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We consider the nonlinear generation of electron-cyclotron harmonics as a result of the excitation of a 
two-stream instability in a plasma. The nonlinear growth rates are computed for the generation of the 
ordinary, extraordinary, and plasma electron-cyclotron waves for scattering of ion-acoustic waves by 
the electron stream. It is shown that Compton scattering predominates when the ordinary waves are 
generated whereas the predominant scattering process in the generation of extraordinary and plasma 
waves is nonlinear scattering. The interpretation of experiments on the generation of electron-cyclotron 
frequencies in a current-carrying plasma on the basis of the nonlinear excitation theory is discussed. 

1. INTRODUCTION 

A NUMBER of experiments[1- 31 have exhibited strong 
generation of electromagnetic waves at frequencies 
that are multiples of the electron-cyclotron frequency 
WHe = eH/mc. Thus, wave generation is observed with 
characteristic frequencies liWHe ( ll is an integer) up to 
values of ll of the order of 10-12. Especially strong 
intensities of the radiation are observed at ll = 2. The 
intensity of the radiation in these experiments[1 - 31 is 
many orders of magnitude beyond the thermal level. 
The effect has been called anomalous emissiop. How­
ever, a detailed working theory of this effect is not yet 
available. The authors of [1 - 31 have proposed one pos­
sible explanation based on the production of maser ef­
fects in the plasma at frequencies liWHe· In the lan­
guage of present-day plasma theory, this means that an 
instability arises in the plasma at the indicated fre­
quencies. 

It is well known that a plasma can support the propa­
gation of collective motions at frequencies close to 
liWHe• specifically, the so-called cyclotron frequencies. 
These waves propagate almost perpendicularly to the 
external magnetic field. Thus, it is natural to suggest 
that cyclotron waves have been excited under the exper­
imental conditions described in [1 - 31 • This point of 
view has also been proposed by the authors of the work 
mentioned above. It should be noted that there are at 
least two possible mechanisms for the electron-cyclo­
tron instability. The first is a linear instability, which 
can arise if the electron distribution in the plasma is 
not an equilibrium distribution (non-Maxwellian). The 
second mechanism is associated with a nonlinear insta­
bility that can arise if the plasma supports sufficiently 
strong oscillations of another kind (for example, ion­
acoustic waves). 

Only the first of the possibilities has been discussed 
in [1 - 31 and there was no detailed explanation of what 
mechanism in the plasma could give rise to a nonequi­
librium electron distribution, nor a mechanism by 
which such a distribution could be maintained (for a 

!)This work was presented at the All- Union Symposium on Collec­
tive Phenomena in Plasmas, Tbilisi 1966. 
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time of the order of the generation time). It should be 
noted that the development of an instability that leads to 
the generation of electron -cyclotron waves must (be­
cause of the effect of the waves themselves on the elec­
trons) modify the initial electron distribution in such a 
way that the instability is quenched (quasi-linear ef­
fect). The time required to quench the linear instability 
is usually of the order of y - 1 where y is the linear 
growth rate, which must be higher than the frequency of 
collisions of electrons with neutral atoms lie (for the 
conditions in [1 - 31 lie ,..., 108 sec - 1 ). Thus, in a time of 
the order of ll~ 1 the nonequilibrium electron distribu­
tion would be quenched by binary collisions. 

For any reasonable estimates the time in question is 
extremely small and may be taken as much smaller than 
the generation time (,..., 10-4 sec). Hence, if one is to ex­
plain the observed effects in terms of linear phenomena 
it must be assumed that the nonequilibrium features of 
the electron distribution are maintained by some ex­
tremely efficient mechanism. In other words, the use 
of the linear instability theory requires the introduction 
of a number of rather extreme assumptions. 2> 

In the present work we develop a theory for a non­
linear instability, that is to say, we consider the second 
of the possibilities mentioned above. The use of a non­
linear mechanism for the instability is quite reasonable 
and does not require the introduction of additional as­
sumptions. The basic feature in the present analysis, 
from the present point of view, derives from the exper­
imental result that the generation is observed in the 
presence of current flow in the plasma. It should be 
noted that the experiments in [1 - 31 made use of the inert 
gases Ne, Ar, Kr, and Xe, which are characterized by 
high ion masses. This means that the velocity of the 
ion-acoustic wave Vs = v'Te/mi is rather small. It is 
well known[5• 61 that if the electron drift velocity with 
respect to the ions u exceeds vs, the ion-acoustic in­
stability develops when Te » Ti· Using the experimen-

2>1n this sense, a plasma carrying a current is basically different from 
that used in [ 4 ] where the method of generation of the electron-cyclo­
tron frequencies was based on the injection of an electron beam in a 
magnetic field, in which case the nonequilibrium distribution is pro­
duced beforehand by an external agency. 
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tal results[1 - 3 J we find that u is larger than Vs and 
that in a number of cases it reaches values of the order 

VTe = }'m; I me v, - 1()2v,. 

Thus, the conditions in [l-3 J allow the excitation of 
the ion-acoustic wave. A stabilizing feature, that hin­
ders the development of this instability, is represented 
by binary collisions of ions with neutrals.[7 J An esti­
mate of the role of collisions can be made at frequen­
cies w ~ Woi for which the growth rate for the ion­
acoustic instability is a maximum. Assuming that 
u > vs, the condition that the collisions be negligible 
can be written in the form 

v. 1/ T, u> VTe-v --, 
WOe T. 

where w0e is the electron plasma frequency, Woe 

= v'47Tn0e 2 /me, VTe is the electron thermal velocity, 
VTe = v'Te/me· Assuming that Ve/w0e ~ 10-2 - 5x 10-2 

in [l-3 J we find that this condition is satisfied. 
The development of the ion-acoustic instability is 

accompanied by the generation of intense waves at 
frequencies smaller than or equal to Woi· We note that 
electron cyclotron waves cannot be excited directly in 
the two-stream instability (the excitation of ion-cyclo­
tron waves is considered in lB, 9 J ). This result follows 
because only the electrons participate in the electron­
cyclotron oscillations so that the motion of ions with 
respect to the electrons is not important. We note, 
however, that there are possible nonlinear mechanisms 
for the excitation of electron-cyclotron waves and the 
present work is devoted specifically to the analysis of 
these mechanisms. Excitation of this kind is possible 
under induced scattering of ion-acoustic waves on a 
stream of electrons with resulting conversion to elec­
tron-cyclotron waves. 

A specific feature of the conversion of waves under 
induced scattering on electrons is the possibility of an 
increase in the wave frequency associated with the ex­
istence of the electron drift. Under the conditions in 
[l-3 J WJie > Woi .2:: Ws· From energy conservation con­
siderations, for scattering we have the relation 

where Ws is the frequency of the ion-acoustic wave, 
w110 ~ v0 WHe is the frequency of the electron-cyclotron 
wave, v0 is a positive integer, v is any integer, and 
klZ is the component of the wave vector for the ion­
acoustic wave. 

The quantity Vz (the electron velocity in the direc­
tion of the magnetic field) is of the order of the drift 
velocity u. For the ion-acoustic waves, the quantity 
ws(kl)- k1zVz in the conservation relation that governs 
the scattering can reach rather high values: 

This means that the frequency of the scattered wave 
can be large in the coordinate system in which the elec­
tron stream is at rest. If the scattering in this coordi­
nate system occurs without frequency change ( v = 0) 
the frequency of the scattered wave will be large, that 
is to say, it is possible to excite high harmonics of the 

electron -cyclotron frequency. In actuality, because of 
the fact that the allowed frequency change in scattering 
must be a multiple of WJie ( v * 0) the situation is actu­
ally more complicated and requires an analysis of the 
relative roles of processes that lead to different fre­
quency changes in scattering. 

A detailed analysis carried out below shows that it 
is precisely the waves with large k1 that correspond to 
the excitation of higher harmonics of the gyrofrequency. 
In this respect the ion-acoustic waves are favored since 
they have the highest value of k1 of all possible waves. 
Furthermore, the growth rate for the excitation of the 
ion-acoustic wave in the presence of a current flow in 
the plasma is larger than the growth rate for other 
waves.[lDJ It is precisely for these reasons that below 
we consider the nonlinear conversion of ion-acoustic 
waves. 

It should be noted that other nonlinear mechanisms 
for the excitation of electron-cyclotron waves are es­
sentially negligible. The effect of scattering on ions 
only leads to a reduction in the frequency of the wave; 
the same result follows in decay processes; in order 
for an "addition interaction" {up-conversion) to result 
in the frequency WHe it is necessary to have simultane­
ous (or multiple) collisions of a large number of ion­
acoustic plasmons, the probability of which is very 
small. The nonlinear growth rates obtained below for 
the electron-cyclotron waves are much higher in mag­
nitude and can be used for other purposes than the in­
terpretation of the results in [l-3 J. In particular, below 
we discuss the question of a radiative -dissipation, ion­
acoustic turbulence and the related question of efficiency 
of turbulent heating of a plasma. [UJ 

2. FORMULATION OF THE PROBLEM 

We assume that the electron velocity distribution is a 
Maxwellian with a superimposed drift 

) f(v)dv = n~, (1) 

where u « VTe· The direction of the external magnetic 
field Ho is taken to be along the z -axis. The wave vee­
tor for the ion-acoustic waves k1 11 H0 and the direction 
of the wave vector k for the scattered cyclotron wave 
is taken to be the x-axis. 

It is well knownlla-l4J that the nonlinear growth rate 
for the excitation of a wave a as a consequence of scat­
tering of a wave a' on a particle ct can be computed if 
one knows the scattering cross section waa' ct (p, ka, ka') 
for the wave a' with momentum k1 on a particle ct 
with momentum p with the conversion to a wave a with 
momentum k. The expression for the scattering prob­
ability isl13J 

(2) 

aa(w, k) = ai (k) e;;(wTk)a;(k) + w-2(ka(k)) (ka•(k) )c2, 

where 
A;:·= a;(k)A;;(k, w(k),k1, w1 (k1))a;(k1). 
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The notation is that of [13 l, The scattering cross sec­
tion can be found if we write an expression for the non­
linear current j(k, w ), which is proportional to the first 
power of the electric field in the wave: 

j; (k, w) = ~ i\;;(k, ul, kt, w1)E; (kt, w1)dk1 dw1• 

It should be noted that two physically different scat­
tering mechanisms are possible: Thomson and nonlin­
ear. The first, which is characterized by the quantity 
Aij>(k, w, k1, w1) is associated with the oscillation of the 
charge in the field of the wave, while the second 
Atj> (k, w, kt, w1) is associated with radiation on the 

plasma inhomogeneities produced by the ion-acoustic 
waves. [ 12J The components of the tensor A{j> are ex­
pressed in terms of the components of the tensor 
Sijs(k, w, k1, w1, k2, w2) which arises in the second ap­
proximation in the expansion of the nonlinear plasma 
current j(k, w) in the external field amplitude (cf. 
[12-13] ): 

AW = [S;;,(k, w, k,, Wt, k -- k,, (J) . W!) 

+ S;,;(k, w, k-k., w- w,k,, wt)]E,Q(k -·kt, w- <•lt), (3) 

in which case the field E~ (k- k1, w- w1) is deter­
mined by means of Maxwell's equations with the cur­
rent produced by a charge gyrating in the magnetic field 
along a helical line, neglecting the perturbation of its 
trajectory by the wave field. 

The expression for the rate-of-change of the photons 
Na is 

k 

oNka _ " (" JV"cr'e ( k k ) 
.::l - .L.J \ Y v Pc, , 1 
ut v • 

I Oj VEWHe iJf J 
X NaN a' (k - kt )-+--- -- dp dk,. 

k ,,, L , , op, P.cc' opJ. 
(4) 

Here, we are interested in the excitation of the electron­
cyclotron waves. The index a in (4) corresponds to a 
wave wv ~ v 0 WHe while the index a' corresponds to 
the ion-~coustic wave Ws· The relation in (4) deter­
mines directly the desired nonlinear growth rate if we 
use the distribution function (1) in (4). 

The problem is now reduced to the calculation of the 
probability W~ a' e, We first summarize the basic prop­
erties of the electron-cyclotron waves. 

The dispersion relation breaks up into two parts 
when e = 1T /2 where e is the angle between the vectors 
k and H: 

n2 - e33 (w,k) = 0, E!i(w,k)n2-E!!(w,k)Ezz(w,k) -- e122 (w,k) = 0, 
n2 = k2c"/ w2• 

The first relation characterizes the so-called ordinary 
wave, while the second characterizes the extraordinary 
wave. The components of the dielectric tensor 
f:ij (w, k) are given in [15J. These expressions can be 
used when I (w -lw He)lwHe I » v.fe/c2 (lin an integer). 
When n2 » £22 +ci2 /£u the second relation yields the 
dispersion equation for the plasma wave Cu(w, k) = 0. 

The ordinary waves are characterized by polariza­
tion vectors a(k) = {0, 0, 1}. In accordance with (2) the 
quantity ca(w, k) for these waves is given by £ a(w, k) 
= c33(w, k). Calculation of the quantity oW 2£"i'ow lw=w(k) 
that appears in (2) yields 

0 I " WilHe - w'E" = L.J wo.2Av(f.t), 2 , 
Ow . ro=ro(k) (w (k)- VWHe) 

~ 

(5) 

where 

and I v is a modified Bessel function. The actual form 
of the dependence w(k) for the ordinary electron­
cyclotron waves is given in [15J. We shall not give these 
relations here because, as will be shown below, the 
growth rate for nonlinear generation of ordinary cyclo­
tron waves (under the assumption w ~ v0 WHe) does not 
depend on small deviations of w(k) from V 0 WHe· 

The extraordinary waves are characterized by a po­
larization vector a(k) ={ax, ay, O}Y6 l Using Maxwell's 
equations and the normalization condition a · a* = 1 we 
find 

( I e,(k) 1')-'" ax(k)=-e,,(k){t+l·e,,(k) 1')-'h, 
ay(k)= 1 +I 811 (k) ' Eu(k) ' Eu(k) 

where, for example, Cu(k) = £11(k, w(k)) and w(k) is the 
solution of the equation for the extraordinary waves. 

We have investigated the extraordinary-wave branch, 
which becomes the plasma wave when K « fJ. « 1. The 
solution of the dispersion equation for this case yields 
(we take account of the resonance term and the terms 
characterized by v = ± 1) 

w(k)- VoWHe vo(vo -1)[f.t(Vo + 1) + 2xvo}lv,(f.t) 

f.t(ft + x) 

where v0 is an integer. In accordance with (2), the 
quantity ca(w, k) for the extraordinary waves is 

e" (w, k) = [eu ( w, k) (I E12 (k) I'+ l•11 (k) I') 

Ia (k) I' k2c2 

+2e11 (k)e12 (k)e,(w,k)]l 81:(k) I'+ w'la,(k) I'· (7) 

The quantity i3w2£a/i3wlw=w(k) that appears in (2) is 

given by 
o I wo.• f1 + x 

Trow'e"(w,k) "'~"'(k) = WHe' v0 (v0 -1)'[f.t(Vo+1)+2xvol(vo-i=-fjz 

X [ 2 +( 1 _2__volv,) f.t(f.t+x) 1 l~(k)!'. (8) 
f.t f.t(vo+1)+2xvo lv,,(f.t) J leu(k)l 2 

The plasma waves are characterized by a polariza­
tion vector that has an x component a(k) = {1, 0, 0}. 
The quantity ca(w, k) for the plasma wave is given by 
ca(w, k) = Cu (w, k) + k2c:;.'w2. The quantity 
ow 2 ca/aw lw = w(k) that appears in (2) is of the form 

0, I w0e2 v"Av(ft) 
-wzeo = ~ 2 VffiHe---. 
ow ro=ro(k) v {w(k)-vwne) f.t 

(9) 

We have not given the actual form of the function w(k) 
for the plasma wave[15J because in the calculation of 
the growth rate y one need not use the explicit form of 
w(k). 

We can now consider the nonlinear effects in the 
generation of all three cyclotron waves. 

3. NONLINEAR EXCITATION RATES FOR 
ELECTRON-CYCLOTRON WAVES 

In order to avoid complicated expressions, we shall 
only give the results of the calculation of the compo-



930 M. A. LIVSHITZ and V. N. TSYTOVICH 

nents Sijs; using the formulas of the preceding section, 
and knowing Sijs it is not difficult to write the general 
expressions for the nonlinear excitation rates. The ac­
tual expressions we give here, however, will only be 
those for limiting cases of interest. 

A. Ordinary waves. It follows from (2) that the quan-

tities AW and Ag> are important in the scattering 
cross section. In order to compute A~i>, in accordance 
with (3) we must compute the tensor components 8331 , 

8313 , 8333 and 8333 • It will be shown below that the com­
ponents 8332 and 8323 are not required. Calculation 
yields 

S3a, (k, w, k1, w~, k- k~, w- ul!) 

= wo.2e ; 1 +~) 1 . _1_~ mw~Am(!l)I+(~m), 
me \ (J)- Ul! 2(2n)'1'Vre3 kk1 m W- mWHe 

wo.2e 1 1 1 
s,,,(k,w,k-k~,w-w~,k,,w,)= '2(2 )'' 3 kk 

me Jt '~VTe 1 W - Wt 

{ ( mWHe \ -) 
X h(~m) ~mVTe + U ---)- Vre l'2n J., 

, (J)-Wt 
(10) 

Sa33 (k, w, k- k,, w- "'" k~, w,) 

{ , mwile [ ( , ( u ) 2 ]1 X Vrei+ (yo)+--- VreYol+ Yo)+ Vreh (yo) Yo+- : · 
w-wt " ' 

Here, we have used the notation 

~ dx (J) - W! + k,u - mWHe 
I+(~m)= I e-x·12---, ~m= __ _::__:_---,-:----

-~ f3m -X - ktVTe 

W! - k,u - lWHe 
y,= 

The function I+ (t) is related to the probability integral 
of complex argument W(z).l 17 ' 18 J In the calculation we 
have made use of the identity 

2i u.· ) W'(z)=-=-2zrr(z. 
l'n 

(11) 

In the region of high refractive index, as an approxi­
mation we can assume scattering occurs only through 
the virtual longitudinal wave. In this case, the inverse 
Maxwell operator is 

. k2ik2q 
IT;q (k2, w2) = - 4m k 2 1 (k ) , 

W22e z,Wz 
k2= k-k~, W2 '== W- Uti• (12) 

By virtue of our choice of coordinate axes above, it is 
then clear that 8323 and 8332 are not required. 

We are interested in the scattered ordinary wave at 
frequencies close to v0 wHe; using the asymptotic ex­
pressions for the function I+ (t) for small values of the 
argument we find 

A~)aa• = - 1- ~ 6(w- w, + k,v,- VWHe)Bv,(k, k,)lv (\kv.L ), (13) 
e (2n) 3 v WHe 

where 
4nie 

B,,(k, k1)= 1 k 
(k-ki) 2e(k- 1,w-w1) 

X{(S133 (k, w,k1, w~, k- k1, w- ro1) + S133 (k, ro, k- k~, w- w,, k,, rot)! k, 

- (S131 (k.w,k~, w,k- k1,w- w1)+ Sm(k,w,k -k~, w- w,, k~,w,)]k} 

Wo.2 e2 v-n VoWHe Av,(!l) (14) 
=- (k-k1)2e'(k-k1,w-w1) m. 2 w-voWHe k,vre' 

The probability of the Compton scattering is propor­
tional to 

( l ~ e2 1 ( kv .L ) i 
Ap1,""' = L.J ---ll(w- w, + ktV,- VWHe)lv\- . 

nt, (2n) 3 · WHe lu - VUlHe 
v (15) 

It is evident from (9) and (11) that the Compton scatter­
ing is larger in a dense plasma. 31 Substituting (11) in 
(1) and then in (4) we have iJNiJat = yNk where 

y= f ~Nk,dk1 _1_.ktU-VoWHe roo.2 ul,3 (ki. (16) 
4 (2n)'1> noTe ktVre VoW He Wo;2 

Thus, in accordance with (16) the excitation rate for the 
ordinary wave is independent of the spectral form of 
w(k) in the range of k that is of interest. 

B. Extraordinary waves. In order to compute the 
scattering cross section we must calculate Ag>, Ai~>, 
Ag> and A~1 • The tensor components A\~ and Ag> 
correspond to Compton scattering and vanish in the 
nonrelativistic approximation. The tensor components 
Sijs needed for computing Ai~> and A~1 are of the 
form 

S 131 (k, w, k1, w1, k- k1, w- w1) = 0, 

Sua (k, w, k- kh w- Wt, k~, wi) 

_ w0e2e 1 1 w I , ( ) ~ m 2wH.' A ( ) ------------ + 'l'o L.J mIL' 
me 2 (2rtf12 k2ktVTe4 (I}- Wt m W- mWHe 

S,aa(k, w, k,. Wt, k- k,, w- rot) = 0, 
s133 (k, UJ, k- kh Ul- w,, kt, w,) 

w0e2e 1 1 Wt I , ( ) ~ m2wHe' A ( ) = -·-------- + Yo L.J m f.l , 
me 2 (2n) 'I, kk,2vre' w - w, m w - mwHe 

S23t(k,w,kt,Wt.k-ktw-w,) = 0, 
s213 (k, w, k- kt, (J) - (J)h kj, w,) 

= wo.-"'= __ 1 ___ 1 ___ w_ I+'(yo) ~ mwHe Am'(!L) 
ime 2 (2n:) 3

/ 2 ktVTe2 W- Wt WHe m C.0- mWHe T. 

S233 (k, w, kt, Wt, k- k,, w- w,) = 0, (1?) 
S233 (k, w, k- k~, w - w1, k, w1) 

= ~()e~_1 __ k __ w_,_I+'(yo) ~ mwHe Am'(!L). 
ime 2(2nr/2 kt2VTe2 w- Wt WHe ~ w- mwHe 

The probability of nonlinear scattering through the 
virtual longitudinal wave is proportional to 

A~21""' = ax'(k)A1~1 (k,w,k1,w1 )a 1,(kt)+ay'(k)A~ (k,w,k~,w,)a"(ki), 
e 

where 

(2) 1 ~ ( kV_j_) A,, (k, w, k~, w,) = - 2 )3L.Jil(w- w, + k,v,- VWHe)Cm(k, k,)Jv\-
( Jt ·WHe 

vm (18) 

iro0e2 e2 'Vo2WHe2 1 
Cm(k,k,) =- ---Am(!L), 

(k- k,) 2e1(k- k~, w- Wt) m. w- VoWHe kk,-.;,re' 
(19) 

<2> f ~ . ( kv .L ) Aza (k,w,k~,w,)=--3 L.Jb(w-w,+k,v,-vwHe)Drr.(k,k,)Jv- , 
(2n) WHc 

vm (20) 

3lJf the plasma is not dense we cannot use the expression for ~ii 
(w, k) as a consequence of the limitation! w-IWJie/WHe I~ VTe2 /c2 

(CM. [IS]). 
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Thus, 

Considering the propagation of a wave with frequency 
w ~ 110 wHe• we only consider the resonance term in the 
summation over m. Substituting (22) in (2) and in (4) 
we have 

and for 

Vre 
Ave=-; 

WOe 

!!2 (11 + x) (vo + 1) 2 
p ( fl, Vo, X) = --;---';:-,-'-'.:-;-'--;-'--':-':-:'-,..-';;---; 

vofv.'(Jl)[~t(vo + 1) + 2xvo] 

x[2+'1- 2volv,(J!)) J!(J!+x) _1_]-l 
\ f1 J!(vo+1)+2xvolv,(J!) · 

(23) 

(24) 

(25) 

(26) 

C. Plasma waves. As in the case of the extraordi­
nary waves, in the nonrelativistic approximation the 
plasma wave is subject only to nonlinear scattering 
Aaa' = A< 2>aa' = A~~>(k, w, k1, wJ. Using (18) and (19), 

Pe Pe 
substituting (19) in (2) and (4) we can compute scatter­
ing through the virtual longitudinal wave: 

a) For a low density plasma (by virtue of the neces­
sity for satisfying k1u -v0 wHe > 0 excitation is possi­
ble only when k1 » 1/;\De) 

b) For a dense plasma for k1 » 1/Ane, k1 > k (27); 
when k1 "' 1/Ane, k 1 > k 

y(k) = ____ 1 _ (' Nk,dkl voAv,(Jl) (k,u- VoW He) f T,)-z 
4(2n)'i• .) noTe WOe WHeWOi\ 2 + T; ; 

(28) 

y k = __ 1_ ~ Nk,dk, ,WOe2VoAv,(J!) (k,U-VoWHe)roHerot3 (k,) 
( ) 4(2n)'i• noTe (k,vre) 3wo;2 (1 + T./Ti) 2 (29) 

The expressions for a dense plasma apply when J.l « 1. 
When J.l ~ 1 the frequency of the wave that propagates 
across Ho is not close to 110 WHe· 

4. DISCUSSION OF RESULTS 

1. The nonlinear excitation rates obtained above can 
be used to estimate the maximum values of the harmon­
ics that can be excited by nonlinear effects. Specifical­
ly, the excitation is positive if 

It should be noted that in the s -waves there must be 
waves directed in the opposite direction to the electron 
stream. These can be formed as a result of induced 
scattering of ion-acoustic waves on ions or by other 
nonlinear mechanisms that tend to randomize the oscil­
lations. In particular, in scattering on ions the charac­
teristic time to reach isotropy[19 J is 

w• Ti 
-l""o./Woi---. 
-r noTe T. 

Furthermore, isotropy can be produced by various de­
cay processes. In the presence of collisions with 
charged particles, effective excitation is possible only 
within a relatively narrow range ~k1 near k1 "' 1/Ane; 
in accordance with[6 ' 20J the drift velocity is of the or­
der of or somewhat larger than vTe v'me/mi. 

The order-of-magnitude of the energy ws of the 
ion-acoustic waves can be estimated from simple con­
siderations of energy balance 

where llcoll is the effective frequency for collisions 
with neutrals and charged particles. When t » 1/llcoll 

eEnoVTe 1/ m. 
w·~ v-· 

'Vcoll mi 

Using this value of ws we can estimate the time re­
quired to produce isotropy. For example, with 
E "'10 V /em this time is much smaller than the char­
acteristic time required for nonlinear excitation of the 
cyclotron waves. Account should be taken of the fact 
that if the instability occurs only when k1 "' 1/;\De the 
maximum emitted frequency is determined by the re­
lation 

Vo < Vomax ~ 00()eU / ffiHeVTe• 

Estimating the values of u and liTe from the results 
of [l-3 J, we can estimate v0 max "'10. The experiments 
[l-3 J exhibit intense emission at the second harmonic 
so that we estimate the excitation rates for v0 = 2, 
J.l « 1: 

(2) W• l'2n ro0e ( u ) Yo (k) ~ ----;----'- ro0e-- 2roHe , 
noTe 8 WHe VTe 

(2l W• -( U )roHe{ T,)-2 

Yu (k)~ -T f12 1'2ni roae--2roHe -16 \2+y , 
no e \ VTe WOe ~ 

(2) W• 9J!2 y2n ( roHe )' ( u 2 ) Ya (k) ~ -- -- (t)Qe-- (t)He • 
noTe 4(2 + T./T;) 2 Wae Vre ' 
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It follows from these estimates that the ordinary wave 
has the largest excitation value. When k1 ~ 1/i\De exci­
tation occurs only in a dense plasma w0e » WHe· As 
110 increases the excitation rates for the ordinary and 
plasma waves fall whereas that of the extraordinary 
wave increases (when JJ. < 1). This result holds when 

2. It should be noted that the energy of a plasma and 
extraordinary cyclotron waves can be emitted from the 
plasma in two ways. First, by virtue of the spectral ex­
citation the wavelength of the cyclotron waves can be 
comparable with the system dimensions, in which case 
dipole radiation is possible. Another method for the 
emission of energy of the cyclotron waves from the 
plasma is the nonlinear conversion of cyclotron waves 
into transverse waves with subsequent emission from 
the plasma. 

3. It is of interest that in the experiments reported 
in r1 - 3 J the drift velocity u frequently exceeds Vs· Ac­
cording to the theory (cf. r6 , 20l ), which is developed 
without taking account of the radiative dissipation of the 
ion-acoustic turbulence which, in turn, is associated 
with emission of electromagnetic waves at the cyclo­
tron frequency, the drift velocity must be of order Vs· 
We now estimate the possible role of radiative dissipa­
tion. If the excitation rate for the cyclotron waves is 
larger than the nonlinear rate for spectral transfer of 
ion -acoustic waves the latter need not be taken into ac­
count and the basic process is the excitation of cyclo­
tron waves. Under these conditions we can assume that 
the ion-acoustic waves are concentrated in the region 
of the excitation maximum, i.e., k1 ~ 1/i\ne. 

Radiative dissipation can become important when the 
nonlinear excitation of the cyclotron waves is larger 
than or of the order of the linear growth rate for exci­
tation of ion-acoustic waves. A comparison of the 
growth rates leads to an equality that can be satisfied 
under the conditions reported in r1 - 3 l. It should also be 
noted that the growth rate for nonlinear conversion of 
acoustic waves into a longitudinal wave with frequency 
w = WHe cos e, as indicated by direct calculation (cal­
culations analogous to those given above), is (with e ~ 0, 
k~wHelvTe) 

(30) 

That is to say, this is of the same order as the growth 
rate in (16). 

Under conditions such that nonlinear generation can 
compete with linear excitation, as one observes alter­
nate excitation and quenching of the oscillations. ra1J 

One expects that in the present case similar effects will 
arise. The fact that the experimental observations re­
veal pheno.mena of this kind may be taken as further 
support for some of the ideas developed here. 

The stopping of the oscillations can reduce the effi­
ciency for the excitation of ion-acoustic waves and, 
consequently, can increase the value of the mean veloc­
ity u. The radiative dissipation associated with ion­
acoustic turbulence can also be important on experi-

ments in concerning turbulent heating of plasma, [lll 

since the heating efficiency can be reduced and spurious 
losses can be increased. 
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