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It is demonstrated that the method of calculating the well-known expression for the probability for 
transition of an electron from one band to another under the action of a stationary electric field, 
which is based on shifting the integration with respect to kx to the complex region and taking into 
account only the contribution from that part of the contour which is in the immediate vicinity of the 
branching point of the function En(k) - En'(k), is incorrect. In weak fields the disregarded terms may 
be considerably greater than the "main" term. If this circumstance is taken into account, as well as 
relation (8), one finds that the traditional exponential dependence of the transition probability on the 
field strength F is valid only in very strong fields. The transition probability is much greater than is 
usually assumed, in a very broad range of field strengths and is a power function of the field strength, 
p ~ {3?. 

1. FUNDAMENTAL RELATIONS 

WE consider a nonmetallic crystal having a symmetry 
center and containing an electric field F. If this field is 
directed along the negative x axis, then the probability 
of a transition from band 1 (valence) to band 2 (conduc
tion) in a time t can be defined as the square of the 
modulus of the following expression u, 2 J : 

F I {. t' } 
a(ko,t)=-~ Sa(k')exp -7iSie2(k")-et(k")]dt" dt', (1) 

0 c 

where 

S • auu. 
a(k)=a2i(k)= u2k --d-r:. 

g, Bkx (2) 

The integration in (2) is over the volume of the unit 
cell, 

k'= k(t) = ko- eFt/li, Fx = -F, Fu =F.= 0, 

k' = k(t'), k" = k(t"), 
( 3) 

Unk is the amplitude of the Bloch function in the n-th 
band, normalized to the unit cell, En(k) the electron en
ergy in the band n, and c is an arbitrary constant. 

As is well known, formula (1) does not provide an 
exact solution of the problem of the tunnel transition in 
a crystal. It was derived without allowance for the 
scattering of electrons by the thermal lattice vibrations, 
which was considered by Keldysh [3J • In addition, ex
pression (1) is only the first term of a series represent
ing the exact solution of the problem in which scattering 
by phonons is disregarded [2 J. 

Nonetheless, expressions such as (1) are widely used 
in the analysis of tunnel transitions in electric fields 
and in the theory of tunnel diodes (see, for exam-
ple, u, 4- 7 l. The integration in (1) is carried out here by 
shifting the contour in the complex kx plane. However, 
usually only the contribution from the part of the con
tour in the immediate vicinity of the br~ch point of the 
function £ 2 - £1 is taken rigorously into account u. It 

l)The presence of a pole in the function a(k) was likewise not taken 
into account in (1], as pointed out by Keldysh[ 3). 

will be shown below that the terms discarded in this 
case turn out to be much larger than the "main" term 
in a wide range of fields. 

To compare with the previously obt~ned results and 
to estimate the contribution given by the more accurate 
calculation of the integral (1), we shall use the same ex
pression for En(k) as in[1 ' 4 ' 7 l, namely: 

ft2k 2 8G 8G [ fi2 ]'f, e.(k) =-+--- 1+--k2 , 
2m 2 2 m,eG 

ft2k2 8G 8G [ ft2 ]'I• 
e,(k) =-+-+- 1+--k2 , 

2m 2 2 mr8G 

1 1 1 
-=-+
mr jmi'l m2' (4) 

where EG is the width of the forbidden band, mt and m: 
are the effective masses in the corresponding bands, 
and we consider the motion of the electron with ky = kz 
= 0 and kx"' 0, assuming the x axis to be directed along 
one of the principal crystallographic axes. Then, chang
ing variables and putting c = -nkox/eF, we write (1) in 
the form 

k:z cd,,/ 

a(k.,,t)=- ~ a(k/)exp{i2x S -y~2d1J}dk',, (5) 
kox 0 

where 
EG ft 

x=--, c1=-~. 

2cteF 'fmrEG (5a) 

Taking the integral in the exponential of (5), we get 

k. 

a(k0,,, t) = - S a(k/)exp{ixq>(c,kx') }dk/, 
(6) 

k,. 
where 

q>(x) = xl'i + x2 +In (x + l'1 + x2). (7) 

For further calculation of (6), it is necessary to know 
the explicit form of a(k). We note first the following 
general relation, which is satisfied for real k: 

S • a 
ann•(-k) =- Un,-k(r) 7Jk U,.•,-._(r)d't , 

llo X 

(8) 

963 



964 A. E. GLAUBERMAN and I. I. TAL'YANSKil 

We have used here the well known property of the func
tions Unk(r): 

Un,-k(r} = Unk•(r}. 

On the other hand, it is easy to verify that O!nn' is a 
real quantity when n' i" n. This follows from the rela
tion[BJ 

(9) 

where 

Since ~n' is a real quantity, as follows from the in vari
ance of the integral 

~ U~k(r) :x Un•k(r)d't 

against inversion, it follows from (9) that a(k) is real. 
Then we get from (8) that a(k) is an odd function of k. 
To find the form of this function, we shall use the well 
known relation (the f-sum rule) 8 

Hence, by virtue of (9), we get 

a'(k) = 1 [ 8282 - 828t]. 
4(ez-et) 8ki ak.?. (10) 

The obtained formula is general for the chosen two- band 
model. 

Substituting here En(k) from (4), we obtain for the 
"one-dimensional" case under consideration 

'(k )- Ct2 
a x - 4(1 + c!'k,,Z)2 

or 

(11) 

where the sign function ensures the odd character of 
a(kx) for real kx· The characteristic discontinuity of 
the function a(k,c) at the point k,c = 0 can be observed 
by calculating a(kx) directly with the aid of the kp per
turbation theory. A similar calculation was performed 
by Kane[71 , but as a result of an erroneous differentia
tion with respect to jkj instead of kx, this discontinuity 
is not taken into account in his formulas. In fact, the 
expression for a(k) in[71 should contain an additional 
factor kx/lkl, which leads to a discontinuity at the point 
k = o. 

Taking (11) into account, we get from (6) 

We now must answer the question of which integration 
limits must be taken in (12) in order to obtain the natural 
characteristic of the penetration from band to band. 
Usually this quantity is chosen to be the transition 
probability per period of electron oscillations in the 
band. The integration with respect to k~ is then carried 
out in (12) from -K/2 to K/2, where K is the width of 
the Brillouin zone in the x direction. Since cp is an odd 
function of~' by virtue of the equation[91 

ln (x+l'1 + x2) = -ln (-x +1'1 +x'), 

it follows that the contribution to the integral from the 
exponential yields only sin{Kcp(c 1~)} when these integra
tion limits are used. But then we find that a - 0 as 
F- 00 , i.e., when the distance between bands tends to 
zero. 

This result can be attributed to the fact that in the 
indicated limiting case the electron will execute, under 
the influence of the field, oscillations that encompass 
both bands, and at the end of a complete period of the 
oscillations the electron will be in the initial state, i.e., 
in the first band. We see therefore that the characteris
tics of the penetration should be taken to be the proba
bility of the transition within a time equal to half the 
period, when the electron moves in the direction towards 
the second band. The limits of k~ will then be 0 and 
K/2. Introducing a new integration variable~ = c1~, we 
obtain for the amplitude of the transition probability for 
each "approach" to the barrier 

1 ~. 1 
a== '2 ~ 1 + 62 exp {ixcp(6)} d6, 

0 

(13) 

2. CALCULATION OF THE TRANSITION PROBABILITY 
AMPLITUDE 

To calculate the integral (13) we shall assume that I; 
is complex and go over from the I; plane to the complex 
z plane with the aid of the substitution I; = - iz. Then 
expression (7) goes over into 

-izl'1 - z2 + ln ( -iz + i'1 - z2}; 

writing v"1='Z7 = i..fZ2"=T and using the equality 

ln(iw) = 1/ 2ni+lnjwj +iargw, 

we get 

. }'~· 
a= _,:_exp{ -~ ~ f(z)dz, 

2 2 0 

where 

(14) 

1 ---- --
/(z) = ---exp {ix [zfz2 -1 + lnjl'z2 -1- zj + iarg(yz2 - i- z)l}. 

1-z2 

The exponential factor in front of the integral coincides 
with the expression obtained by Kane[101 (for k1 = 0, 
kl = ~ + k~), and with the corresponding expressions 

in[l,nJ and elsewhere. This factor is decisive in all the 
formulas for the transition probability in the cited pa
pers, so that the transition probability turns out to be 
vanishingly small at fields weaker than~ 104 V /em. As 
will be shown below (see the Appendix), calculation of 
the integral in (14) gives rise to terms in which this ex
ponential factor is cancelled out and by the same token 
the obtained transition probability in weak fields is 
much larger. 

Let us consider the analytic properties of the inte
grand in (14). The factor preceding the exponential has 
simple poles at the points z = ±1, and the same points 
are also branch points of the function v'Z!'=l. There 
are no other singularities, and consequently the function 
is analytic in a plane with a cut from -1 to + 1. The 
residue at the points z = ±1 of the function-i/2(1- z 2) 

is ±i/4, which agrees with the results obtained by 
Keldysh [3J . 

In connection with the chosen substitution I; = -iz, in 
order for the integral to coincide with the initial one on 
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+t 

the corresponding section of the contour, it is necessary 
to have 

Iml'z2 -1<0 fory>O, z=x+iy. 

This corresponds to a choice of the "second" sheet of 
the Riemann surfaceu2J. Further, f(z) decreases ex
ponentially at infinity when 

Imzl'z2-1 > 0. 

The latter inequality is satisfied in the second and 
fourth quadrants of the complex plane. This follows 
from the fact that if we put -./z2 - 1 = u + iv, then 

(15) 

1m z~ = xv + yu, and the sign of the functions u 
and v on the second sheet of the Riemann surface are 
as follows: 

first quadrant: u < o, v < 0 
second quadrant: u > 0, v < 0, 

third quadrant: u > o, v > o, 
fourth quadrant: u < 0, v > 0. 

(16) 

Therefore the integration contour is chosen in the sec
ond quadrant of the complex plane with cut from - 1 to 
+1 (see the figure) 2>. 

Since f(z) has no singularities inside this contour, 
we can write 
iio i'R -1-r 0 

~ f(z)dz =- ) f(z)dz-) f(z)dz- S f(z)dz- ) f(z)dz- ) f{z)dz .. 
0 i'&o r -R -t+r 

In the limit as R- 00 and r- 0, the integral along the 
contour r vanishes by virtue of the exponential decrease 
of f(z), and we get 

iia 

~ f(z)dz=- ~f(z)dz-lt-I2, (17) 

-1-r 0 ioo 

I 1 =I!! ( ) f(z)dz + ) f(z)dz ). I2 = S f(z)dz. (17a) 
-!XI -f+r iio 

The integral along the contour y is calculated in ele
mentary fashion: 

S ni 
lim f(z)dz = --
r-o.., 2 

(18) 

(the minus sign is due to the fact that the point x = -1 is 
circled clockwise). This integral is usually considered 
as the principal one, and the integrals over the remain
ing part of the contour are discarded, while in (7 J the 
integration contour was chosen incorrectly, since it 
corresponds to an interval of integration with respect to 
~ from - 00 to +oo. 

We now consider the integrals I1 and I2. Unfortunately 
they cannot be calculated exactly. However, they can be 
estimated (see the Appendix). We then get from (14) 

2lin making the substitution~ = iz it is necessary to work, for the 
same reasons, in the flrst sheet in the fourth quadrant. 

Rea= ! exp{- ~ x}{:- Imi{'- Imi2} 

Ima = ! exp {-; x }{I{+ Reit'' + Rei2}, (19) 

where the values of I~, If and I2 are given in (A.3), (A.4), 
(A.7), (A.8), (A.13), and (A.14). 

We note that in the derivation of (19) from formula 
(1) no assumptions were made concerning the magnitude 
of the field. As shown by numerical estimates, the addi
tional terms I1 and I2 are far from small compared with 
JT/2 for arbitrary fields. In order to illustrate this, we 
shall carry out an analysis for the extreme cases of 
"small" and "large" fields, i.e., for the cases when 
K » 1 and K « 1 (K is defined in (5a)). 

For the case K >> 1, using the known asymptotic ex
pansions of the functions S, C, and Ei, we obtain 

, 1 {nx} 1 2 It :::::: g -;z exp 2 , 4 < g < ~, 

0 9 , 1/ nx 0.45 I I, 1/ nx 
' < Reii < V 2' -x- < m I < V 2' 

Rei2 :::::: - ··-::--c,.--:---:-1
....,..,-:c- exp { n2x} ~cos [<p (S.) x], 

2{6o2 + 1)'/, ~ 

(20) 

Imiz:::::: 2 (so" ~ 1)'1, exp{ n;} ~sin [<p(S.,)x]. 

If we neglect the exponentially small terms, then we get 
from (19) and (20) 

R 1 F . [<p(so)Fo] 
ea~· s1n ---

4(6o2 + 1)% Fo F ' 
(21) 

I 1 F { . 1 [<Jl{so)Fo]} 
ma:::::TF0 g- 2(£.2 +1)'1• cos --F- ' 

where 

The probability of the tunnel transitions for one approach 
to the barrier is 

p _ 2 _ 1 { 2 1 gcos[<p{~o)F0/F] }(F)" 
-Ia! -4 g + 4(S."+1)a- {so•+1)'1• Fo · (22) 

We now consider the case when Fo/F = K « 1. Con
fining ourselves to the principal terms of the expansion, 
we get here 

0,45 x < I/ < nx I 2, 
0,9l'nx I 2 < ReI/' :::::: Im !{' < l'nx /2, 

1 { nx }1/ nS.x 
Re/z:::::: --ro-exp T v-2-, 

1 { nx} Im I2 :::::: - exp - . 
6o 2 

From this and from (19) we see that when 
K « 21T- 1 ln(1T~o/2) we get 

n { n Fo} Rea:::::: -exp .--- , 
4 2 F · 

(23) 

(24) 

and since the imaginary part is negligibly small under 
these conditions: 

Im a-+0, ...... (25) 

we obtain Kane's expression for the transition probabil
ity[loJ. 
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3. ESTIMATES AND DISCUSSION OF THE RESULTS 

To obtain numerical estimates, we consider two ex
amples of semiconductors with narrow and broad for
bidden bands. The former is chosen to be InSb, which 
is considered also in[41 and inuoJ. This crystal has no 
symmetry center and therefore it is not rigorously cor
rect to apply our formulas to it, as well as the analogous 
formulas of Argyres and Kane. However, as noted by 
Kane, the resulting error is small. The second example 
is GaAs, which has the same structure as InSb, but a 
broad forbidden band. We must emphasize here that the 
main purpose of our estimates is not to obtain numer
ical results for the indicated concrete crystals, but to 
investigate the character of the dependence of the trans
mission coefficient on the width of the forbidden band 
and on the field intensity in the "weak" and "strong'' 
field intervals. 

We choose the InSb parameters as follows: EG 
= 0.18 eV, mr = 6.5 x 10-3m (reduced mas~ correspond
ing to electrons and light holes), d = 6.48 A-lattice 
constant. At these values of the parameters we have 
~o = 78 and Fo = 1.1 x 105 V/cm. 

For GaAs we choose EG = 1.4 eV, mr = 6 x 10-2m 
(electrons and heavy holes), and d = 5.63 A. Accordingly, 
~o = 11 and Fo = 7.4 x 106 V/cm. (The width of the 
Brillouin zone in the x direction at ky = kz = 0 is 
K = 41T/d in both cases.) 

We consider first the case K = Fo/F » 1. The ex
pression (21) for Rea coincides, apart from a factor 2, 
with the asymptotic formula for a obtained by Argyres 
in a different manner ([41 , formula (2.18)). However, 
the cited paper has no expression for 1m a. The reason 
is that in the derivation used in [41 , and incidentally also 

· in other papers (see, for example[131 ), no account was 
taken of the fact that 0! (k) is an odd function of k, and 
the integration was carried out from - K/2 to K/2 under 
the assumption that this is an even function. If we as
sume that (k) is even, then in integrating in (6) from 
- K/2 to K/2 we actually find, by virtue of the fact that 
cp is odd, that Im a vanishes, and the real part is twice 
the value obtained by us. It is very important that Im a 
in (21) is larger than Re a by two orders of magnitude 
in the case of InSb and by five orders of magnitude in 
the case of GaAs. Accordingly, the first term in the 
curly brackets of (22) is larger by several orders of 
magnitude than the remaining two. Consequently, we can 
write P in the form 

p ~..!... (!_)". 
4 Fo (26) 

Let us compare this expression with the correspond
ing formula obtained by Kane[101 

(27) 

If, for example, K = 10, then it turns out that P ~ 2 x 10-4 
and T ~ 2 x 10-14 . In weaker fields, the difference is 
even larger. 

Thus, the transition probability obtained from the 
power-law formula (26) is larger by many orders of 
magnitude than T in fields up to 104 V /em in the case of 
InSb, and up to 7 x 105 V/cm in the case of GaAs, i.e., 
in a very wide interval of fields. 

Let us analyze now the case of strong fields (K « 1). 

b this case, the inequality leading to (24) is always 
satisfied and consequently the transition probability 
depends exponentially on the field intensity. The region 
where such a dependence takes place is determined by 
the requirements F »105 V/cm in the case of lnSb ~d 
F » 7 x 106 V/cm in the case of GaAs. These condi
tions are approximately satisfied in tunnel diodes, where 
the internal field is of the order of 105-106 V/cm. 

In conclusion we note that the fact that our analysis 
is confined to a simple two-band model, when the dis
persion is given by formulas (4), is obviously not of. 
fundamental significance. The quantities I1 and I2 wh1ch 
we took additionally into account, will definitely appear 
also under other conditions, for example, in the degener
ate-band case considered in[141 ; in any case, the analy
sis shows that Zener's traditional approach is incorrect. 
The so-called weak fields play a much more important 
role in interband transitions than is usually assumed, 
and more rigorous calculations lead apparently not only 
to quantitative but also to qualitative modifications in 
many problems. 

The authors are grateful to A. A. Gol'dberg and 
V. P. Potapov for a discussion of the mathematical as
pects of the paper. 

APPENDIX 

Let us consider the integral I1 (formula (17a)). Tak
ing (16) into account, we obtain in the interval (- 00 , -1) 3> 

"fz"- 1 = "fx2 - 1, arg ("fz2 - 1 - z) = 0, 

and on the segment (-1, 0) 

"fz2- 1 = -1)'1- xZ, In l"fz2 - 1- zl = 0, 

-- "fi-zZ 
arg("fz2 -1-z) = -arctg--

1
- =- arccoslxl. 

lx 

Then, after changing the integration variable x- -x, the 
expression for I1 assumes in the limit as r - 0 the form 

I ~ 

II= r ...__!___ exp {x!fl{(x)} dx+ ) -1 1 -• exp {-ixqJ."(x)} dx, J 1-x2 · -;,-
o I 

where 

!fl.' (x) = arc cos x- x"f1- xZ, __ 
<p/' (x) = x."fxZ- 1- ln (x + "fxZ- 1). 

Both integrals diverge at the point x = 1, but their sum 
is finite. This can be directly verified by writing I1 in 
the form 

where 
I f 

I.'= r -- {exp("X!fl.'(x)]-1} dx, 
J 1-xZ 
0 

It= f-1- {1-exp[-ixqJ/'(x)]} dx. J 1-x2 
I 

(A.1) 

The first integral in the right side of (A.1) exists in 
the sense of the principal value and vanishes, as can be 
readily verified. The integrand expressions in I~ and If 
are finite at the point x = 1. 

3)The root of a positive quantity is henceforth taken with the plus 
sign. 
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We now estimate the integral I~. To find its upper 
limit we replace cp~(x) and,,also the denominator of the 
integrand: 

(A.2) 

Such a replacement increases I~, since the numerator 
of the integrand increases and the denominator decrea
ses in the entire interval (0, 1). Then, after elementary 
integration, we obtain 

, ·(nx) tnx) I 1 < E1 T -In 2 - C == :1 {, (A.3) 

where Ei(x) is the integral exponential function and C is 
Euler's constant li 5 l • 

On the other hand, from analogous considerations we 
have 

Calculating this integral, we get 

It'>~{exp[ -(2- ;)x](Ei(2x) (A.4) 

- Ei [ ( 2- -i-) x]) +In ( 1 - ~)} == /t'. 

Numerical calculations show that f~ and :1{ have the 
same order of magnitude in any field. Consequently, we 
can obtain from these estimates the correct order of 
magnitude of I~. Of course, the accuracy of these esti
mates can be easily improved if necessary. 

The integral If is somewhat more difficult to esti
mate, since its integrand is an oscillating function. For 
these estimates we shall use the following theorem: 

Assume that we have a converging integral 
~ 

I= ) '¢(s)sinx(s)d6, 

•• 
where x (~) is a function that increases monotonically to 
infinity and satisfies the condition x (~ .) = 0; cix/d~ is a 
non-decreasing fun<::tion which is positive in the interval 
(~ 1, 00 ). Assume that we are also given a converging 
integral .. 

T =) ~(6)sinx(s)d!;. 
•• 

Then I> 1 if the difference '"lfi(~) -1/1(~) is positive, and 
decreases monotonically and vanishes when~ - oo. 

To prove this statement, we make the change of inte
gration variable x (~) = 1J, noting here that, by virtue of 
the monotonic increase of x, the function~ (17) also in
creases monotonically. As a result we obtain 

where 

.. 
M= T-I= ~ :i'(TJ)sinTJdTJ, 

0 

:1(TJ)='<"¢£s(TJ)l-'¢[s(TJ)l) /dx£s(TJ)l a; 
is a function that decreases monotonically to zero. 

Subdividing in the latter integral the integration reg
ion into intervals [mr, (n + 1)1T], n = 0, 1, 2, ... , and ap
plying to each interval the theorem of the mean, W€ get 

n=O 

where 

nn < ~n < (n + 1)n. 

Since :F('ifn) tends monotonically to zero as n- 00 , the 
series converges to a positive limit, 6.I > 0, thus proving 
the theorem. 

This theorem, as can be readily seen, is valid also 
for the case when the integrand contains 1 - cos x in lieu 
of sin x. In order to use this theorem, we first make in 
If the following change of variables: 

x<p; (x) = x(s- 1) 2 = Xt(6). (A.5) 

Then the factor preceding the oscillating term in the 
integrand will be 

<s -1)l[x2(s) -11'" = "'•<s). 

We now introduce the function¢.(~) = 1/(~ - 1) 2• The 
conditions of the theorem are then satisfied, as can be 
readily verified 4 >, and since the integral If can be cal
culated exactly when 1/11 is replaced by¢., we get If< If. 

Similarly, in order to obtain the lower bound, we 
make the substitution 

x<p{'(x) = x(!;2 -1) = xz(6); (A.6) 

which yields in front of the oscillating function the fac
tor 

s I [x'(s) -1]'" = '¢-;(6). 

Introducing further 1/! 2 (~) = 1/G~ 2 , we can show that the 
conditions of the theorem are satisfied if G 2: 1.1. The 
integral with 1/12(~) can also be calculated exactly. As a 
result we obtain the following estimates: 

Be I{' < l'nx I 2, 
_ (A.7) 

Reit''> l'2;x{cosx[+-s(y;;) J-sinx[ ~ -C()';)]} ==/,,", 

!mit''> l'2;x {cos x [ ~ - C(l';) J +sin xi[~ - S()';)]} == M', 
(A.8) 

where S and C are the Fresnel sine and cosine inte
grals li5 J. 

In the limiting case K - 0 ( F - oo), f~r and f~'i turn 
out to be equal to G- 1..fiiK/2, i.e., the upper and lower 
limits almost coincide in this case. 

Let us consider further the integral I2 defined in 
(17a). According to (16), we have on its integration 
contour z = iy 

l'z2 -1 = -i1fy2 -1, ln ll'z'-1-zj =In (y +l'1 +Y'), 
(A.9) 

arg ()'z2 - 1 - z) = -n I 2. 

Then 
n .. 1 

I,== iexp{-x} ~ --2 exp {ix<p(y)}dy, 
,2 o,1+y (A.10) 

where cp(y) is defined in (7). 
From (A.9), incidentally, we see directly that ex

pression (14) transformed to complex integration varia
bles actually coincides with the initial expression (13). 

The method used to estimate h cannot be used to 
estimate the integral in (A.10), since cp(~o), generally 
speaking, does not vanish. In this connection, we re
place cp(y) by a polynomial which coincides formally 

4lTo find x(~) it is convenient to use a graphic method of solving 
the transcendental equation. 
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with the expansion of cp(y) in a series in the vicinity of 
~ o, accurate to the quadratic term, 

(so2 + 1)'1• 6o ( 1 ) 2 

<p(Y}~<J>(6o}- +,, Y+-, 
so rso2 +1 so 

(A.ll) 

and we replace 1 + y2 in the denominator by the expres
sion 

(A.12) 

which coincides with 1 + y2 at y = ~ o· We note that the 
difference between the right-hand and left-hand parts of 
these approximate equations does not exceed one- tenth 
of one per cent in the entire interval (~ o, 00 ) of the varia
tion of y with~ o on the order of ten. With increasing~ o, 

the accuracy increases. 
Using (A.ll) and (A.12) we obtain in (A.10) integrals 

that can be readily calculated. The result is 
(A.13) 

1 {n } ---· --Rel2 ~ ~exp "2" {-sin[x<p(S.}]+12n~x{sin(TJoX) ( 1/z-S(j~x)) 

- cos(TJoX) (1/z- C(y~x) )]}, 

Im 12 ~ ~exp{ _::x} {cos [x<p(so)] -12n~;;[cos(TJox) (1/z- S('f~ox)) 
6o 2 (A.14) 

where 

+ sin(TJoX) (1/z- C(j~x) )]}, 

(6o2 + 1)''• 
~= 6o , TJo=<p(so)-~. 

It should be noted that the important exponential fac
tor which cancels out a similar factor in (14) appears 
here perfectly rigorously (see (A.10)), and the approxi-

mation in the calculation of the integral affects only the 
expressions in the curly brackets of (A.13) and (A.14). 
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