)6.kSL, where W(k) is the spectral energy 
density, 6-k the width of the wave packet, and S the 
cross -section area of the beam. The total energy flux 
of the beam equals P ~ N 1 (mu2 /2)Su. Obviously, the 
condition of weak perturbation of the beam may be writ
ten as 

~:::::: 4y(k)W(k)M L <L 
P N1mu• u 

(2.2) 

For Maxwellian distributions of plasma and beam 
particles, the increment (2.1) equals[3 , 4 l 

1fn[ w~.. { w~.. } 
y = - V 8 k'v3 exp - 2k2v2 

TeO TeO 

wZ.1wLeo(w- uk) { (ro- uk) 2 )] 

+ k'v• exp - 2k2v2 f · 
Te1 Tel 

(2.3) 

Using the estimate of the maximum increment 

lr;:Jv, uz 
Ym:=::: v--00LeO-, 

8 No v"Tel 

we write inequality (2.2) as 

Wt W(k)M WLeoL <::i 
P ~ NoxT., -u- ' 

(2.4) 

where Te1 is the temperature of the beam electrons 
and K is the Boltzmann constant. Since WLeo ~ uk, we 
have WLeoL/u ~ kL » 1. Thus the condition we obtained 

(2.5) 

is stronger than the weak-turbulence condition 
W(k)6.k/N~KTe0 « 1, if Te1 ~Teo• and is equivalent 
to the latter if T e1 » Teo (hot beam in cold plasma). 

Considering kL » 1, we shall assume, however, that 
the time kL/ w is small in comparison with the charac
teristic time of increase of the oscillations. For this 
condition to be satisfied, assuming that the waves are 
reflected without damping or transformation at the 

point of reflection, we may regard the energy of the re
fleeted waves to be always equal to the energy of the in
cident wav.es: W( -k, t) = W(k, t). This permits us not to 
consider the boundary problem here. It is quite simple 
to write th<e kinetic equation for the waves in an un
bounded pl:asma, which determines the evolution of the 
spectrum W(k) for those waves generated by the beam, 
and to include in the nonlinear term of this equation the 
interactions of these waves with the opposite waves 
having a spectrum W(k) = W(-k). 

Within the approximation considered, the nonlinear 
kinetic equation for the waves may be written as[7 , BJ 

d~~k) = 2y(k)n(k)+ n(k) ~ Q(k,k')n(k')dk', (2.6) 

where n(k) is the number of quanta of plasma oscilla
tions in a unit interval of the wave vectors k, n(k) 
= W(k)/w(k:). The kernel Q(k,k') for a plasma without 
magnetic field may be represented in the form [7 J 

Q(k,k')=(2n) 3 ~ )ap(k-k', a:a )wa(p,k,k:'), (2.7) 
a p 

where W a (p, k, k') is the probability of scattering of a 
quantum k' by a particle of type a with momentum p 
to form a quantum k, and fa (p) is the distribution func
tion of the particles of type a. The probability W a 
possesses the following symmetry property: 

Wa(p,k,k') = Wa(p,k',k) (2.8) 

and is proportional to lilw(k)- w(k')- (k- k', v)), which 
reflects the laws of conservation of energy and momen
tum in the scattering process (w(k) is the spectrum of 
the oscillations). 

Assuming small deviations of the distribution func
tion from isotropic distributions (N 1 « N0), we can write 
ofa/op as Vofa/oE, where E = p2/2ma is the particle 
energy, and then 

Q(k,k') = (2n) 3[w(k)- w (k')) ~ ) dp- iJj.,. Wa(P,k, k') 
a iJe (2.9) 

== Qc(k,k')sign[w(k)- w(k')), 

in which Qc(k, k') = Qc(k', k). 
We shall assume the oscillation spectrum to be one

dimensional, and shall subsequently ascertain when this 
is valid. Equation (2. 7) assumes the form 

dn(k) =2y(k)n(k)+n(k) S Qc(k,k')sign(!kl-lk'l)n(k')dk'. 
dt -- (2.10) 

Here we assume aw/ok> 0. From (2.10) it is immedi
ately clear that the nonlinear effect described by the 
second term on the right side is confined to shifting the 
oscillations in the spectrum while the total number of 
waves J n(k)dk is conserved. If the distribution func
tion is close to equilibrium, then this shifting occurs 
toward the side of lower frequencies and moduli of 
wave numbers (Qc(k, k') < 0), so that the energy of the 
quanta decreases in the process. The increment y (k) 
is positive in the finite region of the wave numbers de
fined by the condition ofe/av > 0 (we consider electron 
oscillations), so that there exists a lower boundary of 
instability I kim> O, and for 0 < I kl < I kim we have y (k) 
< 0. Under these conditions, on account of the nonlinear 
wave interaction, the energy of the oscillations is car
ried out into the region of small I k I, where the waves 
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are damped, so that the existence of a stationary state 
dn(k)/dt = 0 is possible. We shall seek just such a 
steady-state solution of (2.10) for large t- ""· 

First, let us note that because of the condition W(k) 
= W(-k) we have n(k) = n(-k), so that w(k) = w(-k). 
Thus (2.10) easily reduces to an equation for some 
purely "normal" waves excited by the beam, for which 
we may assume k > 0: 

dn(k) = 2y(k)n(k) + n(k) f Q0 (k, k')sign(k- k')n(k')dk', (2.10a) 
dt 0 

where ~(k,k') = Qc(k,k') + Qc(k,-k'). We shall study 
just this equation. 

3. STATIONARY SOLUTIONS 

Let us first consider the simplest case, for which 
we may assume ~(k, k ') = ~ = const for all k and k' 
for which n(k) and n(k') differ appreciably from zero. 
As will be clear from what follows, for this it is neces
sary that the region of instability be sufficiently narrow 
(weakly over -critical). Equation (2.10) takes the form 

dn(ky = [2v(k)+Oo r sign(k- k')n(k')dk' ]n(k) 
dt 0 

00 h (3.1) 
= { 2v(k)+ Oo[- ~ n(k')dk' + 2 ~ n(k')dk' ]} n(k). 

0 0 

It is seen that the stationary solution dn(k)/dt = 0 must 
satisfy the following conditions: In the region where 
n(k) * 0, the equation 

00 h 

vu(k)=2y(k)+Q0 [- )n(k')dk'+2~ n(k')dk']=o (3.2) 
0 0 

must hold, and in all the remaining parts of the axis 
0 :::;k < ""• n(k)= 0 must hold. Thus, Eq. (3.1) with 
dn/dt = 0 is formally satisfied by any function, which 
satisfies (3.2) in some region and vanishes in all the 
remaining parts of the axis 0 :::; k < ""· However, in or
der for some stationary state to be attained at t-oo 
regardless of the form of the initial conditions n(k, 0), 
it is necessary that n(k) vanish in the stationary state 
only where YH(k) < 0, since only under this condition 
will n(k)- 0 as t-oo. This additional condition makes 
the solution of the problem single -valued. 

From (3.2) it follows that where n(k)of. 0 we must 
have 

1 dy(k) 
n(k)=- Qo ~' (3.3) 

from which, considering the fact that n(k) 2: 0 and 
~ < 0, we have that n(k)of. 0 only when dy(k)/dk > 0. 
This implies that n(k) = 0 when k ~ k1, where k1 is the 
point of maximum increment (see the figure). 

In addition, from the condition YH(k) < 0 when n(k) 
= 0 it follows that we must have 

k, 

Q0 ) n(k')dk' + 2y(kt) = 0, (3.4) 

so that the region where n(k) > 0 starts from k1. Since 
the function 

00 h 

Oo [- ~ ndk' + 2 ~ ndk' J 
0 0 

can either equal -2y(k) or be constant (where n(k) = 0) 
and must be continuous, this function must change con
tinuously from the point k1 toward the side of smaller 
k and remain equal to -2 y(k) until the point ko, where 
y(ko) = -y(k1), at which, according to (3.2) and (3.4), 

00 kt 00 

Qo [- ) ndk' + 2 ~ ndk' J =- Q0 ~ n(k')dk'. 
0 0 0 

From this, it follows that n(k) = 0 when k < ko· We have 
thus found the stationary solution n(k). It has the fol
lowing form: 

Here 

n(k) = -~1 dy/dk if ko:::;k:::;k1 

n(k) = 0 if k < ko and k > kp 

YH(k) = 0 for ko:::; k:::; k1; 

YH(k) = 2[y(k)- y(ki)] for k > k1; 

YH(k)=2[y(k)+y(k1)] for k<ko, 

so that the condition YH(k) < 0 for n(k) = 0 is indeed 
satisfied. 

Passing to the more general one-dimensional equa
tion (2.10), we shall seek its asymptotic solution for 
t - oo also in stationary form. To this end, we also as
sume that n(k) * 0 on some interval ko :::; k:::; k1, on 
which the equation 

•• 
YH(k)""'2y(k)+) Qo(k,k')sign(k-k')n(k')dk'=O (3.5) .. 

holds, and n(k) = 0 if k < ko and k > k 11 and YH(k) < 0 if 
k < ko and k > kl' Equation (3.5) can be reduced to an 
ordinary Fredholm equation of the second kind 

a •· aQ (k k') 
~ = 2y'(k)+ I 0 ' n(k')dk' 

dk J {lk 
k, 

•· aQ (k k') (3 6) 
-~ oak' n(k')dk'+2n(k)Qo(k,k')=0 • 

h 

or 
•• 

n(k)- ~ Q'(k, k')n(k')dk' = f(k), (3.7) 
k, 

where 

Q'(k, k')=- sign(k-k') aQo(k, k') 
2Q0 (k, k) {lk 

/(k) =- ~'(~) __ (3.8) 
Qo(k, k) 

However, the limits ko and k1 in (3.7) are not yet 
determined. In order to determine them, we must con
sider the following. First of all, in order for YH(k) to 
vanish when ko:::; k:::; k 11 it is necessary to pose the ex
tra condition YH(ko) = 0 or YH(k) = 0 in addition to 
(3. 7). We choose the second condition 
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h., 

YH(k,) = 2y(kt)+ ~ Q0 (k1, k')n(k')dk' = 0. (3.9) 

In the second place, the requirement YH < 0 if k < ko 
and k > k1 leads to the conditions 

dyH(ko- 0) dyH(kt + 0) 
dk ;;. O, dk ~ 0· (3.10) 

But according to (3.6) 

dyH(ko+O) r;k'aQ (k k') 
--~ = 2y'(ko)- J 0 ;k n(k')dk' (3.11) 

k, 

+ 2n(ko + O)Qo(k0, k 0 ) = 0. 

Considering that ~(k, k) < 0, we see that dyH(ko-0)/dk 
> 0 if n(ko+O) > 0, so that no additional condition arises 
here. On the other hand, since 

dy (k O) k, aQ (k k') 
_!'"_~ = 2y'(kt)+ I -0~" -n(k')dk' (3.12) 

elk .l ak 
k) 

+ 2n(k1 - O)Q0 (k1, k1) = 0, 

the second inequality (3.10) can be satisfied only with 
n(k1-0) = 0; with this, dyH(k1 + 0)/dk also vanishes. 

Thus, the spectrum n(k) in the short-wave edge 
goes to zero in a continuous manner, as in the idealized 
case examined earlier, and appears in general as shown 
in the figure. Moreover, we have obtained a second con
dition for the location of the limits ko and kh whieh may 
may be written as 

h, 

~ Q' (k1, k')n(k')dk' + f(kt) = 0. 
ko 

(3.13) 

Since dyff(k1 + 0)/dk = 0, the requirement YH < 0 for 
k > k1 leads to the condition 

rJ2-vH(kt + 0) I dk2 ~ 0. 

As is easily shown, this is indeed satisfied. 
Equations (3. 7), (3.9) and (3.13) form a complete 

system for the determination of n(k), ko, and k1. For 
their solution, it is in principle sufficient to obtain so
lutions of the integral equation (3. 7) for all possible 
values of ko and ku substitute these into (3.9) and 
(3 .13), and solve the resulting algebraic equations for 
ko and kl' For a practical solution of the problem, 
however, we must use the method of successive approx
imations. We choose the zeroth approximation to be 
n' 01(k) = f(k), ~01 and kf1 from the conditions y (k~01 ) 
= max y(k), y(~01 ) = -y(k'f 1 ). This zeroth approxima
tion is the exact solution of the problem when ~(k), k') 
= canst, as seen above. The first approximation is 
given by the formulas 

k/0) 

n<"(k) = ~ Q' (k, k')n<"l(k')dk' + n<"l(k), 

k,(t) 

.\ 0o(ki'1, k')n<0>(k')dk' + 2y(k\'1) = 0, 
ko(t) 

R}1} 

} Q' (ki0 , k')n<0>(k')dk' + /(k~11 ) = 0. 
he(!) 

(3.14) 

Let us _?enote the integral operator with limits ko and 
kl by P(ko, k1), so that n' 11 (k) = P(~01 , k~01 )n' 01 + n<0 1• 

The second approximation is given by the formulas 

n<21(k)= n<0>(k)+P(k~11 , ki'1 )n<o>+P2(k~11 , k~'1 )n<'', 

n.<'> 

} Qo(k)"1, k')n<1>(k')dk' + 2y(k\21 ) = 0, 

n/'1 (3.15) 

~ Q' (k,<21 , k')n<'>(k')dk' + f(k~1 ) = 0. 
ko(2) 

The higher approximations are constructed in a sim
ilar manner, so that the m-th approximation n'm 1(k) 
has the form of the m-th partial sum of the Neumann 
series for the integral equation with limits ~m - 11 and 
k<m- 11 A . . t" t" fth 

1 • ngorous mves 1ga 10n o e convergence of 
this iteration scheme appears to be a particularly 
complicated problem; it is possible to show, however, 
that for sufficiently small Q* (k, k'), the convergence 
occurs rapildly. 

4. STATIONARY SPECTRA IN THE CASE OF TWO
STREAM INSTABILITY 

We now apply the formulas obtained above to the ac
tual calculation of the stationary spectra of the oscilla
tions for two-stream instability. To this end, we use 
the formula for the increment (2. 7) and the formulas 
for the nonlinear coefficient Qc(k, k') in the one-dimen
sional case. l7 ' 91 In this connection, we must distinguish 
some variants of induced scattering by particles. 

1. The scattering is from the electrons. This im
plies that I :u(k) - w(k') I » I k- k'l VTio for almost all k 
and k', or in the one -dimensional case 

lk + k'jrneo ~ JT;m I T.M. (4.1) 

If k and k' are directed to the same side, this means 
that 

I k I rneo ~ fT;m I r.M, (4.2) 

while for sc:attering from opposite waves (k and k' in 
opposite directions) 

(4.3) 

where .6.k is the width of the stationary spectrum. For 
the interaction of waves of the one-dimensional spec
trum it is particularly important to take into account 
the role of the ions in creating a shielding charge of the 
electrons, from which nonlinear scattering takes 
place. l7 ' 91 The point is that without allowance for this 
fact, the nonlinear interaction of waves with parallel k 
is very small (it is zero in the first approximation 
(krDe0) 2 ). Therefore, in practice, for all wavelengths 
except the shortest (krDe > (m/M) 116 ), the kernel of 
the equation has the following form: 

2 

Q (k k')- 3 WLeO lk 'I 
o ' -- 8(2n)''~> No,] eo ' + k rDeO (4.4) 

for 

lk+k'lrDeo<Ym/ ill (4.5) 

(considering; (4.1), we note that this is possible only 
for Ti/Te << 1), and 

Q,(lc,k')=--1-.~ wi.o m 1 (4.6) 
6(2n)"" NoxT.o M lk+k'lrneo 

for 

I k + k' lrn.o > 1m I M. (4.7) 
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For instability at the long waves lklrDeo <.Jm/M we 
have for ~k« lkl 

2 

Q k k') 3 <ilLeO lkl (4 8) 
o( ' ';::;;- 4(2n)'h N0xTeo rveO, • 

and using (3.3) we can immediately write the stationary 
spectrum W(k) = WLeo n(k): 

2 mu2 u2 Teo 
W (k) = -(2n) 3N1 ~·~.--~ 

3 2 <ilLeOVTel Tet 

1-(w-ku) 2/(kvret) 2 { (w-ku) 2 } 
X exp ----- . I k I rveo 2k2v2ret 

{4.9) 

In the case (4. 7), a large effect is given by scattering 
from opposite waves (kk' < 0), so that ~' which is pro
portional to 1/{ I k I - I k' I ) , cannot be approximated by a 
constant. Thus, we can only estimate W(k) here: 

Mu2 u T,0 [ ( w- ku )2] W(k) ~ 3(2rr)3Nt~---~· 1- --- lklrDeo 
2 ffiLeO T e1 kvTei 

{ (w- ku)'"\. 
Xexp - 2k'v2 I · 

Tel 

(4.10) 

2. The scattering is from ions (I k lroeo < .JTi m/T eM). 
Here 

2 --
3 <ilLeO v TeoM Q0 = - ---.-. ---1 k I rDeO --

4(2rr)'" NoxTco T;om 
{4.11) 

and 

{4.12) 

In the cases examined, the points ko and k1, which de
fine the boundaries of the stationary spectrum, are lo
cated symmetrically with respect to the boundaries of 
the instability region and are defined by the equations 

±1. {4.13) 

In this connection, W(k0 1 ) = 0. Moreover, W(k)=o 0 if 
k < ko and k > k 11 so that formulas (4. 9), {4.10), and 
{4.12) are valid only if ko ~ k ~ k1 • 

The resulting formulas for W(k) are easily inte
grated with respect to k and readily yield the total en
ergy of the oscillations W 0 • For example, for scattering 
of the waves by ions, 

I r. 2 ' , I mu2 vm yT;oT,o 
j;j-u= JW(k)dk';::;;-(2rr)hl\t-,- ----;- -(lklrDeo)-1• (4.14) 

3 2 M Tc1 

5. CONDITIONS OF APPLICABILITY OF THE ONE
DIMENSIONAL MODEL 

We now turn to the question of under what conditions 
the stationary spectrum may be regarded as one
dimensional. In the first place, such a situation exists 
when oblique waves, in which the components of k per
pendicular to the beam are nonzero, are strongly 
damped. This damping occurs, for example, in an 
axially-symmetric system whose transverse dimen
sions are small compared to the longitudinal ones (the 
beam is along the axis). Let the wavelengths of the os
cillations be small with respect to all dimensions, and 
let the plane waves be a sufficiently good approximation 
of the natural oscillations. The finite dimensions can 

nevertheless be accounted for by introducing into the 
kinetic equation for the waves a term proportional to 
vgan{k)/ar which would describe the transport of en
ergy of the waves out of the system in the transverse 
direction. [10J This term has the order of magnitude of 
w(k)k .L L .Ln(k) (k .L is the transverse wave number, L .L is 
the transverse dimension), and in the case w(k) » y{k) 
under consideration this term leads to strong damping 
of the instability when k.L * 0. 

Another cause of the one-dimensional form of the 
spectrum is the nature of the nonlinear wave interac
tion. Assume that we have a one-dimensional spectrum 
n(k) = n(k 11 )o(k.L), where n(k 11 ) satisfies Eq. (2.10) with 
dn/dt = 0. This n(k), obviously, formally satisfies (2.6) 
with dn(k)/dt = 0. However, as before, it is necessary 
to show that 

1 dn(k) 
-----'~~<0 
n(k) dt 

for n{k) = 0, in order for this solution to be the true 
stationary limit for all initial conditions. 

According to (2.9), Q(k, k') = Q (k, k')[ w(k- w(k')]. 
Thus for k.L « k 11 

Since 

~ Q(k, k')n(k')dk' = ~ dku'Q(k, ku')n(ku') 

';::;; ~ dku'Q(kll, kll')n(ku')[w(kll)- w (ku')] 

+ ~ dk1(Q(kll, ku')n(ku'}[ffi(k)- w (kj))]. 

2y(k!l) + ~ dkli'Q(k!l,ku')n(k!l')[ro(k!l)- w(ku')],;;: 0, 

and Q < 0, n(k) > 0 and w(k) - w(k 11 ) > 0, we get 

n~k) dn~:) = 2y(k)+ ~ Q(k,k')n(k')dk < 0. 

(5.1) 

(5.2) 

The condition of validity of this investigation is the in
equality ~k « I k 1. 

In conclusion we note that the general nature of the 
method used here to determine the stationary spectrum 
in the case of kinetic instability permits us in principle 
to use this method also for other instabilities of a type 
wherein, for one reason or another, the dependence of 
the increment on the oscillation energy can be 
neglected. 

The author sincerely thanks V. P. Silin for much at
tention to this paper. 
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