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Sound absorption is studied in crystals with a high concentration of impurities or point defects. It is 
shown that in the low-frequency region w « w0 ( T, c) (where c is the concentration of impurities 
and wo is some characteristic frequency), the sound absorption is less than in the pure crystal and 
has a different temperature dependence. It is proportional to T-1 / 3 for T « Tn and to T213 for 
T » Tn ( TD is the Debye temperature). Between the low frequency region, where the absorption 
y ex: w2, and the high frequency region, where y ex: w, there is an intermediate region where y ex: w714• 

The temperature and frequency limits of this region are found. 

1. According to the phenomenological theory, the ab- and quartz it is much less than the absorption due to 
sorption of sound takes place as a result of the viscosity viscosity. [aJ 
and thermal conductivity of the medium. The sound The absorption of transverse sound of high frequency 
absorption due to viscosity in pure dielectrics has been w >> rp(qT) was calculated by Landau and Rumer.CsJ 
studied by Akhiezer. [1J He considered sound as a In this case the phenomenological method is inapplica-
classical field which adiabatically modulates the energy ble and it is necessary to use quantum perturbation 
of the thermal vibrations of the lattice and consequently theory. The absorption of the transverse sound of fre-
creates local departures of the phonon distribution quency w ( qT) » w >> r p ( qT) is 
function from the equilibrium value. The collisions of 
phonons with one another, due to anharmonic interac­
tions, decrease these departures. In the relaxation 
process of the distribution function, the entropy of the 
crystal increases and an irreversible loss in the en­
ergy of the sound wave takes place. Such a phenomeno­
logical consideration is applicable if the changes in the 
sound field in space and time are sufficiently slow in 
comparison with the phonon path length and the fre­
quency of the phonon relaxation. Both these conditions 
reduce to the requirement of low sound frequency 
w « r p ( qT), where r p ( qT) is the collision frequency 
of phonons with mean wave vector qT. Akhiezer 
showed that in a pure crystal the inverse of the relaxa­
tion time of such sound due to viscosity is 

u(T) ro2 
y::::~----­

ps2 rp(qT) (1) 

where u ( T) is the thermal energy per unit volume, s 
the sound velocity, p the density of the crystal; 

Tv T 
rp(qT)::::; 71 Ms2' 

if T;pTv; 

hro2 
y::::~-­

T 

(2) 

M and 1Ta are the mass and dimension of the elemen­
tary cell of the crystal. (Here and below, the tempera­
ture is written in energy units.) 

For transverse sound, the Akhiezer mechanism is 
the only source of sound absorption. For longitudinal 
waves, the heat exchange between the regions of com­
pression and rarefaction leads to sound absorption, 
which is also proportional to w2 • In germanium, silicon, 
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T ( T )a 
00 Ms2 Tv ' 

T (3) 

The same result has been obtained in a number of 
researchesC4-sJ for longitudinal sound at not very low 
temperatures and not very high frequencies. 

Figure 1 shows the regions in the ( w, T) plane 
where there exists some sort of dependence of the ab­
sorption on these parameters for a pure crystal. 
Curves 1 and 2 are described by the equation w 
= w(qT) and w = rp(qT). Above curve 2, y ex: w, and 
below, y ex: w2• 

2. In the present research we consider the sound 
absorption in a dielectric crystal with a high concen­
tration of randomly located impurities or point defects. 
The impurities lead to an additional scattering of the 
phonons. The scattering of long wave phonons q « 1/ a 
can differ from the Rayleigh scattering and has singu­
larities only in the presence of quasilocal states with 
frequencies much smaller than the Debye frequency. 
Such states appear if the impurity atom is much 
heavier than the regular atom or is much more weakly 
bound to its neighbors. We consider the case in which 
the masses and the force constants of the two com­
ponents are of the same order, so that the low-fre­
quency quasi-local levels are absent and the scattering 
of the long-wave phonons has a Rayleigh character: 

(4) 

where s is the sound velocity in the impure crystal 
and E is a nondimensional parameter characterizing 
the size of the perturbation produced by the impurity. 
If, for definiteness, we speak of an impurity which 
differs from the regular atom only in mass, then 
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FIG. I. Dependence of the sound absorption of frequency and 
temperature in a pure crystal. Equations of the curves: 1-w = w(qT); 
2-w = r p(qT). Above curve 2, the value of 1' is determined in (3), 
below, in (2). 

E = I ~M/MI. For q ~ 1/a, (4) is valid only in order 
of magnitude. 

Doubt can arise as to the validity of (4) for c ~ Y2 
and E ~ 1. In order to clarify this problem, we use the 
rezults of Tatarskii and Gertsenshte1nPJ who con­
structed a theory of scattering of waves in a medium 
with random inhomogeneities. An example of such 
scattering is the scattering of electromagnetic waves 
in a medium with inhomogeneities in the dielectric 
permittivity K or sound waves in a medium with in­
homogeneities in the density p and the elastic modulus 
K. It was shown in [7J that if the wavelength is much 
greater than the correlation length of the inhomogenei­
ties l, then ri ( q) = ifsl3q\ where a is the mean 
square of the relative fluctuations of K, p, or K. 

We apply this general theory to the case of sound 
propagation in an ideal solid solution of atoms with 
different masses M1 and M2. In this case, the corre­
lation length for the density p is the lattice constant 
(l =a), and 

a"= (p-p)2/ (p)z= (M-J.l)•j(J.l)2= jM1/11fl2c(1-c), 

and for any c and E we get Eq. (4) for ri (q). Similar 
reasoning shows that (4) is valid also in the case in 
which the components of the solution differ in their 
force constants. According to (4), the long-wave pho­
nons scatter weakly even at E :=::~ 1 and c ~ % ( ri ( qi) 
« sq), although the change in the averaged properties 
of the crystal (density, elastic moduli) can consider­
ably alter their velocity and anharmonic interaction, 
because of the presence of the impurities. 

The presence of impurities has a double effect on 
the sound absorption. In the first place, the impurities 
directly scatter the sound wave; in the second place, 
they scatter the phonons and thus change their contri­
bution to the sound absorption. Using (4), it is easy to 
establish the fact that the direct effect of point defects 
on the absorption of the sound wave is vanishingly 
small. Even for an impurity concentration c ~ Y2 and 
comparatively high frequency w = 1010 sec -l ( qa ~ 10- 3 ), 

the damping length due to scattering on the impurities 
s/ri (q) is seen to be of the order of 104 em. The 
second effect is substantial if the thermal phonons are 
scattered by impurities more often than by one another: 
ri(qT) » rp(qT). Comparing (4) for q = qT and Eq. 
(2) for rp(qT), we find that, to satisfy this inequality, 
sufficiently high concentrations of impurities are neces­
sary, satisfying the condition c ( 1 - c) > T/ E~s2. We 

shall consider here just such concentrations, including 
c ~ %. 

It would appear that for a quantitative account of the 
effect of impurities on the sound absorption by phonons 
when w << ri(qT) it suffices to replace rp(qT) by 
ri ( qT) in Eq. (1), and to regard w = ri ( qT) as the 
criterion for the transition from the low-frequency 
case to the high-frequency one (from the quadratic 
frequency dependence of the absorption to the linear). 
However, such a course is an erroneous one. The fact 
is that. if we systematically compute the sound absorp­
tion by the method of Akhiezer, assuming that the pho­
nons are scattered only by the impurities, then y is 
seen to be infinite because of the divergence of the 
integral over q as q-- 0. This divergence is associ­
ated with the rapid decay of ri ( q) with decreasing q 
and is completely analogous to the divergence of the 
thermal conductivity, which arises for the same phonon 
scattering mechanism. 

To obtain a finite sound absorption, it is important 
to take into account two circumstances. First, for sub­
thermal phonons, q >> qT, it is necessary to consider 
their interaction with the thermal phonons. It is de­
scribed by (3) and for sufficiently low q it can be com­
parable wiLth or greater than the scattering from the 
impurities.1 > Second, the subthermal phonons q may 
not satisfy the criterion of applicability of the pheno­
menological theory of Akhiezer w « ri ( q) in spite of 
the fact that w « ri ( qT), and use of the more general 
theory is necessary. A theory of the absorption of 
sound of frequency w « ri ( qT) « T/ n in solid solu­
tions, taking these two factors into account, will be 
constructed below. 

3. In computing the sound absorption, we shall make 
use of the Green's function technique, which is free of 
the limitations of the phenomenological theory of 
Akhiezer. We shall show that in sound absorption at a 
frequency w « ri ( qT) the principal role is played by 
the long-wave phonons qi « 1/a. The exact Green's 
function of the long-wave phonon in a crystal with im­
purities is obtained in the already cited paper [7 J: 

D(q~>w)=-~ 2w(qt) , 
fz w2 - w2 (qt)+2,w(q1)f,(q1) (5) 

where ri ( qi) is defined by (4). We shall represent by 
a thin line on the diagrams given below the temperature 
Green's function Do ( q1, iwm) corresponding to (5). 
Since the long-wave phonons are weakly scattered in 
the solid solution ( ri (q) « sq) and therefore repre­
sent plane waves with great accuracy, the Hamiltonian 
of the triple anharmonic interaction of the long-wave 
phonons has the same form as in the pure crystal: 

where 

1>In the c:ase of the thermal conductivity in impure crystals, this 
circumstance was considered in (B], and led to excellent agreement 
with experiment.) 

(6) 

(7) 
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FIG. 2. Polarization operator ll(q, iwn). 

( a;u is the phonon creation operator, j the index of 
polarization,2> and V the volume of the crystal). How­
ever, the sound velocities s, the density p, and the 
elastic modulus A that depends only on the angle, can 
differ in (7) from the same quantities for the pure 
crystal. 

The absorption of sound of frequency w and wave 
vector q is determined by the imaginary part of its 
polarization operator y = ti-1 Im ll(q, w).[ 4,sJ ll(q, w) 
is the analytic continuation of the "temperature" 
polarization operator n ( q, iwn) corresponding to the 
diagram in Fig. 2A. The heavy lines in Fig. 2A denote 
the exact Green's functions of phonons with account of 
the anharmonic interaction of them with one another; 
the vertex part is shaded. If we do not take the an­
harmonic interaction of the thermal vibrations of the 
lattice into account (we shall find later the conditions 
for which this is possible), then the diagram corre­
sponding to the polarization operator n ( q, iwn) has 
the form of Fig. 2B, i.e., 

ll(q, iwn) = 18 (ZV)' ~ ~ d'qd Uqq~q,l 2 
Jt . . J)l]~ 

JiJ2 
(8) 

This expression describes the process of combina­
tion of a sound quantum q with the phonon q1 >> q, as 
a result of which the phonon q2 appears. The factor 18 
in (8) has a combinatorial origin and is explained in [lo]. 

The Lehmann expansion of the Green's function Do 
in (8) with use of (5), summation, integration and ana­
lytic continuation, leads to the following result (similar 
calculations are given in detail in [s,sJ): 

, __ 9_wV ~ \ d' IU I' 
"'- (2 )' fl2 Ll j q, qq,q, 

3t idz JJJJz 

where N1 = [exp(tiwj 1(ql)/T)- 1r\ and e is the 
angle between q and q1. 

The "smeared" o function 
~(Q) = 2L(q,) I (fl'+4f,2 (q,)), 

(9) 

2) Acoustic phonons are considered. The optical long-wave phonons 
are strongly scattered by the impurities (f'i(q) o: q, and not q4 [ 9 ]) and 
do not make any appreciable contribution to the sound absorption, even 
forT;::: T D• when they are excited. 

takes into account the finiteness of the lifetime of the 
thermal phonon in the state of a plane wave with a 
definite wave vector. It replaces the present o function 
of first-order perturbation theory, which neglects not 
only the anharmonic interaction of the phonons with 
each other but also their scattering from impurities. 
In (9), the components with h = h remain, inasmuch as 
Q is minimal in this case. 

We shall show that for low sound frequencies 
w « ri ( qT) the integrand of Eq. (9) f( q1) has a max­
imum near the value 

q1 = q' == [w./E2c(1- c)sa'J'i'<qr, (10) 

for which ri ( q') = w. Actually, for q1 < q,T' we have 
oN1/ow1 ex: 1/qf, and if q1 » q', then b.= 'l2ri-1(ql) 
1/ qf and f ( q1) ex: 1/ q~. Integration over the angles in 
this case gives only a numerical factor of order unity. 
If now q1 << q', i.e., w >> ri(ql) and, moreover, the 
condition 

I s;, \ f;(q!) 
min. -case -1 <--

1 Sj (J) 
(11) 

is satisfied, then b. (cos ()) has a sharp maximum 
1/ ri ( q1) in the region of angles of order ri ( q1 )/ w 
and, consequently, integration over the angles makes a 
factor 1/w from b.. Therefore, for q1 << q', the func­
tion f ( q1) ex: q~. For those f1 for which (11) is not 
satisfied, f ( q1) falls off with decrease in q1 even 
more rapidly. In all cases, the maximum value of 
f ( q1) takes place for q1 ;:;;:: q' and consequently the 
subthermal phonons with q;:;;:: q' « qT make the largest 
contribution to the sound absorption. This makes it 
easy to compute y in order of magnitude: 

qmo~e QO 

A'w2h ~ fJN1 1 Tro2 ~ 1 v::::::·-- dq,q,•---:::::: -dq, 
p3s' q' fJw1 f;(q1 ) Ms3e2c(1- c) q'q12 

T ro I hro )'1• (12) 
"""Ms2 [e2c(1-c)f1·\T;; · 

Here we have used the estimate A ;:;;:: ps 2 • 

Up to the present time, we have not considered the 
anharmonic interaction of the phonons with one another. 
This is true only in the case when the anharmonic damp­
ing of the existing phonons q' is much smaller than 
their impurity damping rp(q') « ri(q'). In the op­
posite case, the considered zeroth approximation in the 
anharmonic interaction of the phonons is insufficient 
and, as we shall see below, summation of all the ap­
proximations of perturbation theory on this interaction 
is required. 

In the lowest approximation, we obtain in place of 
Fig. 2B two diagrams-2C and 2D. It is easy to estab­
lish the fact that the diagram referring to the vertex 
part is D <<C. The mean cross sections give india­
grams C and D denominators of the same order, 
while the limiting cross sections give 

[ w(~~cose-1 )+2ifi(q!) r 
{[ ro ( s:; cos 8- 1 )+ 2if;(q1)] 

(13) 

X [ w ( ;;· cos ( qq,,) - 1 ) + 2if; ( q1 + q3 ) ]} _, • 

respectively. Since ri ( q1) fall off sharply with de­
crease in q1 in both diagrams, the q1 ~ q' « qT are 
important. So far as q3 is concerned, in diagram C it 
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does not enter into the denominator that is written down 
and therefore the q3 ~ qT are important in the integral 
over qa, so that Yc a: rp(q')/ri(q') ( rp(q') results 
from the integration over qa). 

At the same time the quantity qa in diagram 2D 
enters into the analogous denominator and therefore 
q3 ~ q1 ~ q' are important. This means that in D the 
subthermal phonon q1 interacts only with the subthermal 
phonons which have a momentum not exceeding its own. 
In this case, its anharmonic damping, which is obtained 
as the result of integration over qa is proportional to 
rp(q') (q'/qT)3 and therefore 

'VvfYc ~ (q' fqT) 3<1. 
It can be shown that for the same reason, the vertex 

part is also small in the succeeding approximations. 
Furthermore, in the calculation of IT (q, iwn), one can 
discard diagrams similar to the diagram 2E which 
contains the intersecting or mutually encompassing 
"supports," inasmuch as the corresponding expres­
sions have a smaller number of small denominators of 
the type (13) than the diagrams with successive "sup­
ports," in this same approximation of perturbation 
theory. Thus the principal contribution to IT ( q, iwn) 
is made by diagrams of the latter type, which can be 
represented by the loops of the heavy lines (Fig. 2F), 
while the point Green's function D(ql, iwm) corre­
sponding to these lines is a solution of the Dyson 
equation, represented graphically in Fig. 3: 

. Do(q~oiiDm) 
D(qt, !IDm) = . )D ( . ) 1- II(qt, IIDm 0 qio l(i)m 

(14) 

The calculation of the diagram 2F, entirely analogous 
to the calculation of the diagram 2B, leads to the fol­
lowing general expression for the sound absorption, 
which takes into account both the scattering of the 
phonons from the impurities as well as their anhar­
monic interaction: 

hiD2 ~ s _,. A2qt2 fJN1 
'V ~- .LJ u-q~----

p3 1, s/"s;,2 OIDt 

x---·-~J!;,_,_(q=~'--->+-'--,-r'---p('-"q:;.:_i).:.,-)_=----:-.,.- (15) 
ID2(s;,s;-1 cos6 -1)2+4(ri(qt)+ rp(qt)) 2 

Equation (15) differs from (9) in the addition of the an­
harmonic damping r p ( q1) = :li-1 Im IT ( q1, w ( q1 ) ) in the 
"smeared" o function. For subthermal phonons, q1 
« qT, which play a basic role in the sound absorption, 
rp(ql) q1 and is determined by Eq. (3). 

Thus, in our problem, it appears possible to intro­
duce rigorously the relaxation time of phonons due to 
the anharmonic interaction r p1 ( q1). The physical 
reason for this "good luck" is that only the subthermal 
phonons are important for sound absorption in a solid 
solution; these represent a small part of the total num­
ber of phonons and therefore the small vertex part 
IT (q, iwn>· i.e., the terms of small account in the 
kinetic equation for phonons corresponding to 
n (q, iwn) kinetic equation for phonons. 

We stu·dy the general expression (15). If r p ( q') 
« ri ( q')' then all the discussions touching on (9) re­
main in force and we get (12) for y. If rp(q') 

-=-+--0-
FIG. 3. Dyson equation for D(q~o iwm). 

» ri ( q'), then the anharmonic damping is essential 
and f(q1) has a maximum not for q' but for q", for 
which rp (q") = ri ( q"); here q' « q" «qT. Actually, 
for q' < qi < qT, 

1 qt2 
Ll = . :::-=---;--;-;---;:;--;-· ' t ( q t) ~ -=-:~-c-::-

2(ri(qt)+ rp(qt)) ri(qt)+ rp(qt) 

while for q1 > q", we have f ( q1) a: 1/ q~ while for 
q1 < q", we have f(ql) a: q~. Using (3) and (4), we get 

1 [ T ]''• 

{ 
a Ms2e2c(1- c) ' 

q"= 1T T ''• 

aTv [Ms2e2c(1-cd 

(16) 

The existence of a maximum of f ( q1) allows us to 
estimate (15) easily here: 

A2ID2h 00s oNt 1 
v~-- q~'----dq~~ 

p3sl q" OIDt ri( qt) 

~ . w Tv Ms2e2c(1- c) ' (17) 
{ 

hiD[ T ]''• T~Tn 

IIID[ T ]"' 
IDT Ms"e•c(1-c) ' T<Tv 

Formulas (12) and (17) determine the dependence of 
the sound absorption in crystals with impurities on the 
frequency, temperature and concentration of impurities 
for w « ri (qT). The first holds for q' >> q", the 
second for q' << q". 

For sufficiently low frequencies q' « q" and in ac­
cord with (17), y a: w2 in correspondence with the 
phenomenological theory. Comparison of ( 17) and ( 2) 
leads to the interesting conclusion that the low-fre­
quency sound absorption in a solid solution is less than 
the absorption in the pure crystal in the ratio 
( T/Ms2 E2 c( 1 - c)] 213• This factor materially changes 
both the absolute value and the temperature dependence 
of the absorption. 

Upon increase in the sound frequency, the dependence 
of y on the frequency and temperature is changed, when 
the characteristic frequency w0 ( T) is reached, which 
satisfies the condition q'( w0 ) = q". Using (10) and (16), 
we get 

Tv( T )''• 1 
h Ms" [e2c(1- c)]''• 

wo(T)= T( T )''• ( T )s 1 
h Msl . Tv [e2c(t-c)]'i•' T<Tv 

(18) 

In the region of frequencies ri ( qT) » w » Wo ( T)' 
where q' » q", y is determined by Eq. (12). At still 
higher sound frequencies, w » ri ( qT), in crystals 
with impurities, as also in pure crystals, (3) is satis­
fied. 

We note that the result (12) was obtained by 
Miller, [ll] who, however, did not take into account the 
anharmonic interaction and therefore could not obtain 
the low frequency limit of applicability of (12) and of 
the expression (17) for the sound absorption in the 
case w < Wo ( T ) • 

Figure (4) shows the regions of applicability of the 
results in the ( w, T) plane. Curves 1, 2, 3, 4 are de­
scribed by w=w(qT), w=rp(qT), w=ri(qT) and 
w = w0 ( T ). Curves 2, 3, 4 intersect at the point A for 
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FIG. 4. Dependence of the sound absorption on frequency and 
temperature in a crystal with impurities. Equations of the curves: 
1-w = w(qT); 2-w = rp(qT); 3-w = ri(qT); 4-w = Wo(T). In the 
shaded region 'Y must be expressed by (17), under it, by (12), 
above it, by (3). For T > T 0, for the value of 'Y is determined by Eq. 
(2). 

T = To = E 2c ( 1 - c )Ms2; for T > To, the presence of 
impurities has no effect on the sound absorption 
( r p ( qT) > ri ( qT )) and the expressions (2) obtained 
by Akhiezer are valid. In the shaded region, y is de­
termined by (12), and in the region lying under it, by 
(17). Equations (3) are satisfied above the curve 3. 
For a decrease in the concentration of impurities the 
point A shifts downward along curve 2, so that the 
shaded region and the region of applicability of (17) 
decrease and Fig. 4 gradually goes over into Fig. 1. 
For very small c the difference between the impure 
crystal and the pure one is appreciable only for very 
low frequencies and temperatures. 

We thank V.I. Perel' for useful discussion of the 
research. 
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