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It is proved that a periodic dependence of the magnetic moment on the coordinates can arise in conduc­
tors if the temperature is low enough and in a definite range of the magnetic induction B, 27T2T :=:; tin 
:=:; (47T) 213 t:o(v/c) 413 (n C/) B is the cyclotron frequency, Eo and v are the carrier degeneracy temperature 
and velocity, and c is the light velocity). The spontaneous ferromagnetic moment may also be a source 
of the magnetic induction. The periodic structure does not depend on the sample geometry; its ampli­
tude is of the order of B(v/c)2(tin/t:o) 112, and its period is of the order of the Larmor radius r. An 
electric field E, eE/r ~ I:H"l(tin/t:o) 112, having same period, appears simultaneously. The appearance 
of the periodic structure is connected with a phase transition of first or second order. In the latter 
case the phase transition is of Landau type; the relative jump of the heat capacity (if H is fixed and 
the temperature varies) or of the magnetic susceptibili~ (if T is fixed and H varies; in this case the 
transitions are periodic in W 1) is of the order (nn/t:o) 1 2. Near the transition point the oscillations 
period changes linearly with T (Tis the deviation of the temperature or of the magnetic field H from 
the transition point), and the oscillation amplitude is proportional to T112. There exist the isolated 
critical points (where cH (/) T-213) and critical points of second- order phase transitions (where the heat 
capacity cH or the magnetic susceptibility tends to infinity like T-112). 

The singularity near the absolute instability curve of the homogeneous state, where cH C/) T-1/2, is 
determined. The relative "width" (in terms of T or H) of the phase transitions is of the order of 
(r /D)2, D being the sample characteristic linear dimension of the sample; inside this region all the 
thermodynamic quantities are analytic functions of T and H, as they should be in a finite sample. The 
character of the transitions does not depend on the bulk-sample geometry, unlike the transitions to the 
domain structure (where, for example, a first-order transition takes place if His parallel to the sam­
ple surface and of second order if H is normal to it). The state diagram is shown at Fig. 1: the number 
of transition points is on the order of 0.25 (t:0 /T)(v/c) 413 if Tis fixed and less than 0.05 nn. 

1. PHYSICAL CAUSE OF PERIODICITY OF MAGNETIC 
STRUCTURES AND CHARACTER OF PHASE TRAN­
SITIONS 

SHOENBERG[2J has shown (see also[3 J) that the field 
acting on charges in a metal coincides with the magnetic 
induction B. This means that each charge is acted upon 
by a magnetic moment produced by all the remaining 
charges which are located at a distance equal to the 
Larmor diameter 2r from this charge. As a result, a 
self-consistent nonlocal interaction is produced between 
the charges, and leads (Condon[4 J) when 47TXmax > 1 
(X -magnetic susceptibility, the maximum is taken with 
respect to B) to a stratification into diamagnetic domains 
(see also [5 J). 

However, in a system with more than one component, 
with para- and diamagnetic components, the homogene­
ous structure of the magnetic moment may turn out to 
be unstable also when 47TXmax < 1. As is well known, 
the oscillating part of the susceptibility is the sum of the 
susceptibilities produced by all the extremal cross sec­
tions of the different carrier bands: 

l) A preliminary communication concerning this work was published 
earlier [ 1 ]. 

It is possible here that, although the stratification into 
phases is not favored in a one-component system at such 
a value of x (in particular, 47TX < 1), instability to strati­
fication would occur already for the paramagnetic com­
ponents in the absence of an interaction, since 47TXo 
= 47T "Bxv > 1 (v--those of the Jl for which Xv > 0). 
Consequently, the stratification does not occur pre­
cisely as a result of the self-consistent interaction with 
the components for which the homogeneous state is 
stable. This means that the interaction leads to a "mix­
ing," i.e., has the character of an effective attraction of 
the diamagnetic (x < 0) and paramagnetic (X > 0) com­
ponents2>. Thus, the instability of the components v gives 

2 lThe stratification into magnetic phases when (3H/3Bh < 0 is 
analogous to the ordinary stratification in a multicomponent system 
into vapor and liquid when (op/oph < 0; the pressure corresponds to 
a magnetic-field intensity equal to the sum of the partial intensities for 
the components corresponding to different extremal sections or zones, 
and the specific volume V = p-1 corresponds to magnetic induction. 
The entire interaction between the components reduces formally to 
the fact that the "specific volumes" of different components should co­
incide (B, obviously, depends only on the coordinates!). As a result, 
although the stratification into phases with Band B' is convenient for 
the "components" v, it is forbidden by the remaining zones, for which 
such "specific volumes" are not convenient. However, in the case of 
inhomogeneous induction B, different Xp. vary differently, the total 
susceptibility x can increase, a fact which is thermodynamically con­
venient (formula (3.9)). 
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rise to a tendency to stratification into phases, and the 
attraction between them (negative surface energy) gives 
rise to mixing. In such a case, it is natural to expect 
ordering of the phases, i.e., the occurrence of a self­
consistent periodic structure, the characteristics of 
which are determined by the properties of the thermo­
dynamic system. Thus, the period of the structure turns 
out to be macroscopic and of the order of the "interac­
tion radius"- the Larmor radius r. 

It can be understood from general considerations how 
the transition from the homogeneous structure to the 
periodic structure can occur3 >. The requirement of 
thermodynamic stability leads to a continuity of the 
corresponding thermodynamic potential in the transition 
(thus, positiveness of the specific heat cy denotes con­
tinuity and monotonicity of the free energy as a function 
of the temperature T). This means that there can ap­
pear at the transition point either an infinitesimally 
small amount of a new phase with essentially new prop­
erties, i.e., finite amplitude A of the spatial oscillations, 
or else that the new state itself differs infinitesimally 
little from the old one (i.e., the amplitude of the oscilla­
tions is infinitesimally small). 

In the former case the production of the new phase is 
connected with the nuclei that are produced in a fluctuat­
ing manner, and in order to be thermodynamically fav­
ored these nuclei must therefore be sufficiently large 
(since there is a surface energy on the boundary of the 
different phases). Therefore superheating and super­
cooling--conservation of the metastable homogeneous 
phase-are possible. The transition point is consequently 
the point of intersection of the thermodynamic potentials 
of the homogeneous phases and is not in essence a singu­
lar point (seec7 J, Sees. 81, 83)-this is a first-order 
phase transition. 

In the latter case there is no surface energy, and 
therefore superheating or supercooling is impossible. 
The new state appears suddenly in the entire volume, 
and the transition point is a singular point of the thermo­
dynamic potential of the system. The change of the state 
immediately in the entire macroscopic volume should, 
obviously, be "prepared beforehand." The dimension 
of the fluctuationally arising regions of the unfavored 
state (the correlation radius rc) should increase without 
limit on approaching the transition point. In Landau's 
theory this occurs in accordance with the law (c7 J, Sec. 
119) 

(a-distance between particles, Tc-transition tempera­
ture). So long as the correlation radius is small com­
pared with the interaction radius p (if this is possible), 
in our case the Larmor radius, the fluctuation inhomo­
geneity of the oscillation amplitude can be disregarded 
and this amplitude can be regarded as homogeneous and 
"reliable" (and not accidental), determined from the 
thermodynamic- equilibrium conditions. The inequality 

3 lThe possibility of appearance of a periodic structure was first 
indicated in [6 ]. However, the solution obtained there corresponds to 
411X > I, and is thermodynamically absolutely unstable, and therefore 
can never be realized physically (see also Sec. 3). 

rc « r corresponds toT» (a/r) 2 Tc (a~ 10-s em, 
r ~ 10-3 in magnetic fields H ~ 104 Oe, Tc ~ CK--the 
quantum oscillations are significant only at such tem­
peratures), i.e., T- Tc >> 10-10°K. Violation of this in­
equality is far beyond the limits of the capabilities of the 
experiment. At the same time, all the difficulties in­
volved in the construction of the theory of second-order 
phase transitions pertain to the region r c ?; p, if such a 
region exists. 

If ~a/r)2 :S N-1 / 2 (N-number of particles) then the 
inequality r c « r is satisfied in the entire region of ap­
plicability of the thermodynamics, since the measure­
ment of the temperature is meaningful only accurate to 
the fluctuations: T » N- 1/2. (We note that (a/r) 2 ~ n-4 /3, 

where n is the density of the Fermi particles.) 
Neglecting the fluctuations, the increment caused by 

the magnetic field in any thermodynamic potential e de­
pends on the "total" induction. Inasmuch as the inhomo­
geneous increment near the transition point is small 
compared with the homogeneous one, e can be expanded 
in a series in powers of this increment. Assuming the 
period A. of the oscillations to be specified4 > (i.e., ensur­
ing the min:lmum of the thermodynamic potential at a 
given amplitude of the spatial oscillations A), we obtain 
an expansion of e in powers of A, which can be shown 
(see Sec. 3) to contain only even powers of A and to be 
analogous to the well-known Landau expansion: 

e = So+ aA2 + ~A' + vA' + ... (1.1) 

When a = 0 and {3 > 0, we obtain the Landau second­
order phase transitions (see (7 J, Sees. 137, 138) with a 
finite jump of the specific heat eH (if the transition takes 
place at a filxed magnetic field H and at a variable tem­
perature) or of the magnetic susceptibility (if H is var­
ied and Tis fixed). The relative magnitude of the jump, 
as follows from simple estimates, is on the order of 
(n0/E0) 112 , where n oo B is the cyclotron frequency and 
Eo is the Fermi limiting energy. 

The periodic dependence of the quantum oscillations 
on B-1 leads: in the homogeneous case to periodicity of 
the transition in H-1 when H is varied at a given T. Here 
and throughout we assume, for simplicity, that H II z, 
where z is one of the principal crystallographic axes. 
At a mean free path l = oo there is no characteristic 
length in this direction, and in the main approximation 
in r /l « 1 the field is H = Hz(x, y). This means (since 
curl H = 0) that 

H = H, == const, M = M,(x, y), B = B,(x, y). (1.1a) 

A phase transition is possible, of course, not only 
from a homogeneous structure to a periodic one, but 
also when an increment (finite or infinitesimally small) 
with a new period that differs from the "old" one by a 
finite amount appears against the background of the in­
homogeneous structure with finite amplitude. 

The second-order phase transition curve may term­
inate by crossing the first-order phase transition curve 
at the critical point of the second- order phase transition 
(see[7], Sec .. 140), where we have in (1.1) a(To, Bo) 

4 lit is finite when Tc = T, assuming that the function A.(T) is regular, 
we obtain a temperature increment to Ac which is linear near Tc. This is 
proved in Sec. 3. 
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FIG. I. Diagram of state. Solid line-line of second-order phase 
transitions, dashed-line of first-order ·first transitions, dotted-line 
of absolute instability. O-critical point of second-order phase transi­
tions, X -critical point; the shaded area is that of the existence of a 
spatially-periodic structure. 

= f3(To, Bo) = 0. With Cl' = a1T1 + b1H1 and f3 = a2T1 + b2H1 
(where T1 = T- To, H1 = H- Ho, and IT1/TI « 1, IH1/Hl 
« 1), it is best to test the form (1.1) for a minimum in 
the coordinate system ( Cl', f3), and then transform to the 
coordinates (T" H1). When y> 0 it turns out that the 
direct continuation of the second-order phase transition 
curve is the line of absolute instability of the homogene­
ous phase with A = 0 (see below concerning the investi­
gation of the curve separating the region of the absolute 
instability); the line of the first- order phase transitions 
(corresponding to stratification into a homogeneous 
phase with A = 0 and a periodic phase with A ;e 0), and 
the line of absolute instability of the periodic phase with 
A .c 0 (see Fig. 1) are tangent to this line at the point 
(To, Ho). The specific heat cH or respectively the sus­
ceptibility XT become infinite like IT1i-112 or JH1i-112. 

The phase transitions connected with the diamagne­
tism take place also when a domain structure appears. 
In fact, it is clear from Fig. 2 that in an external mag­
netic field Ho parallel to the surface of the sample, when 
Ho coincides with H in the sample, variation of H0 is ac­
companied by a "boiling" -a first- order phase transi­
tion from Be to B~. In a field Ho normal to the surface 
(Fig. 3) and coinciding with the value of the induction 
B averaged over the sample, an "evaporation" takes 
place when Be :s Ho :s B~, and is accompanied by a jump 
in the susceptibility5 > (Landau-type second-order phase 
transition). In a magnetic field Ho which is oblique to the 
surface, it is possible to carry out ·the most complete 
investigation by using an additional parameter--the angle 
of inclination of Ho. Of special interest here is the vicin­
ity of the "critical point," where 41TX (B0 , To) = 1, i.e., 
aHjaB = 0, meaning, by virtue of the stability of the 
state at this point, that a 2H/a B2 = 0 and a 3 Hja B3 > 0. 

5 >B = H0 follows from the continuity of fBn dS, taken over the sur­
face shown in Fig. 3, where 12 /1 1 --> oo and /1 --> oo_ From B = H0 it fol­
lows that H0 = cBc +(I - c)B~, where cis the concentration of phase 
Be. The points Be and B~ correspond to 41TX < I and are obtained from 
the equality of the areas AcCeDe and DeC~ A~, which follows from the 
minimum of the thermodynamic potential. 

H 

FIG. 2 

Putting B = Bo + B" T = To + Tll H = Ho + H1, and taking 
into account the fact that s> 

69 = -B8H, (1.2) 

we get 

(1. 3) 

This expansion is similar to the Gibbs expansion near 
the ordinary critical point of the liquid-vapor system 
(see, for example, [7 J, Sec. 83), except that the role of 
the pressure p is played by H, and that of the specific 
volume V is played by B. (Of course, near the "ordin­
ary" critical point an experimental· investigation for a 
specified connection between p and V, corresponding to 
an oblique Ho, is extremely difficult.) Therefore all the 
results of the Gibbs study of the critical point can be 
directly transferred to our case. Thus, in analogy with 
formula (84.10) from Sec. 137 of[7 J, we have 

(1. 3a) 

In particular, on the equilibrium curve, where 
B1 = IT11 112, the specific heat cH is proportional toT~\ 
and in the case of a "critical" magnetic field (H1 = 0), 
when it follows from the minimum of e (i.e.' from 
aejaB1 = 0) that B1 = T~113 , formula (1.3a) yields 
C oo T-2/3 H I • 

In order to distinguish the phase transitions connec­
ted with the appearance of the periodic and domain 
structures, it is necessary to use the essential depen­
dence of the latter on the geometry of the bulky sample, 
and the independence of the former. Thus, for example, 
if Ho rotates in a plane perpendicular to a fourfold axis 
(the sample dimensions are L1, L2, -JrL1 >> L2 >> r), 
the character of the phase transitions for Ho II x and 
Ho II y will coincide for the periodic structure and differ 
greatly for the domain structure (first order for Ho 11 x 
and second order for Ho II y). 

6 >It follows from the foregoing that when H0 II n the independent 
variable is B, the mean value of which is specified. This means that in 
the equilibrium state I} is minimal, of}= (l/41T)HoB, under the condi­
tion B = H 0 , i.e., that I}= I} + ~ fBdr has an unconditional minimum, 
meaning that (o8*/oB = 0) and~= -H/41T. Hence o8* = -(l/41T)BoH. 
When H0 1 n, the independent variable is H = H0 , and we again arrive 
at formula ( 1.2). (We note that in the case of a stratification into a 
liquid and a vapor at a constant value, the independent variable is the 
average specific volume V; the ambiguity of V(p) makes it possible to 
vary the pressure p for a specified V, and the minimum is possessed by 
the thermodynamic potential <I>, the values of which per particle, i.e., 
the chemical potentials, coincide in both phases.) From ( 1.2) follows 
a connection between I} and the "proper" potential (connected only 
with quantization) of the magnet l}m: 

B- H. 1\0,. 
M ~ ·- ----- ~ --

4:-r 1\B 
( 1.2a) 
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An important feature of such phase transitions is the 
macroscopicity of the interaction radius. The finite 
dimension of the sample leads in this case to a relative 
width of the transition (both with respect to temperature 
and with respect to magnetic field), of the order of 
(r /D) 2 , where D are the linear dimensions of the sam­
ple. Inside this region, all the thermodynamic quantities 
are rapidly varying but analytic functions. 

Observation of phase transitions to an inhomogeneous 
structure and to such structures in general requires, as 
is clear from the statement made at the beginning of 
this section, satisfaction of the condition 41T lx I ?:: 1, 
where 

f v \. 2 f !iQ )-';, { _ 2_n2T _ 2n2 I I ~ 'i . 
X ~ \-;:- ) \ ---;- CX!A liQ Q; f II, liQ I ' (1.4) 

here f(x) is an oscillating function with periods on the 
order of unity, vis the Fermi velocity of the charges, 
and T is their free path time. (This estimate can be 
obtained also from the formulas of Lifshitz and 
Kosevich lBJ and Bychkovl9 J .) 

Formula (1.4) shows that inhomogeneous structures 
occur in weak magnetic fields and at low temperatures 
in pure samples (when T = 0 and T = oo the susceptibility 
x - oo as B - 0), when 

Q =H. (1.5) 

The interference of different periods leads to a de­
crease of x and to a smearing of the temperature of the 
transition, or in general to the impossibility of an in­
homogeneous structure, if x turns out to be too small. 
This means that the crystal mosaic structure should be 
weak and that the magnetic field be highly stable in time 
and homogeneous in space (the variations of the magnetic 
field should be small compared with the period t.H of 
the oscillations ofx, i.e., with H(IH1/Eo) ~ H2). 

The spatial periodic structure will affect many phys­
ical properties of the magnet. In the presence of a 
periodic superstructure, the propagation of electromag­
netic and ultrasonic waves in the magnet changes; in 
particular, when the wave amplitude is sufficiently large, 
similarities appear, connected with phase transitions 
that are periodic in time. New types of resonances are 
produced as a result of new branches of the natural os­
cillations in the superstructure. A spatial modulation of 
the specific volume arises (magnetostriction in a 
periodic field). There appears a periodic electrostatic 
potential q;(r), which ensures conservation of the num­
ber of particles in the periodic induction B: 

1 1\6 ( liQ)\'/, . { _ 2n2!'_ _ ~n2 } 
erp(r) =- ------ ~ liQ ---I exp no Q 

v(eo) 6B eo '·· ·' 

(v-charge density). . . 
Understandably, the periodic structures, d1amagnehc 

domains, and all the effects associated with them are 
possible also in a ferromagnet, where even in the ab­
sence of an external magnetic field we have B = 41TMo(T), 
where M0 (T) is the spontaneous magnetic moment. 

2. DIAGRAM OF STATE 

Let us clarify the general form of the diagram of 
state in a magnetic field, with allowance for the occur­
rence of periodic and domain structures. At high tem­
peratures T » (21T2r1 n.n, the susceptibility connected 

T<Tc" 
_ _::,k----~4-A 

FIG. 4 

with the Landau diamagnetism and the Pauli paramagne­
tism is small at all temperatures, and an inhomogeneous 
structure is: impossible even in metastable form. (This 
can be readily shown by using perturbation theory, see 
also Sec. 3.) 

With decreasing temperature, a local minimum first 
appears for the inhomogeneous field at a certain tem­
perature. Several different cases are then possible in 
principle. 

The local minimum can appear first at a finite am­
plitude of the inhomogeneity, so that the smallest value 
of e will be ensured as before by the homogeneous in­
duction B. The function e(A) will then have at least two 
minima between which there must be a relative maxi­
mum. Thus' there appear immediately in e (A) (besides 
the minimum in the case of homogeneous B, i.e., when 
A= 0), also a relative maximum and a minimum, so that 
when T = Tc: of the "creation" of the ~inimum corre­
sponds to a threefold degenerate soluhon: ae jaA 
= a2e jaA2 = 0, and this determines the temperature Tc 
and the amplitude at this point (Fig. 4). The appearance 
of the local minimum means that there can exist a 
corresponding phase, albeit in unstable form, and its 
vanishing means absolute instability of such a phase. 
The curve of the "creation" of the minima on the 
(T, H) plane thus bounds the region of absolute instabil­
ity of the given state (in analogy with the (Bp/BV)T = 0 
curve in the liquid-vapor stratification). 

By starting precisely with this, let us consider the 
singularity on the curve separating the region of the ab­
solute instability. In the general case it would be neces­
sary to carry out the investigation in similar fashion. 
For example, in the study of the stratification of a 
liquid-vapor system it would be necessary to find the 
thermodynamic potential for a specified inhomogeneous 
density. The absolute minimum of this functional would 
determine the equilibrium state, the relative minimum 
would determine the metastable state, the appearance of 
a relative minimum would determine the limit of the 
absolute instability, and the form of the thermodynamic 
potential near this curve would determine the character 
of the singularity. 

Expandin!~ e(A) in powers of A1 =A- Ao and T1 = T 
- Tc (recognizing that o2ejaAi = aejaA1 = 0 and that the 
expansion is valid because of the same reasons as the 
expansion (1.1)--see also Sec. 4), we get 

6 = 60 + aT1A1 + 1 /o~A,3, (2.1) 

When O!T1/{3 < 0, e has no minimum, when 01T1/{3 > 0 
there is a relative minimum at A1 = (-20!TI/f3) 112 , and 
e -eo ~ 1Td'312• This denotes that on approaching the 
absolute-instability curve at a specified Ho, the specific 
heat tends to infinity like IT1i-112. When this curve is 
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approached isothermally (Ho = He + H1), the susceptibility 
goes to infinity like IH1r112. 

If then the minimum of e, becoming deeper, reaches 
at T = T~ the same value as in the "preceding" absolute 
minimum at A = 0, then stratification will take place 
into a homogeneous phase (A = 0) and an inhomogeneous 
phase (A>" 0)--a first-order phase transition7 >. When 
T < T~, the inhomogeneous state becomes stable, and 
the homogeneous one metastable at T~ < T < T~ and 
absolutely unstable at T < T~ (in the latter case the 
singularity near T = T~ is the same as above; of course, 
we assume that Ho is specified and not T only for the 
concreteness). 

It may turn out, however, that an instability of the 
homogeneous state will appear at A = 0 even before the 
stratification into the homogeneous and inhomogeneous 
phases takes place (if it does take place at all--the 
minimum at A "' 0 can start to move upward beyond a 
certain temperature). Inasmuch as already mentioned 
and shown in Sec. 3, the expansion of (J(A) contains only 
even powers of A, this implies the second-order phase 
transition considered in Sec. 1 (see Fig. 5); the minima 
at ±A correspond to phases with the integral periods 
and the different "origins" (see Sec. 3). If on the other 
hand the minima of (J(A) for different A"' 0 coincide, 
then stratification takes place into structures having 
different periods. 

Inasmuch as the minima on the (J (A) curves can move 
both ''upward'' and ''downward'' when the external con­
ditions change (and for a specified T and a change in the 
magnetic field, their motion is certainly periodic; in 
general, it follows from (1.5) and from the fact that e is 
a superposition of functions that are periodic in B-1 that 
for a specified T < nil/21T2 the number of transitions of 
a given type is of the order of (Eo/T)(v/c) 413/4), and dif­
ferent combinations of the aforementioned cases can 
occur. In particular, a new structure can arise in a 
first-order transition only at one point (Hoo, T 0)-see 
Fig. 6 (the figure shows (J(A) for two structures: I and 
II). 

The diagram of state shown in Fig. 1 in terms of the 
variables T and H takes all the foregoing into account; 
the changeover to the variables T and Ho is clear from 
the already indicated connection between Ho and H. 
Allowance was made in Fig. 1 for the fact that the 
phase-transition curve cannot terminate for a periodic 
structure and can terminate at the critical point for a 
domain structure; the character of the transitions to the 
domain structure is the same along the entire curve and 

8 

~ 8 

0 

A 

FIG. 5 FIG. 6 

7 lit is clear therefore that a periodic solution with finite amplitude 
always arises first in unstable form, which is "inconvenient" compared 
with the homogeneous one. Therefore the case considered in Sec. 3 
of [ 1 ] is impossible. 

depends only on the orientation of Ho (in Fig. 1 for con­
creteness, Ho is perpendicular to the surface of the 
sample). The form of the diagram of state would be 
greatly complicated in the next higher approximation in 
a/r (a-interatomic distance), where the commensurabil­
ity of a2 and ehH/c is important (see alsol10 l). 

3. THEORY OF SECOND- ORDER PHASE TRANSITIONS 

From (1.2a) and (1.1a) we get the following fundamen­
tal equation of the theory of periodic structures: 

B-4nM{B} =H=const; B=B(R), R== (x,y), (3.1) 

where M { B} is a nonlocal functional of B (which relates 
points separated by a distance on the order of r). The 
concrete form of M { B} is immaterial and will be deter­
mined for the magnetic-moment quantum oscillations of 
interest to us in a separate paper (see also l1 J). 

Equation (3.1) always has a homogeneous solution Bo: 

Bo - 4nM (B0 ) = H, (3.2) 

which may turn out to be not unique. Let us ascertain 
the conditions for the existence of an inhomogeneous 
solution which is infinitesimally close to the homogene­
ous one: 

(3. 3) 

We have 

( 3.4) 

where X. is a linear integral operator (in accordance 
with the statement made above). From the homogeneity 
of the space (with respect to shifts by one-third of the 
crystal lattice, which in the main approximation is in­
finitesimally small compared with r), it follows that thi~ 
operator should be a difference operator, and the invar­
iance of the crystal against inversion (R --R) ensures 
that this is an even operator, so that ( 3.4) can be written 
in the form 

Putting 

x(-R)=x(R), R::(x,y). 

(3.5) 

(3.6) 

we arrive at the following equation for the period of the 
spatial oscillations: 

4nx(ko)= 1, x(k)= ~ x(r)cos(kR)dR. (3.7) 

It can be shown that the necessary condition for the 
existence of a real solution of this equation in the stabil­
ity region, with respect to stratification into diamagnetic 
domains is 411Xo > 1 (Xo and J.!.o are defined at the begin­
ning of Sec. 1). This excludes, in particular, periodic 
structures for one zone with one extremal section. The 
relation between kx and ky is determined by the symme­
try of the Fermi surface, which for the case J.J.o 2: 2 of 
interest to us coincides with the symmetry of the crys­
tal lattice (otherwise, for higher symmetry of e:(p), the 
ratio kx/ky would have to be found by taking into account 
the interaction between the charges and the lattice). 
Thus, kx = ky for a cubic lattice (if His not parallel it 
would be necessary to minimize (J to determine kx/ky 
and B1x/B1y)· 
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The condition for the solvability of ( 3. 7) is, when 
411X < 1, not only the necessary condition but also the 
sufficient condition for the occurrence of a periodic 
structure. To prove this, let us expand 8{ B} in terms 
of B1. Recognizing that (1.2a) should coincide in this 
case with ( 3. 5), and taking the symmetry of the crystal 
into consideration, we get 

8 = Bo+~ ~ B,2 (R)dR-~ ~ x(R-R')B1 (R)Bl(W)dRdR' 
8n 2 

+-1- I f(R-R',R-R")B1 (R)B1 (R')B1 (R")dRdR'dR" 
12:rt J 

+ i~:rt ~ g(R-R',R-R",R-R"')B1 (R)B1 (R')B1 (R")B!(R"') 

XdRdR'dR"dR"'+··· (3.8) 

There is no term linear in B1 in (3.8}, because, by 
virtue of translational symmetry, it should be of the 
form Ko(Bo) jB1(R}dR, and stability against homogeneous 
perturbations (B1 = const) denotes aejaBdB1=0 = Ko(Bo) 

= O'(and a 28/aB~IB1 =o = 1- 411X > 0 by definition). 
We rewrite (3.8) in the form 

:rt i -a= Bo + 2 J (1- 4:nx(k)) JB1 (k) J2dk (3.9) 

(the tilde denotes here and throughout the Fourier com­
ponents of the corresponding functions). 

If (3.7) has a solution, then 4nXmax =:: 4nX(ko) = 1, and 
a small inhomogeneity, according to (3.9}, is certainly 
fav6red, and the homogeneous state is unstable. As 
already noted in Sec. 1, the instability of the homogene­
ous state can be connected either with the appearance of 
a periodic structure or with the stratification into dia­
magnetic domains. The latter occurs (see Fig. 2) already 
when 411X < 1 (i.e., aH/aB > 0); only such values of x 
are realized. Therefore, for the existence of a periodic 
structure it is necessary81 to have 4nXmax =:: 1 (the 
maximum is taken with respect to k} when 411X = 47fX (0) 
<1. 

We shall assume that this condition is satisfied. The 
second-order phase transition point corresponds to the 
first appearance of the root of (3.7}, i.e., 4rrxmax = 1, 
meaning that a multiple root of (3. 7) appears (see Fig. 
7). Near this point, the interval of kin which 1- 4nX < 0 
is obviously small: 1.6-k/kol « 1. This means (see Sec. 
7) that when j.6.kl ;(; ko, where 1 - 411X (k) :;(; 1, the value of 
B1 should be small compared with its value in the inter­
val where 1- 47fX < 0, since the term written out in 

8 >For a given zone and for a given section, X!!(r) is of fixed sign, and 

picku signx.(r) =signx., 4nlil ,;;;4nlx.(O)I =4nlx.l. 

Therefore to realize a periodic solution it is necessary to have several 
extremal sections and 41T)(0 > I for 41TX < I. 

(3.9) is decisive for small values of B1 (in accordance 
with the sought assumption), and the state with a small 
"spread" L~k is certainly not favored. This means that 
even if account is taken of the next higher terms of the 
expansion, B1 near the transition point can be represen­
ted in the form 

B!(R) =A(R)eixR+A"(r)e-ixR+C(R), JCJ < JAI; (3.10) 
x(x) = Xmax, Vx(x) = 0, (3.11) 

where A(R) is a slowly varying function (over distances 
large compared with the interaction radius in the ker­
nels of (3.8}-the Larmor radius r}, the asterisk denotes 
the complex conjugate, and C(R} can correspond to any 
k and can vary in any manner, but is small compared 
with A(R). 

The form (3.10) allows us to solve by successive ap­
proximations91 the nonlinear equation for B1(R) which 
follows from o e /o B1 = 0: 

B,(R)=4:rt ~ x(R-R')B,(R')dR' 

+ ~ /(R-R',R-R")B!(R')B!(R")dR'dR" 

+ ~ g(R-R', R-R", R-R"')B1 (R')B1 (R")B1 (R"')dR' dR"dR"' 
(3.12) 

Substitutin!~ (3.10) in (3.12) we find (in the second ap­
proximation in A) the value of C: 

C = Ee2ixR + E•e-2i><R + 2D, 

E= f(x,-x) Az D= f(x.-x) JAJ2. 
1- 4nx(2x) ' 1- 4nx(O) 

(3.13) 

(3.14) 

In the next approximation, besides the third harmon­
ics, the terms of third order in B1 gives rise to first 
harmonics. The corresponding equation (which, of 
course, coincides with the condition of orthogonality of 
the "perturbing" inhomogeneous terms in ( 3.12) to the 
solution of the homogeneous equation) is 

2 82A of. 
--2n::3 -·--+TA- 4~A!Aia = 0; (3.15) 

;~• oR;2 ox;z 

-r = 4:nx(x)-1, 2~ = 3g(x,x, -x)+ 2f(x,2x>._!(x,x) • 
1- 4:nx(2x) 

a;-1 = -2n 0:~ > 0. (3.16) 

Here ai > 0, since x has a maximum at the point K; the 
direction of the axes x and y is chosen such that 
a2)(/a"xa"y = o. 

We introduce /Co-the point at which (see Fig. 7) 

4nx(xo) = 1, Vx(xo) = o. (3.17) 

The three E!quations of (3.17) define, besides /Co, also the 
connection between T and H, i.e., the curve of the phase 

9 lIt is clear that the choice of the zeroth approximation in the form 
(3.10) already determines completely the course of the successive approx­
imations (of course, with allowance for the condition for the solvability 
of the inhomogeneous equation in the case when the homogeneous equa­
tion has a nontrivial solution). With this, the solution of the equation 
fh(R- R')<I>(R')dR' = F(R)exp(is·R) with F(R) a slowly varying func­
tion is 

<Il(R)= exp(isR)H- 1 (i a:)F(R), H(s)= ~ exp {iR(s-s)} h(R)dR. 
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transitions from the homogeneous to the periodic struc­
ture in the (T, H) plane. If the transition is observed at 
fixed H, then 7 ~ T- To(H) (To(H) is the transition point), 
and if T is fixed, then 7 ~ H- Ho(T). 

Putting in (3.15) A= IAiexp(ii/J), we find that if 1/!"' 0, 
then 1/J ~ 1 1Ar2 and is a function that oscillates rapidly in 
R (since lA I is small by definition), which, as shown 
above, is incorrect. Therefore 1/J = 0 and A is real. 
Substituting (3.10) with real A in (3.9) we get 

e-e.= ~ { -U(A)+~121a;(!~/} dR==~ e,dR, 

(3.18) 

As mentioned in Sec. 1, there are no terms of first and 
third order in A in (3.18). 

Since, as follows from the foregoing general consid­
erations, a periodic structure with period 2rrKt ~ r oc­
curs at the transition point, the form (3.18) of the expan­
sion of () in terms of the slowly varying increment A(R) 
(compared with r) can be obtained directly. To this end 
it is necessary to take into consideration the following: 
1) from the requirement that () have a minimum (already 
averaged over distances of the order of r) with respect 
to A at the transition point it follows that o()/oA = 0; 
2) o H/15 A oo 7 (since 47fX (IC o) = 1), and this yields o 2() /15 A 2 

oo 7; 3) the presence of the minimum of ()(A) at T = To 
calls for o3()/oA3 = 0 and 15 4()/oA4 = f3 > 0; 4) the expan­
sion in terms of the small VA can contain, owing to the 
slow variation of A(R) can contain only even powers of 
VA (in view of the invariance with respect to the replace­
ment of R by -R). 

Let us explain the meaning of the requirement f3 > 0 
in our case. If f3 < 0, then it follows from (3.18) that the 
point 7 = 0 is not at all singular- there already exists in 
it a periodic structure with a finite amplitude, the tran­
sition occurred earlier, and furthermore at finite A 
(since it is the transition A - 0 which we are investigat­
ing), i.e., we have a first-order phase transition. 

Since ()i > 0 (see (3.16)), it follows that e1 ~- U(A) 
~ - Umax• and the equality () 1 = - Umax is attained for 
homogeneous A. With this, the term with the derivative 
in ( 3.18) vanishes, and () 1 takes on a form characteristic 
of Landau-type second-order phase transitions10> (see 
(1.1)) and leads to a transition from A = 0 when 7 < 0 to 
±Ao, Ao = (1/2).f7773 when t > 0. States with ±Ao differ 
only in a phase shift. This difference can be appreciable 
in a finite sample (where such states are analogous to 
domains). In determining K and Ko it is easy to find the 
dependence of the spatial periods 2rrKi1 on 7: /C- /Co oo 7. 

Thus, the period of the oscillations varies linearly in 7 

close to the transition points, and their amplitude is 
proportional to ..fT. 

All the arguments presented above are particularly 
clear in the one-dimensional case (A= A(y)), when the 
functional (3.18) can be formally interpreted as the ac­
tion for a one-dimensional motion of a particle of mass 
a in a time y along the coordinate A (see alsolll) with a 
forbidden departure of the particle to infinity (since B 

10 lIt is clear from the foregoing investigation that the third order 
phase transition referred to in [ 1 I cannot precede a second-order phase 
transition, in which supercooling or superheating is impossible, and 
therefore is not realized. 

l-4tr'i 

be. 
FIG. 8 

should be finite). The transition between the states with 
±A has in this case a ''domain'' character and occurs 
(when 7 > 0) in accordance with the law 
A = Aotanh{(1/2)m(y- Yo)}. 

From the definition of ( 3. 7) it is clear that as k - co 

the function x (k) oscillates and tends to zero. This means 
that when the temperature (or magnetic field) is changed, 
there should appear new roots of the equation (3.11) and 
accordingly new phase transitions should take place. If 
any extremum ofx(k) with k > 0 turns out to be degener­
ate (Fig. 8), stratification into phases with different 
periods is possible. 

4. THE CRITICAL POINT AND THE CURVE OF ABSO­
LUTE INSTABILITY 

A singular point is a point of obligatory degeneracy 
of K, i.e., K 0 = 0 (we recall that x (-k) ='X (k) and there­
fore the point k = 0 must correspond to an extremum). 
According to (3. 7) we have here 4rrx = 1. In this case we 
can use the theory developed in the preceding section, 
but it is simpler to note immediately that when Ko = 0 
the entire quantity B varies slowly, and therefore () 1 { B} 
can be expanded in powers of VB. In the fundamenta,l 
approximation, () 1 coincides with the "local" homogene­
ous density ()~(B), the form of which was written out 
earlier (formula (1.3)). In the next higher approximation, 

2 1 ( aB ,. 
e,{B} = e,o(B)+ ~- -). 

i=1 2a; aR; 

Reasoning just as in Se.c. 2, we can verify that the criti­
cal point pertains to stratification into higher magnetic 
domains. Outside the domain wall, the derivatives in 
e1{B1} should be discarded, and the argumentation that 
follows is the same as in Sec. 1. (The shape of the 
domain wall for the one- dimensional case was obtained 
in£5 J). 

Let us turn to explain the character of the singularity 
of the thermodynamic quantities on the absolute-insta­
bility curve (where in the homogeneous case oH/ClB = 0). 
Assume that when H and T = To are specified, the equa­
tion for B, which we shall write symbolically in the form 

L{1', H;B} = 0, 

has a particular solution Bo(R) such that 

L(1'o, H; B0 (R)} = 0. 

(4.1) 

(4.2) 

Let us ascertain the character and the stability of the 
solution at T = To + T1. Putting B = Bo + 1/!, we get 

L,1Jl + 1',L~{Bo(R)} + 'J.i.w• + ... = o, (4.3) 

where 
~ {ji 
L,=-, 

{JBo 

~ {} ~ 
Lz {B0 (R)} = -1' L {1'o,.H;B0 (R)}, 

{} 0 

~ r:.•L 
L·--­"- {JBo• ' 

(4.4) 
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We vary T for a specified H is only for concreteness, 
and the analysis is perfectly similar for specified T and 
variable H. 

The solution and investigation of (4.3) are performed 
in exactly the same manner as before for (3.12), and its 
character is determined by the presence or absence of 
a solution of the homogeneous equation L1l/J = 0; the 
point of T where such a solution first appears gives the 
To = To(H) curve. The only difference is that the terms 
of the thermodynamic potential that are cubic in the am­
plitude can either vanish (by virtue of the symmetry or 
in points that are isolated in H), or remain (since, un­
like (3.12), the kernels in (4.3) need not be difference 
kernels, since the inhomogeneity of Bo(R) violates, in 
general, the translational symmetry in the system). In 
the latter case, the expansion of the thermodynamic 
potential in powers of slowly varying A takes on the 
form (2.1), and the subsequent reasoning is the same as 
in Sec. 2. 
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