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A solution of the gravitational equations which possesses a significantly nonsimultaneous true singu­
larity and which depends on eight physically arbitrary functions of three variables was previously con­
sideredl5J for space filled by a dustlike medium. A solution with a simultaneous physical (true) singu­
larity is investigated in the present paper. The simultaneous nature of singularity can be ensured only 
by decreasing the number of physically arbitrary functions by one, the respective solution now depend­
ing on seven functions of three variables. 

As is well knownl1- 3 J, in a synchronous coordinate sys­
tem, by virtue of one of the equations of gravitation, the 
metric determinant g must vanish during a finite time. 
(This is called the Landau theorem.) The vanishing of 
the metric determinant denotes that a singularity exists 
in the metric in the given coordinate system. E. Lifshitz, 
Sudakov, and Khalatnikovl2J determined the geometrical 
causes of such a singularity, namely that in a synchron­
ous system of coordinates the time lines which form a 
family of geodetics cross on an envelope (caustic) hyper­
surface. In the general case, the caustic hypersurface 
is oriented in time, since it contains length elements of 
the time-like lines tangent to it. Consequently, the fic­
titious (coordinate) singularity which results from the 
crossing of the time lines is in general not simultaneous. 
After using the permissible spatial transformations, the 
corresponding solution of the Einstein equations in free 
space contains five arbitrary functions of three coordin­
atesl2J. One of these functions is connected with the 
"mathematical" arbitrariness in the choice of the ini­
tial hypersurface from which the time coordinate is 
reckoned. This arbitrariness denotes the possibility of 
changing the caustic hypersurface, while retaining at the 
same time the form of the solution in its vicinity. 

It is indicated in [2' 3 J that in a synchronous coordin­
ate system it is also possible to construct a solution in 
which the fictitious singularity is attained by all points 
of space simultaneously. In a certain sense, this case 
corresponds to a certain "limiting" choice of a mathe­
matically arbitrary function, which is contained in the 
solution with the non-simultaneous singularity. As a 
result of this choice, the geodetics constructed along 
normals to the initial hypersurface are focused simul­
taneously on a geometrical image having a smaller num­
ber of dimensions, namely on a two-dimensional surface. 
The solution of this problem in free space was obtained 
analytically by Belinskil and Khalatnikovl4 J. 

As shown earlier l5J, two families of geodetics-a 
family of world lines of particles of a dustlike medium 
and a family time lines of a synchronous coordinate 
system-behave in a certain sense in the same manner. 
The world lines of particles of a dustlike medium also 
have a time-like envelope hypersurface. The corre­
sponding solution of the gravitational equations depends 
on the maximum number (eight) of physically arbitrary 
functions. The hypersurface, in whose points the world 
lines of the particles intersect, and consequently the 

physical singularity arises, can be chosen as the caustic 
for the time lines of the synchronous coordinate system. 
This case corresponds to coinciding physical and coor­
dinate singularities (we emphasize that the time lines 
themselves do not coincide with the world lines of the 
dust particles; such a coincidence is possible only if the 
matter does not rotate, something which we do not postu­
late). Of course, for another choice of the synchronous 
coordinate system, the physical and coordinate singu­
larities will occur on different hyper surfaces l5J. 

We have seen that for a specially constructed synch­
ronous coordinate system it is possible to obtain simul­
taneous intersection of all the time lines. It can also be 
stated that the simultaneous character of the intersec­
tion of the time lines is ensured by a "limiting" choice 
of the mathematically arbitrary function. This choice 
does not decrease the number of physically arbitrary 
three-dimensional functions (i.e., functions of three 
variables) contained in the solution. As to the simultane­
ous intersection of the world lines of the particles with 
the medium, it can be attained only at the expense of 
specifying one function out of the physically arbitrary 
ones. This means (and apparently not only for dustlike 
matter) that the broadest class of solutions with simul­
taneous physical singularity can contain not more than 
seven physical arbitrary three-dimensional functions. 

We shall construct the solutions with the simultane­
ous singularity, confining ourselves to the case when the 
physical and the coordinate singularities coincide. This 
solution depends on seven physically arbitrary functions 
of three variables. 

ANALYTIC CONSTRUCTION OF THE SOLUTION 

Followingl2-4 J, we write down the metric near the 
singularity T = 0 in the form 1 >: 

00 

gab = :3 g~';} tn = aab + babt + Cabt2 + ... , 
n=O 

n=O 

(1) 

1>The greek indices or, (3, p, P, ... run through the values 0, I, 2, and 
3; the latin indices i, k, l, ... run through the values I, 2, 3. The indices 
a, b, c, and d can assume values I and 2. The speed of light and the 
Einstein gravitational constant are assumed equal to unity. 
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We assume here, for the time being, that all the coeffi­
cients are arbitrary functions of three spatial coordin­
ates. We also find the contravariant components of the 
metric tensor (seel2 J concerning this procedure): 

gab = a•b _ li>bt + ( -c•b + b<•bbc + aa•ab3) t2 + ... , 
g•• = --a•3 + ( -b•3 + br"a'3 + b33a3•)t + ... , 
gaa = a33t-2 - b33t-• + ( -caa + b33b3• + a••a;) + ... 

The raising and lowering of the indices is effected with 
the aid of the metric aab• a33• 

Assume that a physical singularity takes place at 
t = 0. The expansions for the energy density and for the 
velocity components (in analogy with the case of the non­
simultaneous singularity lSJ) will be sought in the form 

e = eH>t-1 + e<0> + ... , u"' = u<4°) + u•<1>t + ... 
The coefficients of these series are arbitrary three­
dimensional functions. 

We write down Einstein's equations in the form l1J 

(2) 

( 3) 

1 h h 
Ro;"'" -2(Xi;h- x,, i) =-To;, (4) 

R;, "'"~~X;h +~(x;hxf -2x1;Xkl)+P;, =- T1, + ~g1,T, (5) 
2 ax0 4 · 2 

where Kik = agik/ox0 , and Pik is the Ricci spatial tensor. 
We first transform the coefficient a33 into -1 by 

means of the coordinate transformation x3 = x3(x\ ';?, }{3), 
xa = x 2(]?' x 2) which does not change the form of the ex­
pansions (1) and (2) (after which we omit the symbol~). 
Calculations of the components of the Ricci tensor show 
that the first terms of the expansions which do not van-
. h · 11 o<-1 > R<-2> R(o) d R(O) Th IS automahca y are .no , ab , a3, an 33 . e 
components of the energy- momentum tensor T JJ.V 
= EuJJ.uv have the following order: 

Too~ t-1, T0a ~ t-1, To:,~ t, Tab~ t-·1, Taa ~ t, Taa ~ t3• 

We shall show that the sum of the gravitation equations, 
in their first approximation, impose such limitations on 
the functions aab that by using the permissible trans­
formation xa = xane' '3e) they can be transformed into 

(6) 

Here q is an arbitrary function of the coordinates x' and 
x2 ; <'lab is the two-dimensional Kronecker symbol (in 
this section and in a few others our derivations duplicate 
completely the calculations of Belinski1 and Khalatni­
kovl4l). 

Let us consider the following equations: 

R.<;•>,... 1/:(aab"- a•da.c'abi) = 0, (8) 

R33(0) == 1/ 2 (acla'd)' + 1/,a•bacdaalabc' = 0 (9) 

(the prime denotes differentiation with respect to x3). 
Introducing the notation a~b = aab• we can transform the 
system (7)- (9) into 

(10) 

Solving (10), we obtain ultimately 

aab = <jlab + X3<pacl(b0 • 

The arbitrary two-dimensional functions cpab and X~ 

(i.e., functions of the two variables x1 and x2), are con­
nected by the relations 

<plll(2° = <r••X1", X•" = 0, X•bXb" = 0. (11) 

The quadratic form dr 2 = fPabdxactxb can be reduced, by 
means of the coordinate transformations xa = xa(x1 ' x 2)' 

to dr2 = q(dx12 + dx2 \ As follows from relations (11), 
all the functions x~ vanish here, i.e., we arrive at the 
equality (6). Now the first terms of the metric (1) are 
as follows: 

Kab = q6ab + babt + ... , g,,a = aaat2 + baat• + ... , 
Kaa = -t2 + baat3 + . . . . (1') 

Not one of the coordinate transformations containing the 
three-dimensional arbitrary function and not violating 
the form of the metric (1') in expansion (2) is now left. 
The only admissible transformation with two-dimensional 
arbitrariness is the transformation of the type 

x" = .x• + f(x', F). (12) 

Calculating the components of the Ricci tensor by 
means of the metric (1'), we arrive at the conclusion 
that Roo~ t-\ Roa ~ t-\ Ro3 ~ t, Rab ~ t-\ Ra3 ~ t, and 
R33 ~ t. Let us see what all the Einstein equations yield 
in the principal order in t: 2> 

R/;;'l"'" bi =- eH>(u~•>'- 1/2). 

R/;;'l"'" a.3' = - e<-•>u~0) u~0), 

(13) 

(14) 

RJtl,... -'/2(- c.,•' + 1/ 2b,Sb.•' + 1/ 2bab'b•b + 2aaa'a•3) = -e(-l'lU:,0'ua 

(15) 

R.c;;''== - 1/ 2 (bab"- bab) =- eH:(u~> u~•>- 1/:aab), (16) 

R~~ "'" 1/ 2 (3b03 + b.•a.3 - b,Sa.3 + a••b.c''- b:; d +b.~·.) 

=-eH>u~0>u~2>+'/2a.3eH>. (17) 

RJ;>=a b33 + '/2ba•" - 1/.b.• = - 1/ 2eH>. (18) 

The purpose of the next step of the investigation is as 
follows. We shall show that we can determine all the 
remaining coefficients in the expansions (1') and (2) with 
the aid of the six series of equations (5), four series of 
equations TM. v = 0 and the equations (14) with respect 
to the three arbitrary three-dimensional functions E(-1), 

u and one two-dimensional function q. The determination 
of the quantities bab• cab• dab• etc. entails here the ap­
pearance of six series of two-dimensional arbitrary 
functions. Two more functions of two variables appear 
in the solution of (14). From Eqs. (3) and (4) we require 
so far only the satisfaction of (14). It will be shown later 
that if (5) is satisfied and Tg. v = 0, the remaining rela­
tions that follow from (3) and'(4) lead to certain connec­
tions between the two-dimensional functions which arise 
during the determination of g(n) (n = 1, 2, 3, ... ). 

ab 
The method of expressing the next coefficients in the 

expansions (1') and (2) in terms of the first ones (i.e., 
in terms of E<-1 >, u:;Jl, q) will be illustrated by using the 
determination of the quantities bik• uJt'>, uJ2 >, and Eco> as 
an example. As will be shown later, the next terms of 

· . <2 > u<3> d <1 > t b b the expanswns. cik• ua , 3 , an E e c., can e o -
tained in similar fashion. 

2) In some places we continue to use the quantities aab. recalling 
that aab = q(x', x2)1iab- The covariant differentiation in (17) is carried 
out in a two-dimensional space with metric aab· 
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The energy and momentum conservation laws T~; 11 

= 0 are written in the following form: 

UVUa;v = 0, 

uvua;v = 0, 

u•ae I ax• + eu• ;• = o. 

(19) 

(20) 

(21) 

In the principal order in t, we obtain from these equa­
tions 

1 a au(O) 
u<1l = _1_(-ub(Olud(o)_!!!!::...,- ui(Ol-"-. ) , 

a u(O) 2 ax• ax• 
0 

(19') 

(20') 

1 {' . ae(-l) [ (I) 1 . (0) (2)' 1 e<•> = - - u•<0l --. + e<-IJ u0 +- b;'Uo - u3 + ( a3•u.<0l) 
u(O) ax• 2 

u 

audO) 1 I aaad aaab \]} (21') +aab ____ aadud(O) 2----- J 
. axb 2 axb 8rd 

The velocity component Uo will be expressed in terms of 
the remaining quantities with the aid of the identity 

!1 (O) d (1) h u!lu = 1. For uo an uo we ave 

(u~O) )2 + u!O) U~) aab = 1, U (I)= - 1-(ua(O)ub(O)b b- 2ua(Olu.ill) 
0 ~r a • 

From (14) we determine the functions aa3 from the 
specified values of E <-o, u~>, and q. They are deter­
mined with two arbitrary functions Aa3 of two variables 

aaa = Aaa(x1, x2 ) + iaa. 

t . · d d t" 1 <-o <ol a d q The func wns Ja3 epen en 1re y on E , ua , n . 
We can then consider all the aik known. 

The scheme for obtaining the coefficients bik• u:J1, 
uJ 21 , and E <o> (which then repeats exactly for the follow­
ing coefficients) is as follows: From (16) we determine 
bab: 

bal> = <:Da1~1 (x1, x2 ) ex'+ Fdi1 (x', x2 ) e-:r' + i;i1• ( 16') 

The first two terms are the general solution of the 
corresponding homogeneous equation, and j~b is the 
particular solution of the inhomogeneous equation. <I>~\~ 
and F~1b are six arbitrary two-dimensional fu~cti~ns. 
Using (16'), we determine b33 from (18). Substltutmg 
(16') in (20'), we obtain the function uA21 . (We note that 
uJ21 = ua<olaa3- u3101 .) From (19') we get u~11 . We then 
substitute the functions bab, b33, u~ 1 , and uJ 21 in (21') 
and (17) (the functions u~11 do not enter in (17)), and thus 
express E101 and ba3· An important fact here is that the 
entire resultant arbitrariness lies in the functions <I>~~ 
and F~~· The determination of the valu~s of _b33, u~21 , 
u11), baJ, and E<01 introduces no new arb1trarmess. 

a To determine the succeeding coefficients in the ex­
pansions (1') and (2) we shall proceed in similar fashion. 
Equations (5) with indices i = a and k = b serve to deter­
mine g(n) (n = 1, 2, ... ). From (5) with indices i = k = 3 

ab 
we get gA~+ 21 . We then determine uAn• 1> from (20) and 
u(n) from ( 19). Substituting the corresponding coeffi-
a . ( 

cients in (5) with indices i =a and k = 3 and in 21), we 
get g<~ +21 , and Em - 11• 

a . . (n) m + 21 <n + 11 (n) 1n + 21 d The quantities gab, g33 , u3 , ua , ga3 , an 
Em -1> are unknown functions of the corresponding equa­
tions. To verify the applicability of the indicated scheme 
of obtaining the coefficients, it is necessary to know how 

the unknown functions are "generated" in each approxi­
mation of the equations (5) and (19) -(21). It is easy to 
verify that the unknown functions in Eq. (5) with indices i 
i =a and k = b (in (n- 2)nd order in t), the unknown func­
tions appear in the form of the combinations 

(22) 

All the remaining functions that enter in this case are 
known. We include among the unknown also the two­
dimensional functions which have appeared in the pre­
ceding orders. Consequently, the solution of this equa­
tion (in analogy with the solution of (16') which is a par­
ticular case of this solution) is 

( l (n) '+ .(n) g!~)= <D.~ (x', x•)enx'+Fab (x', x2)e-nx lab· (23) 

The unknown functions gJr• 2> enter in Eq. (5) with 
indices i = k = 3 in the form of the term 
(1/2)n(n + 1)gJr+ 21 . After substituting (23), all there­
maining terms are combinations of known functions. 
Consequently, the g~r-+ 2 > are determined from (5) (i = k 

<n+ 1) t. d" (20) = 3). The unknown functions U3 are con ame m 
in the form of the term (n + 1)u~01u~n + 1). Substituting 
here (23), the remaining functions are expressed in 
terms of known ones, i.e., u~n· 1) is determined from 
(20). The functions u~n) enter in (19) in the form u~01u~n). 

After substitution of ( 2 3) and uJn + 1 1, the remaining terms 
are known, and we can find u(n). Finally, g~~ + 21 and 

a 
Em- 1> enter in (5) (i =a, k = 3) and in (21) in the form 
(1/2)n(n + 2)grs• 21 and u~01 Em-o, respectively. There­
maining terms will be expressed in terms of known 
functions after the substitution of g~~ , g~r- + 21 , u~n), and 

um+ 11 Thus g<n+ 21 and E<n- 1> are also expressed in 3 · ' a3 
terms of known functions with the aid of (5) (i = a, k = 3) 
and (21). 

We have thus shown that all the coefficients of the 
series (1') and (2) are expressed in final analysis in 

f t . (-1) (O) d t . terms of the unc 1ons E , ua , q, an a cer am aggre-
gate of the appearing two-dimensional functions. We 
used for this purpose Eqs. (5), (19)-(21), and (14). 
Satisfaction of these equations does not denote, of 
course, that (3) and (4) will now be satisfied identically. 
Equations (3) and (4) impose certain constraints on the 
arbitrary functions. We now proceed to determine these 
constraints, assuming that Eqs. (5), (19)-(21), and (14) 
are already satisfied. 

Without calculating directly the left-hand and right­
hand sides of (3) and (4), let us ascertain the limitations 
to which they lead if we substitute in them the result of 
the solution of Eqs. (5), (19)-(21), and (14). To this end, 
we make use of the Bianchi identities 

(R~·- '/ag~•R) ;v == 0. (24) 

We introduee the notation vCg (R~ + T~ - (1/2)6 ~ T) 
=Sa· Recognizing that (5) and Til 11• 11 = 0 are already 

' 
satisfied, we can reduce (24) to the form 

. 1 ·1 g,; 
S;-2So,i+Tg-So==O, (25) 

1 . 1 g . ag'" (26) -2 So+ -,-So+S• ;g'"+S•-a. = 0 
'' g · x• 

(the dot denotes differentiation with respect to t). We 
note that Eq. (13) is satisfied identically by the virtue 
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of (16) and (18). Taking this into consideration, we ob­
tain So ~ t. It is easy to verify that the remaining quan­
tities entering into (25) and (26) have the following order 
in t: Sa~ t, Ss ~ e, g a~ e, g' ~ e, g ~ t, ,;::::g ~ t. 

·Let us assume that' Eqs. (3) are satisfied up to order 
tn- 1 inclusive, i.e., SJ1 > = 0, SJ2 > = 0, ... , S = 0. We then 
get from (25) 

i.e., Eqs. (4) are satisfied identically up to n-th order 
inclusive. As to the quantities sJn • 1>, s~n + 2 >, and s~n + 2 >, 
we get for them from (25) and (26) the relations 

(n + 2)S <n+2> _ ~s<n+t> + ~ iJ ln q s<n+•> .,.. O 
a 2 o ,a 2 iJxa 0 > (27) 

(28) 

(29) 

We eliminate sJn + 2 > from (28) and (29). We then obtain 

or 

s.<n+•l.,.. p<n+2l(x', x') e<n+2)x' + Q<n+2) (x', x') e-{n+2)•'. ( 30) 

The two-dimensional functions p<n + 2 > and Qm + 2 > 
represent certain algebraic combinations of the functions 

q, Aas' <I>~~, and F~ up to (n + 2)nd order, inclusive. 
The concrete form of these expressions can be estab­
lished after substituting in (3) the result of the solution 
of Eqs. (5), (19)-(21), and (14). In order for sJn + 2> to 
vanish, it is necessary to satisfy the equations 

p<n+2l(x',x') = O, Q<"+'l(x',x') = O. 

It then follows from (27)-(29) that s~n+ 2 ) = 0, s~n+ 2 ) 
= 0, and everything is repeated with allowance for the 
fact that s~n + 1) = 0. 

Let us start the analysis presented above with n = 0; 
then 

The quantities p<2> and Q<2J are made up of the functions 
A "'<1> F<1> "'<2> d F<2> I d f p<2> d q, as' "'ab' ab' "'ab' an ab· n or er or an 

Q< 2> to vanish it is necessary to impose on these func­
tions two constraints. Then, for example, not all the six 
functions <I> ~b and F~6 to remain arbitrary, but only four 
of them. The same situation is repeated for each group 
f · f · "'<s> d <s> "'<4 > d F< 4 > t 0 1 o s1x unctwns "'ab an Fab' "'ab an ab' e c. n y 

<I>~b and F~b are not subject to additional limitations. 
These functions (all six) remain arbitrary. Thus, Eqs. 
( 3) impose conditions on the functions <J>(n) and F(n), two 

ab ab 
conditions in each order, starting with n = 2. After 
satisfaction of these conditions, Eqs. (4) will be satis­
fied identically. 

DETERMINATION OF THE NUMBER OF ARBITRARY 
FUNCTIONS 

We shall now calculate the number of arbitrary func­
tions contained in the solution. Let us consider the com­
ponents of the metric gab· As shown, gab can be repre­
sented in the form 

00 

gil = q + L; (<I>l7) enx' + F.7) e-nz') tn + 2; il~) tn. 
n=i n=l 

00 

g12 = L; (<I>~) enx' +F.~) e-nx')tn + 2; j~)tn. (31) 
n=l n=t 

00 

g22 = q + t (cDg> e•' + pg> e-z') + 2; (cD:i:,n) enx' + FJ;> e-nx') tn + 2; jJ; tn. 
n=2 n=l 

Using (3), all the functions <I>~~) and F~~) (n = 2, 3, ... ) 
can be expressed in terms of q, Aas' <I>~~>, F~~>, <I>{~), 
<I>~~), F~~), and F~~) (m = 1, 2, ... , n), and consequently 

(32) 

where the function G22 which depends on all four coor­
dinates is determined completely from 

(n=1,2, ... ). 
(33) 

As regards the components g11 and g12, they contain four 
series of two-dimensional arbitrary functions, which is 
equivalent to specifying four three-dimensional func­
tions. In order to separate the three-dimensional ar­
bitrariness in gu and g12 in explicit form, we can pro­
ceed, for example, as follows. We represent exp(nx3 ) 

and exp(-nxs) in the form of series in xs; then g11 and 
g12 can be written in the form 

g11 = q + ~ tncDi~) + x• ~ t"Fi~) + IGu, 
n=l n=l 

gl2 = ~ lncDi~) + X3 ~ tnFi~) + tG12· {34) 
n=l n=l 

We have introduced here the notation <J>(n) = <I>(n) + F(n) 
-- 1a 1a 1a 

and F~~) = n( <I>~~) - F~~)). The functions Gu and G12 are 
completely determined from (33). The two-dimensional 

functions <I>~~) and F~~) are perfectly arbitrary, and 
consequently 

gu = ~11 + x 3'\'11 + tCu, g,, = ~12 + x"y,, + lG,,, 

where f3u, {312, Yu, and Y12 are arbitrary functions of the 
three coordinates x\ x2, and t. Strictly speaking, these 
functions are not perfectly arbitrary, since it follows 
from ( 34) that they should satisfy the conditions 

~" (x', x2, 0) = q, '\'H (x', x', 0) = 0, 
~,,(x', .r2, 0) = 0, 'Y12 (x1, x2, 0) = 0. 

Out of the remaining components of the metric gas 
and gss, two-dimensional arbitrariness in two functions 
Aas is contained in the component ga3 • However, one of 
these functions, say A1s, can be set equal to zero by the 
remaining admissible transformation (12). 

Separating the arbitrary functions, the solution of the 
gravitation equation is now written in the final form: 

gu = ~" + x'v" + 'iJu, g.,= ~" + x"y., + "'"· 
g22 = q + t (cD~~ ex'+ F!f! e-•') + 'iJ 22 , 

g,, = 'IJ,, 
e = e<-•lt-• + E, 

g23 = t2A 23 + 'iJ 23 , 

ua = n•<0l + U•, u3 = U3• 

Here f3u, Yu, {312, Y12, E<-I>, u1 <0 >, and u2 <0 > are seven 
arbitrary functions of three variables; q, <I>g>, Fg>, and 
A2s are four arbitrary functions of two variables. The 
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quantities 1/!ab• l/!a3 , E, and ui are determined completely 
from the specified arbitrary functions. Since there are 
no more coordinate transformations left, the entire in­
dicated arbitrariness is physical. Thus, the solution 
with simultaneous physical singularity depends on seven 
arbitrary functions of three variables, one less than the 
maximum possible number. It follows from this fact, in 
particular, that the obtained solution is unstable. There 
exists a type of perturbation which upsets the regime 
described by this solution. This does not mean, however, 
that the physical singularity will disappear as a result 
of the perturbations. The perturbations lead only to a 
defocusing of the world lines of the particles of a dust­
like medium and to a change in the character of the 
singularity from simultaneous to non-simultaneous. 

The author is grateful to V. A. Belinskil, A. L. 
Zel'manov, and I. M. Khalatnikov for a discussion of the 
results. 
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