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A solution of the gravitational equations which possesses a significantly nonsimultaneous true singu-

larity and which depends on eight physically arbitrary functions of three variables was previously con-
sidered’®’ for space filled by a dustlike medium. A solution with a simultaneous physical (true) singu-
larity is investigated in the present paper. The simultaneous nature of singularity can be ensured only
by decreasing the number of physically arbitrary functions by one, the respective solution now depend-

ing on seven functions of three variables.

Ass is well knownt® , in a synchronous coordinate sys-
tem, by virtue of one of the equations of gravitation, the
metric determinant g must vanish during a finite time.
(This is called the Landau theorem.) The vanishing of
the metric determinant denotes that a singularity exists
in the metric in the given coordinate system. E. Lifshitz,
Sudakov, and Khalatnikov'®’ determined the geometrical
causes of such a singularity, namely that in a synchron-
ous system of coordinates the time lines which form a
family of geodetics cross on an envelope (caustic) hyper-
surface. In the general case, the caustic hypersurface
is oriented in time, since it contains length elements of
the time-like lines tangent to it. Consequently, the fic-
titious (coordinate) singularity which results from the
crossing of the time lines is in general not simultaneous.
After using the permissible spatial transformations, the
corresponding solution of the Einstein equations in free
space contains five arbitrary functions of three coordin-
ates'®?. One of these functions is connected with the
‘“‘mathematical’’ arbitrariness in the choice of the ini-
tial hypersurface from which the time coordinate is
reckoned. This arbitrariness denotes the possibility of
changing the caustic hypersurface, while retaining at the
same time the form of the solution in its vicinity.

It is indicated in'** that in a synchronous coordin-
ate system it is also possible to construct a solution in
which the fictitious singularity is attained by all points
of space simultaneously. In a certain sense, this case
corresponds to a certain ‘‘limiting’’ choice of a mathe-
matically arbitrary function, which is contained in the
solution with the non-simultaneous singularity. As a
result of this choice, the geodetics constructed along
normals to the initial hypersurface are focused simul-
taneously on a geometrical image having a smaller num-
ber of dimensions, namely on a two-dimensional surface.
The solution of this problem in free space was obtained
analytically by Belinskii and Khalatnikov®™’.

As shown earlier ), two families of geodetics—a
family of world lines of particles of a dustlike medium
and a family time lines of a synchronous coordinate
system—behave in a certain sense in the same manner.
The world lines of particles of a dustlike medium also
have a time-like envelope hypersurface. The corre-
sponding solution of the gravitational equations depends
on the maximum number (eight) of physically arbitrary
functions. The hypersurface, in whose points the world
lines of the particles intersect, and consequently the

physical singularity arises, can be chosen as the caustic
for the time lines of the synchronous coordinate system.
This case corresponds to coinciding physical and coor-
dinate singularities (we emphasize that the time lines
themselves do not coincide with the world lines of the
dust particles; such a coincidence is possible only if the
matter does not rotate, something which we do not postu-
late). Of course, for another choice of the synchronous
coordinate system, the physical and coordinate singu-
larities will occur on different hypersurfaces'®’.

We have seen that for a specially constructed synch-
ronous coordinate system it is possible to obtain simul-
taneous intersection of all the time lines. It can also be
stated that the simultaneous character of the intersec-
tion of the time lines is ensured by a ‘‘limiting’’ choice
of the mathematically arbitrary function. This choice
does not decrease the number of physically arbitrary
three-dimensional functions (i.e., functions of three
variables) contained in the solution. As to the simultane-
ous intersection of the world lines of the particles with
the medium, it can be attained only at the expense of
specifying one function out of the physically arbitrary
ones. This means (and apparently not only for dustlike
matter) that the broadest class of solutions with simul-
taneous physical singularity can contain not more than
seven physical arbitrary three-dimensional functions.

We shall construct the solutions with the simultane-
ous singularity, confining ourselves to the case when the
physical and the coordinate singularities coincide. This
solution depends on seven physically arbitrary functions
of three variables.

ANALYTIC CONSTRUCTION OF THE SOLUTION

Following®*!, we write down the metric near the

singularity T = 0 in the form ":

gab = Z gfz’l?t"

n=0

=aab+babt+cnbtz+...,

+2)
ar = g Tt = ag® + bastd+ ...,

n=y

w
42
g3 = Z e Tt = a2 4 byt .

n=0

DThe greek indices «, B, u, v, . . . run through the values 0, 1, 2, and
3; the latin indices i, k, /, . . . run through the values 1, 2, 3. The indices
a, b, c,and d can assume values 1 and 2. The speed of light and the
Einstein gravitational constant are assumed equal to unity.
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We assume here, for the time being, that all the coeffi-
cients are arbitrary functions of three spatial coordin-
ates. We also find the contravariant components of the
metric tensor (see'®’ concerning this procedure):

gab = qob — Laby + (_cab + bcabbc + asaab:l) 2 + e,

gaa o __aas + (,_baﬂ + bfaana _|_ bsaaaa)t + ceey

2% = %12 — b1 4 (—c® 4 bBbP + a%%ad) + ...
The raising and lowering of the indices is effected with
the aid of the metric agp, ass.

Assume that a physical singularity takes place at

t = 0. The expansions for the energy density and for the
velocity components (in analogy with the case of the non-
simultaneous singularity'®?) will be sought in the form

u® = u™0 + udf 4. .. (2)
The coefficients of these series are arbitrary three-

dimensional functions.
We write down Einstein’s equations in the form (1
1.9 ¢+ 4

k
—z—wki +—4—Khut =

e=g L4 ...,

1
Too+-2—T:

Rop =

(3
(4)

1
Ry = — —z(x.‘?u — i) = — Toi,

a 1
Xin + — (xmcf — 2xixm) + Pin = — T + -2—guaT, (6

_z'azo

where Kji = 8gik/8x°, and Pji is the Ricci spatial tensor.

We first transform the coefficient a;; into —1 by
means of the coordinate transformation x* = x*(X', 7{2 , X%,
x@ = x*(%', X% which does not change the form of the ex-
pansions (1) and (2) (after which we omit the symbol ~).
Calculations of the components of the Ricci tensor show
that the first terms of the expansions which do not van-
ish automatically are R, Ry}, Ry, and R{y’. The
components of the energy- momentum tensor Tuu
= euyuy have the following order:

Ry =

Too ~ ¢4, Toa~t, Too~1it, Top~tt, Togg~1t, Ty~

We shall show that the sum of the gravitation equations,
in their first approximation, impose such limitations on
the functions ayp that by using the permissible trans-
formation x2 = xa(%*, %% they can be transformed into

(6)

Here q is an arbitrary function of the coordinates x' and
x%; 0 gp is the two-dimensional Kronecker symbol (in
this section and in a few others our derivations duplicate
completely the calculations of Belinskii and Khalatni-
kov™?).

Let us consider the following equations:

agy = qdab.

R = — 1/ =0, (7)
RJJZ)E i/Z(aal‘l” — atdaycapq’) =0, (8)
R = 1 (aed )’ + Ysattatiaed s = 0 ()

(the prime denotes differentiation with respect to x°).
Introducing the notation ajp = ayp, We can transform the
system (7)—(9) into

ag? =0, alap® =0, 0e® = 0. (10)
Solving (10), we obtain ultimately
@ab = Pab + T3Pack-

The arbitrary two-dimensional functions ¢ ab and xg
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(i.e., functions of the two variables x' and x?), are con-
nected by the relations

(11)

The quadratic form dr?® = ¢,,,dx2dxP can be reduced, by
means of the coordinate transformations x2 = x3( %', %%,
to dr? = q(dx** + dx**). As follows from relations (11),
all the functions xg vanish here, i.e., we arrive at the
equality (6). Now the first terms of the metric (1) are
as follows:

gab=qéab+babt + ... Ga3 = Qq3t® + basl® + ..., (1,)
g3 = —R4 byt +....
Not one of the coordinate transformations containing the
three-dimensional arbitrary function and not violating
the form of the metric (1) in expansion (2) is now left.
The only admissible transformation with two-dimensional
arbitrariness is the transformation of the type

QX2 = Qaax1® % =0, xa®x® = 0.

=B+ (3, B). (12)

Calculating the components of the Ricci tensor by
means of the metric (1’), we arrive at the conclusion
that Roo ~ t™, Rog ~ t™, Ros ~ t, Rap ~ t™, Rys ~ t, and
Rss ~ t. Let us see what all the Emstem equatlons yield
in the principal order in t:

RGY = b = — e-nu® —1/,), (13)
REV = gy = — e-0udul, (14)

Hogn = —1/y(— c.* 4 1/2bs’ba® + 1/2bap'b% + 2a,45'a%3) = —e(-Yuy uy
(15)
RV= —1/3(bap” — bap) = — &~ (ug uy" — Y/28a),  (16)

R = 1/5(3bas + bas — bs%ags + a%bes” — b, a + bei a)

= — e(-ﬂuf,o) u§”+ 1/2aq38D, 17
Rag'= bys + */2ba®” — */2ba® = —1/2=9, (18)

The purpose of the next step of the investigation is as
follows. We shall show that we can determine all the
remaining coefficients in the expansions (1’) and (2) with
the aid of the six series of equations (5), four series of
equations TY. , = 0 and the equations (14) with respect
to the three arbltrary three-dimensional functions €V,
u and one two-dimensional function q. The determmation
of the quantities by, cap, dgp, etc. entails here the ap-
pearance of six series of two-dimensional arbitrary
functions. Two more functions of two variables appear
in the solution of (14). From Egs. (3) and (4) we require
so far only the satisfaction of (14). It will be shown later
that if (5) is satisfied and TV . = 0, the remaining rela-
tions that follow from (3) and’(4) lead to certain connec-
tions between the two-dimensional functions which arise
during the determination of gg;)) (n=1,2,3,...).

The method of expressing the next coefficients in the
expansions (1’) and (2) in terms of the first ones (i.e.,
in terms of €, u;”, q) will be illustrated by using the
determination of the quantities by, ui’, us?, and € as
an example. As will be shown later, the next terms of
the expansions: cji, uy”, Us¥’, and e etc., can be ob-
tained in similar fashion.

2In some places we continue to use the quantities aap, recalling
that agp = q(x!, x2)83p. The covariant differentiation in (17) is carried
out in a two-dimensional space with metric agp.
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The energy and momentum conservation laws TV

v
= 0 are written in the following form: K

uug v = 0, (19)

uvug, vy = 0, (20)

woe [ 6z¥ + euw’ y = 0. (21)

In the principal order in t, we obtain from these equa-

tions
ul =._1_( 1 ooy 9% _ 9 9% oug” ) (19")
u® \ 2 dze ozi /'’
@___ 1t . 20’ )
= b usoro, (
4u®
0 1 0 ~1 (’) ©
e()——_(o) 1() + (—1) + ‘uo—ua +(a3°u(°))
uU
0)
du, 1 0a,q 0agqp \ ’
ab dy,d(0) _ 21
+a b 2 g o 2 dzb grd /]} (21)

The velocity component ue will be expressed in terms of
the remaining quantities with the aid of the identity

0 1
uy ut = 1. For us” and ué" we have
( u(o) V24 u(o) u(O) asb =1, 0(i) — '2—-(u“(°)ub(°)bab —_ 2uﬂ(°)u“(‘))
0

From (14) we determine the functions ay, from the
specified values of €, ug”, and q. They are deter-

mined with two arbitrary functions Ay, of two variables
a3 = Aoz (24, 22) + Jas.

The functions j,, depend entirely on €
We can then consider all the ajix known.
The scheme for obtaining the coefficients bjy, ug )
us?, and €'’ (which then repeats exactly for the follow-
ing coefflclents) is as follows: From (16) we determine

bab:

,ua ,andq

ba = Do (21, 22) €2 + F ) (2, 22) = + fos . (16")

The first two terms are the general solution of the
corresponding homogeneous equation, and J;.ll; is the
particular solution of the inhomogeneous equation. <I>“l;
and F:(alt; are six arbitrary two-dimensional functions.
Using (16’), we determine bss from (18) Substituting
(16) in (20), we obtain the function ui®’. (We note that
u? = ud®a,, — u*®)) From (19) e get ug”’. We then
substitute the functlons bah, bss, u a ’, and uf® in (21)
and (17) (the functions uj"” do not enter in (17)) and thus
express € and b,,. An important fact here is that the
entire resultant arbitrariness lies in the functions @;l;
and F{*). The determination of the values of bss, us?,
;” , by, and € introduces no new arbitrariness.

To determine the succeeding coefficients in the ex-
pansions (1’) and (2) we shall proceed in similar fashion.
Equaticns (5) with indices i = a and k = b serve to deter-

mine g(n) (n=1, 2,...). From (5) with indices i =k = 3

we get gi*?. We then determine u{®* " from (20) and
g n) from (19). Substituting the corresponding coeffi-

cients in (5) with indices i = a and k = 3 and in (21), we
get g(n+2)’ and €@ "D

The quantities ga%) gt yMrh, u(él) g5 "®, and
€™ ™Y are unknown functions of the corresponding equa-
tions. To verify the applicability of the indicated scheme
of obtaining the coefficients, it is necessary to know how

(Il*2)
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the unknown functions are ‘‘generated’’ in each approxi-
mation of the equations (5) and (19) —(21). It is easy to
verify that the unknown functions in Eq. (5) with indices i
i=aandk =b (in (n — 2)nd order in t), the unknown func-
tions appear in the form of the combinations

—1/5(88 " — n%). (22)

All the remaining functions that enter in this case are
known. We include among the unknown also the two-
dimensional functions which have appeared in the pre-
ceding orders. Consequently, the solution of this equa-
tion (in analogy with the solution of (16") which is a par-
ticular case of this solution) is

.(n)
(a1, 22) e 4 iy

n+2)

(n) — (D(m(fﬂ‘, zz)enx‘_i_F (23)

The unknown functions gss3 enter in Eq. (5) with
indices i = k = 3 in the form of the term
(1/2)n(n + 1)g§§1+2’ After substituting (23), all the re-
maining terms are combinations of known functions.
Consequently, the gif *% are determined from (5) (i =k
= 3). The unknown functions us?** are contained in (20)
in the form of the term (n + l)u(O) oy Substituting
here (23), the remaining functions are expressed in
terms of known ones, i.e. u(n+ Y js determined from
(20). The functions ugn) enter in (19) in the form uw)u(“).

After substitution of (23) and us®*"’, the remaining terms
are known, and we can find ugn). Fmally, D+ and

€B~ Y enter in (5) (i = a, k = 3) and in (21) in the form
(1/2)n(n + 2)g** and us” €™V, respectively. The re-
maining terms will be expressed in terms of known

functions after the substitution of g(n) o) ugn), and

us"* V. Thus, gf1** and €™ " are also expressed in
terms of known functlons with the aid of (5) (i = a, k = 3)
and (21).

We have thus shown that all the coefficients of the
series (1’) and (2) are expressed in final analysis in
terms of the functions €V, (0), q, and a certain aggre-
gate of the appearing two—d1mens1ona1 functions. We
used for this purpose Egs. (5), (19)—(21), and (14).
Satisfaction of these equations does not denote, of
course, that (3) and (4) will now be satisfied identically.
Equations (3) and (4) impose certain constraints on the
arbitrary functions. We now proceed to determine these
constraints, assuming that Eqgs. (5), (19)—(21), and (14)
are already satisfied.

Without calculating directly the left-hand and right-
hand sides of (3) and (4), let us ascertain the limitations
to which they lead if we substitute in them the result of
the solution of Egs. (5), (19)—(21), and (14). To this end,
we make use of the Bianchi identities

(Rw —og»'R) v = 0. (24)
Ty — (1/2)65,T)
y = 0 are already

We introduce the notation v—g(Ry, +
= S4. Recognizing that (5) and TH V;
satisfied, we can reduce (24) to the form

1 &8s
S""—St)t

=0, (25)

0g£h _ 26
ozt 0 ( )
(the dot denotes differentiation with respect to t). We

note that Eq. (13) is satisfied identically by the virtue

1, ‘
5 S+ T-g"so+sn,ig'k+sk
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of (16) and (18). Taking this into consideration, we ob-
tain So ~ t. It is easy to verify that the remaining quan-

tities entering into (25) and (26) have the following order

int: S5 ~t, S~ tzga~t2g~t3g t,v—g~t.

Let us assume that Egs. (3) are sat1sf1ed up to order
th~! inclusive, i.e., S§*’ =0, S¢ =0, ..., S = 0. We then
get from (25)

1 (n+1)
s =o,..., ., 88

S,(,"H) = 0; S:(,z) =0,.. =(,

i.e., Egs. (4) are satisfied identically up to n-th order

inclusive. As to the quantities S§" "V, S"*®, and 5" 7
we get for them from (25) and (26) the relations
(n+2) 8 — 1 s b 1dlng Ilng g o (27)
2 2 a8
(r+ 28 — 17,50 =0, (28)
o+ 1)8"0 10850 — ST =0, (29)

We eliminate S{"*# from (28) and (29). We then obtain

3 +1.
(n+2)255" =S5 =0
or

S = Pt (g1, 22) et DR L Qn) (a1, 22) e~(nH2,

(30)

The two-dimensional functions P®*? and Q™ *?2

b

represent certain algebraic combinations of the functions

a4, Ay, <I>(a1§)), and Fgg up to (n + 2)nd order, inclusive.

The concrete form of these expressions can be estab-
lished after substituting in (3) the result of the solution
of Egs. (5), (19)—(21), and (14). In order for S to
vanish, it is necessary to satisfy the equations

P42 (g1, 22) = 0, Q+d(zt,22) = 0.

It then follows from (27)—(29) that S;*** = 0, s{0*?
= 0, and everything is repeated with allowance for the
fact that S®* 9 = 0.

Let us start the analysis presented above with n = 0;
then

S& = PO (24, 22) €25 4 Q@ (, 22) e,

The quantities P® and Q'® are made up of the functions
q, Agss B5p, ;’6, @;ﬁ, and Fg. In order for P® and
Q'® to vanish it is necessary to impose on these func-
tions two constraints. Then, for example, not all the six
functions &2’ and F(b to remain arbitrary, but only four
of them. The same situation is repeated for each group

of six functions &I>(b and Fz(:k;’ b and Fab’ etc. Only

<I>(b and F“t; are not subject to additional limitations.
These functions (all six) remain arbitrary. Thus, Egs.
(3) impose conditions on the functions d)(lg)) and Fg%), two

a
conditions in each order, starting with n = 2. After
satisfaction of these conditions, Eqs. (4) will be satis-
fied identically.

DETERMINATION OF THE NUMBER OF ARBITRARY
FUNCTIONS

We shall now calculate the number of arbitrary func-
tions contained in the solution. Let us consider the com-
ponents of the metric ggp. As shown, ggp can be repre-
sented in the form

977

(") ens | [“") e-ne)in 4 Z ]( );n

n={

Eu—Q‘f‘Z

n={

e—n::‘) tn 4 2‘ i,

n=i

gu= Z (O ens 4

n={

(31)

fn=q+ (DS e+ e-®)+ D) (OF e 4 Fen2)in 13 jSen,

n=2 ne=q

Using (3), all the functions <1>§’;) and F( ) (n=2,3,..)
can be expressed in terms of q, A B F{}, (m),

22
@E;n), F(m), and F(M) (m = 1, 2, n), and consequently

as’

=g+ 1(DS e + Fif e==') + tGog, (32)

where the function Gg; which depends on all four coor-
dinates is determined completely from

©)

e, .,

1) (1) (n)
¢ Aas, Dm, F, Dy,

33
o, FY, P (n=1,2,...). (33)

As regards the components g;: and g, they contain four
series of two-dimensional arbitrary functions, which is
equivalent to specifying four three-dimensional func-
tions. In order to separate the three-dimensional ar-
bitrariness in g;; and g;, in explicit form, we can pro-
ceed, for example, as follows. We represent exp(nx®)
and exp(—nx°) in the form of series in x°; then g, and
g12 can be written in the form

gu=q-+ ,,21 QY + 23 2 t"F(;f) +tGu,

n=1

ga= 3 'O + a8 N "FD 416y, (34)
n=1 n=1

We have introduced here the notation d)lzgj = @fg) + Fgg)
and Fgg) = n(fbgg) - Fgg)). The functions G;; and Gy, are
completely determined from (33). The two-dimensional

functions élzgj and Flzg) are perfectly arbitrary, and
consequently

81 = Bu + 2% +1G11, g2 = P+ Lyi2 -+ 1Gya,

where B11, Biz, 711, and ¥ are arbitrary functions of the
three coordinates x', x%, and t. Strictly speaking, these
functions are not perfectly arbitrary, since it follows
from (34) that they should satisfy the conditions

B (I‘, z?, 0) =4q,
Brz(2, 22, 0) =0,

Yiu (2, 22,0) = 0,
Yz, 2%,0) = 0.

Out of the remaining components of the metric gg,
and g33, two-dimensional arbitrariness in two functions
Ay, is contained in the component g,,. However, one of
these functions, say A3, can be set equal to zero by the
remaining admissible transformation (12).

Separating the arbitrary functions, the solution of the
gravitation equation is now written in the final form:

gu==Pu + 2%+ VY, g = P+ v+ Y.
g2 = g+ t(Df e + Fg e®) + o,

g13=="P13, Loz == 12493 + P2s,
e = ¢+ E, ut=ux04 s ud= 03
-1 1(0 2(0
Here Bi1, 711, Biz, 71z, €77, u*®, and u*'” are seven

arbitrary functions of three varlables q, ®%’, F5', and

A,; are four arbitrary functions of two variables. The
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quantities ¥, was, E, and U! are determined completely
from the specified arbitrary functions. Since there are
no more coordinate transformations left, the entire in-
dicated arbitrariness is physical. Thus, the solution
with simultaneous physical singularity depends on seven
arbitrary functions of three variables, one less than the
maximum possible number. It follows from this fact, in
particular, that the obtained solution is unstable. There
exists a type of perturbation which upsets the regime
described by this solution. This does not mean, however,
that the physical singularity will disappear as a result
of the perturbations. The perturbations lead only to a
defocusing of the world lines of the particles of a dust-
like medium and to a change in the character of the
singularity from simultaneous to non-simultaneous.

The author is grateful to V. A. Belinskii, A. L.
Zel’manov, and I. M. Khalatnikov for a discussion of the
results.
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