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The problem of the radiation spectrum of two isotropic oscillators located at an arbitrary distance 
from each other is solved. Resonance dipole interaction between two two-level fixed centers is con­
sidered and values are obtained for the energies and widths of collective states corresponding to ex­
citation of one of the centers. The symmetry of the collective-state wave functions is discussed. The 
structure of the energy levels of a diatomic molecule with two identical nuclei, one of which is in the 
excited state and the other in the ground state, is considered. It is shown that the level width of the ex­
cited nucleus depends on the quantum numbers characterizing the nuclear motion in the molecule. In 
this case the relative difference in the lifetimes for various states of the molecule at y-transition en­
ergies on the order of 10-60 keV may reach several per cent. 

IN an earlier paper[1 J the author solved the problem of 
the scattering of electromagnetic waves by an aggregate 
of immobile dipole centers, and considered the reson­
ance scattering of electromagnetic waves by two identi­
cal isotropic oscillators located a finite distance R from 
each other. The present paper is a direct continuation 
ofUJ and is devoted to the classical and quantum calcu­
lations of the emission spectrum of two identical dipole 
emitters. 

The question of the emission from two identical iso­
tropic oscillators was considered earlier in part by 
Podgoretskil and Ro1zen[2 J in the short-wave limit (see 
also[3 J, Sec. 32). 

1. EMISSION OF TWO IDENTICAL ISOTROPIC OS­
CILLATORS 

From the classical point of view, the scattering of 
electromagnetic waves should be regarded as emission 
resulting from induced oscillations of the dipole mo­
ment of the system under the influence of the electric 
field of the incident wave. It is well known that the 
resonant parameters characterizing the induced oscilla­
tions coincide exactly with the frequencies and the widths 
of the normal oscillations of the given system. In [lJ, in 
the investigation of the problem of resonant scattering, 
we considered in the long-wave approximation the in­
duced oscillations of two isotropic oscillators that are 
resonantly coupled with each other by the radiation field. 
In considering the emission of electromagnetic waves by 
a system of two immobile dipole centers, we can use 
directly the method of[1 J also for arbitrary wavelengths. 
The results reduce to the following• 

A. If the dipole moments of two identical oscillators 
are parallel to each other and are perpendicular to the 
vector R, and the amplitudes and phases of their oscilla­
tions coincide, then the emission frequency w (ll and the 
spectral line width yu> are connected with the emission 
frequency wo and the spectral line width y of the isolated 
oscillator by the relations 1> 

w('l = wo+~v [(-1--~)coskR+-1-sinkR] (1) 
4 (kR) 3 kR (kR) 2 ' 

0Relation (2) is given in the book of Fain and Khanin (see [ 3 ), Sec. 32). 
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3 [( 1 1 ) 0 1 ] y<•> =v--. y ---- smkR-----coskR 
2 (kR)" kR (kR) 2 ' 

(2) 

where 

B. If the dipole moments of the two oscillators are 
parallel to each other and perpendicular to the vector R, 
and the amplitudes of their oscillations are the same 
while the phases are opposite, then the emission fre­
quency w (2> and the spectral line width y(2> are 

w(2) = 2wo- w(1l, yl2> = 2y - y(1>. (3) 

C. If the dipole moments of the two oscillators are 
parallel to the vector R, and the amplitudes and the 
phases of their oscillations are the same, then the 
emission frequency w (3 > and the spectral line width y(3 > 

are 

w(3l = w0 - ~y [-1- cos kR + - 1-- sin kR], 
2 (kR) 3 (kR) 2 (4) 

y(3J = y + 3y [-1- sin kR- - 1-cor. kR]. 
(kR) 3 (kR) 2 (5) 

D. If the dipole moments of two oscillators are paral­
lel to the vector R, and the amplitudes of their oscilla­
tions are the same, while the phases are opposite, then 
the emission frequency w (4 > and the spectral-line width 
y( 4 J are 

w(•l = 2w0 - w(3l, y<•> = 2y - y<3>. 

In the long-wave limit kR « 1 we arrive at the 
formulas of[1 J: 

yl1> = 2y, y(2> = 1/ 5y(kR) 2, 

yl3> = 2y, yH> = 1/wy(kR) 2• 

(6) 

(7) 

(8) 

(9) 

(10) 

When kR» 1, expressions (1)-(3) coincide with there­
sults of Podgoretskii:' and Ro1zen[2 J 
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3 1 
ro(t)- roo = roo- ro(2l = - 4 y kR cos kR, 

3 1 
yt>-v=v -y(2> = T"~kR sinkR. (11) 

In the case of oscillations of dipole moments parallel 
to the vector R (these oscillations were not considered 
in l2' 3 l) we get for kR » 1 

~C•> ~ ~V ~ y(kR)-•. 

For arbitrary oscillation- excitation conditions the 
emission spectrum of two identical isotropic oscillators 
consists, generally speaking, of four spectral lines. In 
the case of long waves (.\ = 1/k » R), when t..w » y, 
these lines are separated. When .\ « R they overlap 
and coalesce into a single line having a non-Lorentz 
form. 

EAa(wo) (seel5 l), and obtain2 > 

d (t) d(2>• e'ltiiJ 
[ ABRAB eikR+(d~kV)(d~>;v)-R ' U AB; BA = ~ k• --=-- (14) 

where 
R= JR-R2 J, k=roo/c=EB-EA)flic. 

We now write down the matrix elements (14) in the 
representation of the wave functions (12). In this repre­
sentation, the matrix U is diagonal. We take into account 
the fact that the width of the excited level of the isolated 
center is y = 4k3 ldAB 12/3 n and does not depend on the 

· H ct<1 > - ct< 2> d magnetic quantum number m. ere AB - AB an 
+1 +1 

dj\g = ctXa are perpendicular to each other and to the 
-1 -1 

vector R, and the dipole moment of the transition d_A.ko 

= d_Ako is directed along the vector R. As a result we 

2. QUANTUM TREATMENT OF THE EMISSION OF TWO obtain 
IMMOBILE DIPOLE CENTERS (15) 

The quantum analog of the isotropic oscillator is a 
two-level center, which has a spin 0 in the ground state 
and a spin 1 in the excited state, the parities of both 
levels being opposite. It is easy to see that in this case 
pure dipole electric emission takes place, on going over 
from the excited state to the ground state. 

Assume that two such two-level centers are rigidly 
fixed at points R1 and R2 , and that one of them is in the 
excited state and the other in the ground state. We de­
note the internal wave function of the excited state of 
the i-th center by Bm(i), and that of the ground state by 
A(i) (m-projection of the spin on the direction of the 
vector R = R1 - R2 , i = 1, 2). It is easy to see that in the 
absence of electromagnetic interaction between the cen­
ters we have six degenerate orthogonal states corre­
sponding to the excitation of one of the centers. The 
degeneracy is lifted if the electromagnetic interaction 
is taken into account. 

The wave functions of the quasistationary states, 
corresponding to definite energies and lifetimes, are of 
the form 

¢;.±> = 2-'I•(Bm(1)A(2)±A(1)Bm(2)) (m = +1,0, -1). (1 2) 

Let us calculate the energy and the decay probability 
of these collective excited states. We assume that the 
energy of the resonant interaction between the centers 
is much smaller than the emission frequency 
wo = (Ea- EA)/n. In second order in the electromag­
netic constant, the matrix element of the resonant inter­
action between the centers B and A, in accord with the 
principle of correspondence with classical theoryl4 J, 

can be represented in the form 

(13) 

where EAa(wo) is a complex vector whose magnitude is 
equal to the Fourier component of the electric field that 
produces the dipole moment of the transition of the first 
center at the point where the second center is situated; 
daA is the dipole moment of the transition of the second 
center. We substitute in ( 13) the explicit form of 

where 

3(1 1 1). 
U(.l->(R)= --Tv kR+ i (kR)•- (kR)" e••R, (16) 

3 ( 1 1 ) . UOII(R)=--y ---i--. e•kR 
2 (kR) 3 (kR) 2 • 

(17) 

The ( +) sign in formula (15) pertains to the symmetrical 
state of (12), and the(-) sign to the antisymmetrical 
state. 

The real and imaginary parts of the quantity 

u;~>= ± (Mm- i~~m)= ± 1i (~rom- i~;'?) (18) 

have the usual physical meaning: t..Em characterizes a 
shift of the energy level, similar to the Lamb shiftl3 ' 6 J, 

and t.. Ym characterizes the change in the level width. It 
is easy to verify that for frequencies w:' and the widths 
y<±> of the dipole y radiation, which takes place on going 
o~er from the symmetrical and antisymmetrical states 
of (12) into the ground state 1/!o = A(1)A(2), we obtain the 
relations (1)-(6) of the classical theory {here w~;> = w~1> 
= wu>, w!1> = w~1> = w<2 >, etc.). 

We emphasize that this difference between y~> - y 

and zero is due exclusively to the interference of the 
radiation of the two centers in the y decay of the collec­
tive excited states (12). Indeed, direct calculation of the 
total emission probability per unit time in the transition 
from the state (12) to the ground state 1/Jo yields 

..,(±)=~~~dAB eikR"O+dAB e-ikR/OjldQk = 
tm 4n1i J m -- m 

2 ( I dAB /2 • elkR ) 
= v±--,; Im k2 -----F- eii<R + (dABm V)(dABmV)lf 

= v-! Im u(±>. (19) 

Let us consider now two identical anisotropic centers 

2lFormula (14) for rigidly fixed dipole centers follows directly from 
the general expression for the retarded electromagnetic interaction [6 ] : 

~ /.AB(r,)fu"(r,) ( Es-EA ) 
UAs;s.A=- exp i---1r1-r2l d3r,d3r?. 

1••-••1 l!c 

where jAB = OAB, ic PAB} is the four-dimensional density of the 
transition current." 
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with oriented axes. We assume that the excited state of 
the isolated center is nondegenerate. The resonant 
electromagnetic interaction lifts the degeneracy between 
the symmetrical and antisymmetrical states of the two 
centers. For the energy shifts and for the change of the 
level widths we obtain, in accordance with the general 
result (14), 

AE<±l....;.,t/jlf>fljol"""±f[J(.Ll(R) eos11 + (lf(lll(R) (20) 
- UW(R)) cos Wt cos '112]. 

Here u(l)(R) and u( 11 )(R) are determined respectively 
from formulas (16) and (17), () is the angle between the 
dipole moments of the transitions d' 1> and d'2 >, I/J1 and ljJ 2 

are the angles between the vectors Rand ct< 1 > and Rand 
d' 2> respectively (ldu>l = ld'2 >1). 

In the long-wave limits (kR « 1) we have 

L\Cil(±) = ± [a;.y (k!)3(cos e- 3 cos ¢• cos II'•)]' (21) 

y±l = y(1 ± cos8) + '/10y(kR) 2 (2cos8- cos,bcosljl,). (22) 

If the directions of the axes of the two centers are 
parallel to each other, then, according to (22), y<-> « y<•> 

= 2y, and in the case of pulsed irradiation the antisym­
metrical state of the two centers is not excited in prac­
tice. The same takes place also in the case of isotropic 
centers (narrow resonances in the long-wave limit, see 
Sec. 1 and[1 J). 

If cos 0 ;o<1, then y<•> ~ y<->. In this case, for the 
same radiation direction, it can be readily seen that the 
polarizations of photons with frequencies y<•> and y<-> 

are mutually perpendicular. We note that in fact we have 
considered the model of the so-called "Davydov" splitt­
ing of the collective energy levels in an anisotropic 
crystal [7 J. 

Assume now that at the initial instant of time the 
cepter 1 is in an excited state and center 2 in the ground 
state. Expanding the wave function B(1)A(2) in terms of 
the quasistationary states (12), we obtain the following 
expression for the probability of the excitation transfer 
from the first center to the second: 

P(t) = 1/41 exp( -tw<+>t- 1/2'f'+>t) - exp( -iCilHt- 1/2'f'-lt) 1'. (23) 

In formula (23) t denotes the time elapsed from the in­
stant when the delayed interaction (14) is switched on3 >. 

It is easy to see that in the long-wave limit multiple 
migration of excitation from one center to the other will 
occur during the lifetime of the excited state t ~ 1/y, 
with a frequency ~y(kRr3 • 

3. SYMMETRY OF QUASISTATIONARY STATES OF 
THE EXCITED AND UNEXCITED CENTERS 

The matrix (14) for the spins sB = 1 and sA = 0 can 
be represented in the form 

U(R) = [C(R) + D(R) (Sn)'] ~ A,..,B, (24) 
A 

where S is the spin operator of the excited nucleus, 

3) A simple analysis shows that, in accordance with the causality 
principle, the instant of excitation of one of the centers does not coincide 
with the instant of switching on the retarded interaction (14). The time 
difference between them is R/c. When 'YR/c < 1, this difference is insig­
nificant. We shall henceforth assume throughout that the inequality 
'Y < c/R is satisfied. 

C(R)= U@(R)= -~vn[-1 --i-1 -]e;kR 
2 (kR) 3 (kR)' ' (25) 

D(R)= ij(_!_J(R)- U@(R)= -~vn[__!__+-3-i--3-Je;•R (26) 
4 kR (kR) 2 (kR) 3 

(see (16) and (17)), ~A=B is the exchange operator 
whose eigenfunctions are the states (12), and the corre­
sponding eigenvalues are + 1 and -1, and n = R/R. 

It is easy to understand that in the general case (ar­
bitrary spins SA and SB, and arbitrary multipolarity of 
the L radiation), the resonant interaction can always be 
represented in the form U = M "fP A= B' where M is an 
operator in the spin state of the two particles4 >. It fol­
lows therefore that the quasistationary states of a sys­
tem of two immobile centers, one of which is excited, 
has a definite symmetry with respect to permutation of 
the first and second centers (or a definite value of the 
total energy spin, equal in this case to 1 or 0; see[3 J). 
We emphasize that the last statement is valid in all 
cases when there exists a spontaneous transition B - A 
(not necessarily of electromagnetic character). 

If the centers A and B are not immobile and take part 
in the oscillatory motion in the vicinity of the points 
R~0 > and ~o>, and the value of the resonant interaction 
(14) is much smaller than the distance between the 
neighboring vibrational levels s and s' (t and t'), while 
the frequency of the y radiation is much larger than this 
distance, the operator (24) for the nonstationary centers 
must simply be averaged over the wave functions of the 
quasistationary states of the system AB (see Sec. 4). 
The wave functions of the collective excited states have 
in this case the form 

1jl~l(1, 2) = 2-'i•(Bm(1)A (2) ±A (1)Bm(2)]1Jls(Rt- Rt<0>)'11t(Rz- R~>) 

(27) 
(m-projection of the spin on the vector R~0>- Rf0 >). 
Formulas (24)-(26), when averaged over the functions 
of the type (27), describe, for example, the splitting of 
the energy levels of molecules with two identical nuclei, 
"frozen-in" as impurities in a solid. 

It is easy to see that owing to the presence of the 
imaginary exponential (see (24)), the mean values C(R) 
and D(R) are exponentially small in the case when the 
amplitude of the oscillations is essentially larger than 
the wavelength of the y radiation ~ = 1/k. This denotes 
in fact that the change of the energy and of the lifetime 
of the excited nucleus can take place in principle in the 
case when the probability of the Mossbauer effect 
(Y transition without excitation of the bond) deviates 
noticeably from zero. 

Let us consider now the question of the symmetry of 
the total wave function of non-identical particles, which 
depends on the spatial coordinates of both particles and 

4>In electric or magnetic radiation of arbitrary multipolarity L, the 
explicit form of the matrix M can be obtained with the aid of a method 
similar to that used by us in Sec. 2 for E 1 transitions (see footnote2 ). In 
particular, in the case of magnetic dipole radiation the interaction 
U = M(PA "'rB has the same form (24)- (26) as before. In view of the com­
plexity of the formulas for L > 1 (the corresponding expressions for pure 
electric and magnetic transitions of the same multipolarity coincide) we 
shall not present them here. We emphasize that, regardless of the multi­
polarity of the radiation, the resonance interaction between the centers 
has in the shortwave limit the order of magnitude 'Y/kR. 
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on the discrete internal coordinates s>. If we permute 
the coordinates of the two particles, and then make the 
substitution A~ B, then the quantum state of the system 
of two particles does not change. This operation is ob­
viously equivalent to a permutation of the spatial and 
discrete internal coordinates. Repeating the reasoning 
which is customarily employed in such cases, we arrive 
at the conclusion that the total wave function of the par­
ticles A and B can be either symmetrical or antisymme­
trical with respect to such a permutation. 

It is easy to show that the spontaneous transition 
BA - AA + y can take place only if the total wave func­
tion of the system BA has the same symmetry as the 
wave function of the two identical particles A. Since the 
system AB is unstable in the presence of the decay 
B - A + y, we should take into consideration the fact 
that 

a) the total wave function of the particles A and B is 
symmetrical, if A and Bare bosons; 

b) the total wave function of the particles A and B is 
antisymmetrical, if A and Bare fermions. 

Theorems a) and b) follow, under sufficiently general 
assumptions, from the formalism of quantum field 
theory s>. 

It should be noted that if the particles A and B form a 
bound system (for example, a molecule), then, in the 
presence of resonant electromagnetic interaction, their 
energy levels correspond to a relative-motion wave 
function of definite symmetry (parity): 

q>(R1 - R2) = ±q>(R2 - R1). 

This is connected with the fact that, as shown above, the 
internal function of the quasistationary states of the 
particles A and B is symmetrical or antisymmetrical 
with respect to the substitution B ~ A in the presence 
of a spontaneous transition B - A. The total wave func­
tion can in this case be represented in the form of a 
product of three functions: 

(28) 

where x (Rc.mJ is the wave function describing the mo­
tion of the center of mass Rc.m.· The function x, as can 
be readily seen, is symmetrical with respect to the 
complete permutation of the coordinates of the particles 
A and B: R1 +:!: R2, MA +:!: MB (M-mass of the particle). 
It follows from (28) that the signs of the symmetry of 
the "internal" function 1/Jint and oi the function cp(R) co­
incide in the case of integer spins, and are opposite in 
the case of half-integer spins. 

4. CASE OF DIATOMIC MOLECULE 

Let us consider now the structure of the energy levels 
of a free diatomic molecule, one of the nuclei of which 

5lThese include the spin, charge, mass, etc. (cf. with the isotopic-spin 
formalism). 

6>on the basis of the general theorems of local field theory (see [8 •9 )) 

it can be shown that in a number of cases, particularly if the process 
B-> A + 'Y takes place, the commutation relations between the fields A 
and B must have a normal character: at integer spin the operators A and 
B commute in spatially separated points, and for half-integer spin they 
anticommute. From this follow directly the theorems a) and b). The 
author is grateful to A. B. Govorkov for calling his attention to [8 •9 ]. 

(B) is in an excited state and the second (A) in the ground 
state. We assume that a pure E1 transition B- A + y 
takes place, and results in the formation of a molecule 
with two identical nuclei. 

We stipulate the satisfaction of the following inequali­
ties: 

wo>~lilvib >~lilrot>Y, 

c I Ro > fllilvib > ~lilrot> y, 

(hw0 I Mc2)Ro I c <" avib - h / f2hlilvibM. 

(29) 

(30) 

(31) 

Here w0 and y are the frequency and the natural width 
of the y radiation in the B - A + y decay, ~ Wvib and 
~ wrot are the distances between the neighboring vibra­
tional and rotational levels of the molecule (in sec-1), 
Ro is the average distance between the nuclei A and B, 
M is the mass of the nucleus (MA ~ M B = M), and avib 
is the amplitude of the vibrations of the nuclei in the 
molecule. 

The process whereby excitation is transferred from 
the nucleus B to the nucleus A can be visualized as being 
an aggregate of successive jolts: the nucleus B with co­
ordinate R1 emits a photon and goes over into the nucleus 
A, while the nucleus A with coordinate R2 absorbs a pho­
ton and goes over into the nucleus B. When the- condi­
tions (29) and (3) are satisfied, the effective time of 
excitation transfer, the order of magnitude of which is 
T = 2/w0 + Ro/c (1/wo is the time required for a packet 
of y quanta with dimensions ~it= c/wo to escape from 
the nucleus l 10 J), is negligibly small compared with the 
time characterizing the motion of the nuclei in the 
molecule. On the other hand, the inequality (31) denotes 
that we can neglect the change in the mutual placement 
of the nuclei in the molecule due to the fact that the 
nuclei are displaced during the course of the photon 
exchange by a distance (liwo/Mc2)Ro/c. 

Thus, in the approximation (29)-(31), the coordinates 
of the nuclei have practically no time to change during 
the effective time. This means that the interaction (24) 
for immobile centers should be regarded as an operator 
acting in the space of the wave functions of the relative 
motion of the nuclei cptK(R) (t and K are the quantum 
numbers of the vibrational and rotational levels of the 
molecule). We can assume here that the interaction en­
ergy is U << li ~wrot << li ~wvib' and we can use pertur­
bation theory. 

The wave function of the quasistationary states of 
two nuclei in a diatomic molecule can be written in the 
form (28). Let us represent the function of the relative 
motion of the nuclei in the form of the product of the 
wave function of the vibrational motion cpt(R) 
(R = IR1- R21) and the angular function characterizing 
the rotation of the motion. We now average the interac­
tion (24) over the vibrational motion. We obtain 

lJ1 = ± ~ C(R)+D(R) (Sn)'Jiq>1(R) I'R2dR = ±[C, + D 1 (Sn) 2], (32) 

where C(R) and D(R) are determined from formulas 
(25) and (26). In particular, assuming that avib « Ro, 
where Ro is the distance between the equilibrium posi­
tions of the nuclei, we can write the following simple 
formulas for the vibrational ground state of the molecule 
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- ( 1 1iwu2 ) Cu = C(Ro)exp -----
4 Mc2wvib ' 

- (. 1 liw02 \ 
Do=D(Ro)exp ------}, 

4 Mc2Wvib 
( 33) 

where C(Ro) and D(Ro) have respectively the form (25) 
and (26). According to Sec. 3, the plus sign in formula 
(32) corresponds to an even function CftK(R), and the 
minus sign to an odd function. In the case of I: terms 
(zero projection of the electron angular momentum on 
the molecule axisl11 J) the sign of expression (32) is de­
termined by the factor (-1)K, where K is the rotational 
moment of the molecule. 

As a result of averaging the operator (32) over the 
rotation of the molecule we obtain after simple trans­
formations 

(34) 

where 

dK = 3N/K(K + 1). 

~ 

Here K is the operator of the conserving angular mo-
mentum of the molecule, equal to the sum of the angular 
momenta of the electrons and of the orbital angular 
momentum of the nuclei, and A is the projection of the 
electron angular momentum on the molecule axis. 

The eigenvalues of this matrix depend on the total 
angular momentum of the molecule J = K + S. We obtain 
finally for the energy shift and for the change in the 
width of the nuclear levels in a diatomic molecule the 
formula 

(36) 

When K » 1, as can be readily seen, LK K = LK K + 1, .... 1, 

= 1/2 and LKK = 1. Consequently, at high temperatures 
(in practice, room temperatures), we can separate four 
groups of closely-lying levels of the molecule AB, each 
of which corresponds to a definite lifetime of the excited 
nucleus. 

In the case of I: terms (A = 0) of the square bracket 
in (36) is preceded by the factor (-1)K. With this, 

1 K- 1/2 1 K + 1/, 
LK+1,K = 2+ 4K(K + 1)-3' LK-1,K = 2- 4K(K + 1)-3' 

LKK = 1. (37) 

We emphasize that the change ~YtKJ of the level width 
includes interference effects (see Sec. 2) due to the y 
transitions of the molecule BA in the state with quantum 
numbers t, K, and J, in.all possible states of the mole­
cule with two identical nuclei A. 

According to (36), the resonance interaction between 
the nuclei A and B produces, besides the ordinary quad­
rupole interaction between the nucleus and the electrons 
of the molecule, also a hyper fine splitting of the mole­
cular levels. Each component of the hyperfine structure 
has a different lifetime. Moreover, the nuclear interac­
tion considered by us obviously makes an appreciable 
contribution to the A-doubling, i.e., to the splitting of the 
"positive" and "negative" levels of the molecule at 
A"' 0 (seel11 J). 

Let us estimate the magnitude of the effects indicated 
by us. From relations (39)-(41) it follows that when 

K ~ 10 and M/me ~ 105 (me-electron mass), formula 
( 36) is valid under the conditions 

1()22sec-1;> loo ;> 3·1013 sec-1 ( ~0.03 eV), 
Y< 1012 sec-1 ( ~ 10-3 eV). 

It follows from (33) that the quantities Co and Do be­
come exponentially small if woavib/c » 1. It is easy to 
understand that this conrlusion has a general character. 
Thus, if the probability of the excitation of the vibra­
tional levels of the molecule in y decay (including dis­
sociation) is close to unity, all the effects considered 
above, as expected, vanish. Consequently, we should 
confine ourselves to the following y-radiation frequen­
cies 

(38) 

From relations (24)-(26), (32), and (36) it follows 
that when condition (38) is satisfied. and w0R0/c > 1 we 
have 

(39) 

We note that y is equal to the radiative width of the ex­
cited nucleus. Taking into account internal conversion 
of the electrons we get 

/';.EtKJ ~ lil';.y,KJ ~ 1i Ytot c ' 
1 + a conv woRo (40) 

where O'conv is the internal-conversion coefficient, 
Ytot = T17z ln 2, and Tr/z is the half-life of the excited 
nucleus in the isolated atom. 

According to (40), when woRo/c > 1 (this requirement 
is satisfied by all the known y transitions), the correc­
tions to the energy levels of the molecule are very 
small 7 >. It must be noted, however, that when 
y > 106 sec-1 the resonant interaction between the nuclei 
makes the main contribution to the A doubling of the IT 
terms of the molecule. Of greatest interest is the de­
pendence of the lifetime of the excited nucleus on the 
quantum numbers of the molecule. For example, in the 
case of the Br* 80Br80 molecule (E1 transition with en­
ergy 37 keV, Tr/z ~ 4 x 10-9 secl12 J, O'conv""' 1.5) the 
relative lifetime difference for the I: states with rota­
tional angular momenta K and K + 1 is approximately 
5%. Effects of this kind can in principle be observed 
experimentally (for example, by the delayed-coincidence 
method). 

We note that although we have considered in detail 
only the case of resonant interaction between nuclei with 
spins SA = 0 and SB = 1, the main conclusions of the 
present paper remain in force for all values of the spins 
SA and s B· In particular, for the case lt << Ro the esti­
mates (39) and (40) are valid for any radiation multi­
polarity (see the footnote4 >). We can speak here not only 
of diatomic molecules (free or with oriented axes), but 
of all chemical compounds containing two identical 
atoms (generally speaking, there may be several such 
atoms), whose nuclei have low-lying excited levels. 
There are several dozen known "Mossbauer" y transi­
tions with energy smaller than 60-70 keVtrzJ. In par­
ticular, we can expect that in the compounds Fe* 57 Fe57 0 3 

7lWhen w 0 R0 /c < 1, the following estimates are valid: 
11EtKo- y(c I woRo) 3 , Im c,- y, Irn JJ,- v(woRo I c) 2 • 

In the limit w 0 R0 /c < 1, the radiative width 'YtKJ "=' 2')' (regardless 
of the quantum numbers of the molecular level). 
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(M1-E2 transition with energy 14 keY, T112 = 1.15 
x 10-8 sec, aconv = 15), Al*28Al28(S04h (M1-E2 transi­
tion with energy 31 keY, T1!2 = 2.3 x 10-9 sec, aconv = 2), 
and As*72As72 (E1 transition with energy 46 keY, T112 
= 1.5 x 10-8 sec, aconv ~ 1), the difference between the 
lifetimes of the excited nucleus for different molecular 
levels will amount to 1-5% (we are using the data from 
the tables ofl12 ' 133 ). 

The author is deeply grateful to M. I. Podgoretskil 
for interest in the work and for valuable discussions. 
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