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It is shown that potential oscillations can build up in a homogeneous plasma with isotropic particle­
velocity distribution functions located in a stationary magnetic field if fast ions with f ~ li (v- vo) are 
also present besides the main plasma. Criteria for the development of such a plasma are obtained. The 
theory is applied to a thermonuclear deuterium-tritium plasma in which fast He4 ions with an isotropic 
distribution function are produced in the fusion reaction. If the thermonuclear plasma temperature is 
T = 35-11 keV, then instability develops at ion cyclotron harmonics with n :;c 5-6 and n::; 7-14. 

!N the course of operation of the future self-mai~taining 
magnetic thermonuclear reactor (MTR), the plasma will 
contain fast ions, which are the products of the fusion 
reactions, and which are grouped, with relatively small 
scatter, about the velocity vo acquired during the time 
of the reaction. Therefore in closed systems the ion 
distribution function will be an isotropic but not mono­
tonic function of the velocity v. If such a plasma turns 
out to be unstable, then such an instability will be also 
intrinsically present in the MTR, just like the "cone" 
instability(1 J due to the very nature of the method of 
containing the plasma in magnetic-mirror traps. This 
problem apparently begins to attract the attention of the 
theoreticians. Oraevskii and Kolesnichenko consider the 
problem of the stability of an inhomogeneous thermo­
nuclear plasma with frequencies far from the ion cyclo­
tron frequency[2 J. In addition, although it has been shown 
long ago that a homogeneous nonrelativistic plasma with 
isotropic distribution functions is stable, in the absence 
of a magnetic field, against buildup of potential oscilla­
tions[3J, the question of the stability of such a plasma in 
a magnetic field still remains open. 

It will be shown in the article that under definite con­
ditions such a plasma is unstable against potential os­
cillations propagating almost strictly across the mag­
netic field. In the first section of the article we derive 
the dispersion relation, and in the second we consider 
the idealized case of a plasma with one type of ions, 
while in the third we present some estimates of the sta­
bility of a thermonuclear plasma. 

1. DERIVATION OF DISPERSION RELATION 

We consider a plasma in which the velocity distribu­
tion functions far of the particles of type or are isotropic 
in velocity space, i.e., far = far(v). A homogeneous mag­
netic field H directed along the z axis is present in the 
plasma. For potential oscillations, E = - V cp, the follow­
ing dispersion relation is valid: 

k 2- 8 2 ~ea.' (' d d ~ ln•(kJ_v.J..IO.a.) 
- :rt kj- J V.J.. V.J.. Vii..::.J 

~ ' ma. n kuvu + nO.a.- (J) 

[k 8/a. nQa. 8/a. J 
X 11-+----. 

8vu V.J.. 8v.1. 

The notation in (1) is standard. We change over to 
spherical coordinates in velocity space: 

(1) 

922 

. 8/a. vu 8fa. 
vn = vcosB, V.J.. = vsmB, - =---; 

8vn v 8v 

8fa. V.J.. 8fa. 
-8 =--8 ; V.J..dV.J..dVu=v2dvsin9d8. 

V.J.. V V 

Substituting these expressions in (1) and taking into ac­
count the identity L; J~ = 1, we get 

(2) 

where 

~oc r 8/a. ~ ( k.1.vsin8 ) fll 
Fa.= vdv J sin9dB-8v ..::.Jln2 "- k B+ n • ••- uv cos nooa. - w 

0 0 

We drop the index or and take the substitution 
0 

. 1 --..i ~ dulo.p{i-r(kuvcosB+nO.-w)}, 
knv cos B + nQ- w _., 

and to satisfy the rule for going around the poles in the 
integration with respect to v and 9, we assume, as usual, 
that w = w + iE. Then 

"" " 8f 0 
F = iw I v dv ~ sin BdB- ~ d-rexp {i-c(-w + kuv cos B)} J dv 

0 0 -oo 

(3) 

We use the theorem for the addition of cylindrical func­
tions 

We obtain 

lo(z sin a)=] ln2(z/2)e2ina.. 

" 

.. 8/ 0 
F = 2iw S jv dv- I d..:e-i"'' 

8v J 
0 -00 

1112 
( 2k.J..V sin 8 Qor ) X S sinBdOcos('fkuvcosB)lo Q sin 2 . 

0 

Recognizing that [4 l 

(4) 

~r sin B dB cos(~ cos B)/0 (a sin B)= -v; (a• + p•)-'1•/y, [(a• + p•)''•J 

and that J 112(z) = ..f2[iiZ sin z, we carry out the integra­
tion with respect to 9. As a result we get 

.. 0~ 8/ sinAv 
F=2iw r vdv d-ce-1"''---, J 8v Av 

(5) 
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where 

[ ( 2kJ. ~h ) 2 ]''• A=. (Tku) 2 + g-sin2 . · 

If we now integrate by parts with respect to v and take 
into account the fact that vf{v) = 0 when v = 0 and v = 00, 

then we obtai~ the final result 
~ 0 

F=-2iro ~ dv ~ dTe-i"''l(v)cosAv. (6) 

Since the integral with respect to dT cannot be ex­
pressed in terms of known functions, let us consider a 
few particular cases. If there is no magnetic field, then 
0 - 0 and A- kT, and the dispersion relation takes the 
form 

16n2ea2 S.. I av• dv 
1-~--

- · ma ro2 -k•v• · 
.. 0 

(7) 

Expression (7) can be derived in standard fashion. It 
is easy to deduce with its aid the stability of the plasma 
without the magnetic field and with isotropic distribution 
functions. Indeed, let us assume that the plasma is un­
stable, i.e., that w = wr = iy, y > 0. Then the integration 
with respect to v is carried out in (7) along the real 
semiaxis of v. Separating the imaginary part in (7), we 
get 

Since fa(v) ~ 0, this equality is not satisfied, and the 
aforementioned assumption y > 0 is incorrect. 

When k 11 ~ k1 , we have A l'::j ik 11 1T and the dispersion 
relation assumes the form (7) with k replaced by ku. 
This means that a plasma with isotropic distribution 
functions in a magnetic field is stable against buildup of 
potential oscillations with k11 ~ k 1· 

H w = wr + iy, with a= ik11 10a/2k1y « 1, then the 
integral with respect to T in (6) can be represented as 
the sum of two integrals: 

0 -t/a'P 0 

s dT ••• = -~ dT .. . + ~ dT .. · 
-1«/Y 

The first integral is proportional to -1/a and is ex­
ponentially small. In the second we can put, with the 
same degree of accuracy, 

A = I 2kJ. sin QaT I' 
g.. 2 

and replace the lower limit by - 00 • Using the identity 

we obtain 

(8) 

Thus, under the condition lk 11 10a/2k1y « 1, the disper­
sion equation takes the form 

k2=~ 16n2ea2 S~t .. dv(-1+w1;~(za) ) .• 
ma. w-nQa a. 0 n 

where 

(9) 

FIG. I. Dependence 
of the right-side of Eq. 
(9) on the frequency w: 
a-case of normal dis­
persion; b-case of 
anomalous dispersion 
with w = mwHa-

a 

In particular, for a cold plasma (fa = (na/ 41Tvg)o (v- Vo), 
v0 - 0), the dispersion relation, as usual, will be 

(10) 

If .. 
S ladV]zn(Za)~O 

0 

for any n, then the dependence of the right-hand side of 
the dispersion equation on w takes the form shown in 
Fig. 1a (for one of the terms of the sum over the parti­
cle types). In this case the plasma is stable and has 
oscillation modes with frequencies in the intervals 
n.Ua < w < (n + 1)0a, lnl = 1, 2, 3 ... However, if this 
integral is smaller than zero for n = m, then the depen­
dence of the right-side of (9) on w has the form shown 
in Fig. 1b, and the plasma may turn out to be unstable. 

Thus, the sufficient but not necessary condition for 
the stability of the plasma against the oscillation modes 
under consideration is 

J Ia dvlzn (za) ~ o ,for all n =1=- o. (11) 

In particular, it is satisfied for an arbitrary distribution 
function fa(v) which decreases monotonically with in­
creasing v. 

2. PLASMA WITH ONE TYPE OF IONS 

Let us consider the case when a plasma with cold 
ions of mass M and density n0i has a group of similar 
fast ions with density nd « nvi and a distribution func­
tion fd = (n1/41Tv~)o (v- vo). Taking into account the fact 

that k2T /mwiJ: l'::j mTe/MEo « 1 (Eo is the energy of 
e e 1 t" · "tt · th the fast ions), the dispersion rea IOn 1s wn en m e 

form 

(12) 

where z0 = 2k1v0 /wHi; W 0e, w0i, and W1i are the corre­
sponding plasma frequencies and wHe and wHi are the 
cyclotron frequencies. 

Instability can set in when J 2n < 0 and n ~ 2 with fre­
quencies w l'::j nwHi (see Fig. 2). Putting w = WHi(n + x) 
and recognizing that x << 1 and n1i << nvi> we rewrite 
(12) in the form 

ku2ro0e2 roo/' 
1 - --- - --:-;,------;-;----:; 

k2n2wHi2 (n2 -1)WH;2 

( 2ku2ro0e2 2n 00012 \ 

= -x \ k•n•wH;2 + (n2 - ·1) 2 rom2 J 
-1- wu2nl2n (zo) 

k•v0•x (13) 
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_J 
FIG. 2. Dependence of the right-side of 

"' (12) on the frequency w at w "'nWHi· 

For instability to set in, it is necessary to satisfy the 
condition 

(14) 

where J.J. is the maximum value of - J 2n(zo) and an is the 
value of k1v0/wHi at which this maximum is reached. 
The condition (14) determines the range of densities of 
the cold plasma, in which the n-th cyclotron harmonic is 
unstable. Neglecting the corrections ~1/n2 , we obtain 
the magnitude of this range 

max, min·( roo;• ) = n•- 1 [ 1 ± y2 .!!..( ~tnu ')'''] 
roH; (1 + ku2M/k2m) . an n0;(1 + k 11•Mjk•m) · 

(15) 
Consequently, for the n-th cyclotron ion harmonic the 
critical value is w~i/w}u :::o (n2 - 1) and decreases with 
increasing lk 11 1/k. 

To determine the lower limit of the critical value of 
(w~/w~i)min' we use the condition for the applicability 
of the dispersion equation (k 11 /k 1}2 < 4y 2 /w}u. The 
maximum value of y is 

n 11 nli I' 
'\'max~ -Woi r--2 . 

an no; 
(16) 

When nti/noi < a~m/8n4J.J.M it is necessary to have 
(k11/k1)2 < M/m and (w~/wJu)min > (n2 - 1)/2. When 
nli/Uoi » a~m/8J.J.n4M the critical value is (w~i/wJu)min 
~ an,,n0im/n1iM· Thus, at nli/n0i = 10-2-10-3 the cold­
plasma density ranges in which the n-th cyclotron ion 
harmonics can be excited overlap. We note that the 
value of the increment is very large. Thus, for n0i 
~ 1014 cm-3 , nii/fioi = 10-3 , and n = 10 we have y = 6 
x 107 sec-1 • 

The maximum value of the cold-plasma density at 
which the instability can set in determined by the largest 
number of the unstable harmonic n and by satisfaction of 
the potential condition v.A » (w/k} 2 = n2v~/a~ or else 
w~/wJu « c2/v~. For He4 ions which are the products 
of the d-t reaction we have w~/wJu « 500. It will be 
shown below that the thermal scatter of the fast ions 
leads to a suppression of the instability at cyclotron 
harmonics with n2 ~ 2Eo/T, where Eo is the energy of 
the fast ion and T is the temperature of the cold ions. 
At T = 17 keV we have 2Eo/T ~ 400. 

From condition (14) it follows that at a fixed value of 
w~/wfu the instability develops in a narrow range 
lk 11 1/k 1 and can therefore be stabilized by using shear 
of the magnetic force lines. Simple estimates show that 
to suppress the instability the required shear is 

a 1Im 1 nu )''• vm-B>n-v -,- • ku< M; po M.no; 

a -v-m( nli \''· ,1--;;--
e>n- - -; • ku> VM'' Po M no; 

(17) 

where a is the transverse dimension of the system and 
p 0 the Larmor radius of the fast ion. 

The foregoing results describe the case of the strong­
est instability and therefore the magnitude of the trans­
verse component of the wave vector was fixed. It was 
determined by the requirement k1v/wHi =an, where an 
is half the argument of the function J 2n at which J 2n has 
the first minimum. If we consider the dependence of 
the character of the instability on k1, then a curious de­
tail appears: the instability at the n-th cyclotron har­
monic vanishes at J 2n(z0} ~ 0, and can exist only when 
J 2n(z0) < 0. Thus, the regions of the phase velocities 
where the plasma is stable alternate with regions where 
instability can set in. It is obvious that when z0 < am, 
where am is the first zero of the function J 2n, J 2n(am) 
= 0, the instability cannot develop at all. 

So far we have disregarded the finite temperature of 
the "cold" ionic component and the velocity scatter of 
the fast ions. If the ion temperature is Ti, then the dis­
persion relation takes the following form (we neglect the 
electron contribution): 

roo;2 M 1 ""exp {-k.L2T;/MroHi2}ln(k.L2T;/Mwlfi•) ) 
1 = ---'·-\ -1 + ro LJ 

k2 T; n ro - nroa; . 

+ rou2 I _ 1 +w ~-12n(2k.Lvo/ron;) ). 
k2v02 \ n ro- nwHi (18) 

The plasma will be stable at the n-th cyclotron harmonic 
if the coefficient of 1/(w - n Wffi) is positive. It follows 
therefore that the criterion for the occurrence of the 
instability is 

M { k.1. 2T1 } ( k.1.ZT1 ) nu ( 2k.Lvo ) 
Jloi-exp ---- In -- < --l2n --- (19} 

T; MroHi2 .MroH;2 Vo2 WHi 

Assuming that Ti/Eo « 1, we obtain for k1 = wHian/v0 

the following form of the instability criterion: 

(20} 

It is obvious that the stability of the plasma depends 
strongly on the temperature of the "cold" ions and, for 
example, when Ti/E0 increases to 10-\ the instability 
at any cyclotron harmonic can develop only if nti ~ n0 i, 
which is of no interest in the case of a thermonuclear 
plasma. 

The velocity scatter of the fast particles about the 
value Vo causes the quantity 

f 1 2k.Lv) 
J /!i dv hn \ roH' 
0 ' 

to decrease when the velocity scatter t1v begins to ex­
ceed the distance between the zeroes of the function 
J 2n(2k1v/wffi}, i.e., when k1t1v/wHi ~ 1. This results 
in one more instability criterion: 

(21} 

This denotes in fact that we have used above the value 
an ~ vo/ t1 v. The latter inequality is the condition that 
determines the highest unstable cyclotron harmonic. 
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Since in a thermonuclear plasma va/tl.v ~ (Eo/Ti) 112, 
then we get an~ 14 for E0/Ti = 200, and the harmonics 

Values of n1/noi at which instability sets in for Ti equal 
to 11, 17, and 35 keV and for n = 2-7. 

up to n < 12 will be unstable. However, a more accurate ---:----------------------­
analysis shows that the condition (21) is much less strin­
gent and therefore the main stabilizing factor will be the 
finite temperature Ti of the "cold" ions (see (20)). 

3. INSTABILITY OF A THERMONUCLEAR PLASMA 

Let us consider a plasma consisting of an equal­
component mixture of deuterium and tritium with a tem­
perature on the order of several times 10 kV. The fusion 
reaction 

d+ t-.-He'+ n 

takes place in the plasma, and the energy of the He4 ions 
is approximately 3.5 MeV. The number of nuclear reac­
tions in 1 cm3 per second is (1/4)n~iav, where n0i is the 
total number of ions in 1 cm3 and av for a Maxwellian 
distribution of the ions in the plasma is 1.5 x 10-16, 
4 x 10-16, and 10-15 cm3/sec forTi equal to 11, 17, and 
35 keV respectively. Since the cyclotron frequencies of 
the ions d and He 4 are equal, the main criterion for the 
development of instability will be a somewhat modified 
condition (19), namely 

nu Eo { an2T;)/ ( an2T;) 
->-exp ---~ n' -- , 
no; !lTi Eo \ Eo 

Eo= MHeVo2 
2 

(22} 

The table lists the values for temperatures Ti equal 
to 11, 17, and 35 keV, above which the instability can set 
in. 

We see from the table that the instability develops 
easiest at high cyclotron harmonics and it can be sup­
pressed by increasing the temperature of the thermo­
nuclear plasma. 

As already noted above, the largest number of the 
unstable cyclotron harmonic is determined by the veloc­
ity scatter of the fast He4 ions, namely, by the condition 
ktl.v/wHi < 1. Rough estimates show that tl.v ~ v'2Ti/M 
and that allowance for the velocity scatter leads to the 
appearance of a factor~ exp{-(ktl.v/wHi)2} in that term 
that takes into account the contribution of the fast ions 
in the dispersion equation. 

One of the stabilizing factors will be the broadening 
of the distribution function of the fast particles in veloc­
ity space on account of the Coulomb collisions. The 
principle role in this mechanism will be played by the 
dynamic friction of the ions against the electrons. The 
behavior of the distribution function fli of the fast He 
ions is described by the following equation: 

ofli 64e4no;Ll'n-( m )'" {} ofli no; a 
-- - -vfli=--10-1 vJ.;=<p(v) 
at 3mMH. \ 21'. av at T.'t•(kev) av (2a) 

where cp(v) is proportional to the distribution of the He4 

ions after the fusion reaction. We can assume with 
sufficient degree of accuracy that cp(v) 
= bexp{-(vo- v)2/(tl.v}2}, where tl.v ~ v'2Ti/M. 

The solution of (23} is 
T 

1 r" <p(z) 10-12no; 
fli = -----;_: ·~-a-dz, a = Te'l• (keY) , 'f = at. 

For the chosen form of cp(v) we get 

fli=t..vbl"n[cl>f ve•-vo\_«1> t_v-vo)l. (24) 
av 2 \ t>.u I \, t..v .. 

T; 

35 
17 
11 

1.52 
0.85 
U.5 

0.18 13.8·10-2 
0.05 5.8·10-3 
2.2.10-> 1.6.1o-a 

1.5·10-· 
1.3·10--
2.4·10-4 

3.9·10-. 
1.8·10-• 
2.1·10-• 

5.5·10-• 
1.1!·10__, 
1.1·10-• 

where cJ? is the probability integral. It is seen from this 
expression that as a result of the Coulomb collisions the 
scatter of the fast ions with respect to velocity increa­
ses with time, and that at the instant t the half-width of 
the scatter is approximately equal to 

t>.v(t) = t>.v + 1/ 2v0 (1- e-tl•). 

If the value of 2tl.v(t) does not exceed V2- v1, where v1 
and v2 are determined by the equations J 2n(2k1v1 2/wHi) 
= a1, a2, while a1 and a2 are the first and second zeroes 
of the function, then the corrections that must be intro­
duced into the dispersion equation as a result of the 
velocity scatter of the fast ions can be neglected. 

From this we can roughly estimate the time t during 
which the instability can develop. It is equal to to = 
= 0.3-0.15 a-1 for n = 2-7. Within that time there will 
accumulate in 1 cm3, as the result of the fusion reaction, 

nli = 1/,no;2mJto = 0,7-0.3 · 1011n 0;avT.'"(keV) 

fast He4 ions. If Ti = Te = T, then 

~ = (1.5- 0.7). 10-2 forT= 35 keV, 
noi 

nu =(2- f) ·10-3 forT= 17 keV, 
T!oi 

~ = (3,7 -1.8). 10-• for 1' = 11 keV. 
noi 

Comparison with the table shows that in the temperature 
range T = 11-35 keV instability can develop at the n-th 
cyclotron harmonics with n > 5-6. 

Finally, for the development of the nonlinear mode, 
it is necessary to satisfy the condition yto » 1, i.e., 

(1-'- 0.3) · 1()19 (nZ -f) f.ll: __!!_. Te'l•av •t, ~ 1, 
an 2 no; 

and when Te = 17 keV and n = 6 we should have H » 2.5 
x 10-13 n0i, where n0i is per cm3 and H is in Oersteds. 

We note that the condition for the development of in­
stability at the n-th harmonic, w~/wiu < (n2- 1), deter­
mines the value of the cold-ion density, above which no 
instability can develop. For n2 = 200 and H = 105 Oe, the 
plasma is unstable if lloi < 6 x 1018. 

When the instability goes over into the nonlinear 
mode there can occur either a sharp increase of the 
escape of the particles from the plasma, or an increase 
of the rate of exchange of energy between the fast ions 
and the thermonuclear plasma. Rough estimates show 
that the plasma diffusion coefficient will be ~ 10-2-10-3 
DB, where DB= T/MwHi is the Boehm diffusion coeffi­
cient. 

CONCLUSIONS 

We have demonstrated, first of all, that instability 
can develop on potential oscillations in a homogeneous 
plasma with isotrop;i.c particle distribution functions in 
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velocity space, provided a constant magnetic field is 
present in the plasma. This fact is of interest in itself, 
even if for no other reason than that such a plasma is 
stable without a magnetic field. 

Such an instability may be observed experimentally 
in the future self-maintaining closed thermonuclear sys­
tems. Although when the temperature of the thermo­
nuclear plasma is increased this instability becomes 
rapidly stabilized and can develop only during the initial 
operating stage of the reactor, it can lead either to an 
increase of the diffusion coefficient or to a change in the 
cooling time of the fusion reaction products. Since this 
instability is inherent in stationary thermonuclear reac­
tors, it is apparently of interest to consider the turbulent 
mode, to take into account the inhomogeneity of the 
plasma, etc. 

In conclusion, I am grateful to L. I. Rudakov for valu­
able remarks and for a discussion of the problem. 
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