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It is shown that if the energy operator consists of a time-independent part Ho and a perturbation which 
depends linearly on time and is a projection operator onto a state I cp), the exact solution of the 
Schrodinger equation can be expressed as a contour integral. The S- matrix for such a problem pos­
sesses the triangular property and decomposes into elementary Landau- Zener factors, each of which 
mixes only a pair of states. Similar results are derived for the corresponding stationary problem. 
Some generalizations are considered, as well as examples, and the connection with previous solutions 
of the problem of electron detachment and of ionization in atomic and ionic collisions. 

1. INTRODUCTION 

FEw quantum-mechanical problems are known for 
which the Schrodinger equation can be solved exactly. 
This is particularly true for nonstationary problems, in 
which the energy operator depends on the time explicitly. 
Nevertheless the analysis and solution of such problems 
is extremely important in the most varied fields of phys­
ics. One of the most natural examples is the collision of 
atoms or ions, when the motion of the heavy nuclei can 
be treated classically and the various inelastic proces­
ses can be investigated by solving nonstationary Schro­
dinger equations for the electrons. 

It is well known that for slow collisions (weak time 
dependence of the energy operator) the adiabatic ap­
proximation, first introduced by Born and Fockn' 2 J, is 
applicable. Here transitions are practically possible 
only if the eigenvalues of the instantaneous energy 
operator are almost degenerate. 

In the case in which one can neglect the transitions 
between all states with the exception of two, andre­
stricts oneself to the so-called two-level approximation, 
the problem can be reduced to solving a system of two 
coupled differential equations of the first order. In the 
simplest case we obtain the so- called Landau- Zener 
formula [3 ' 4 J. The two-level approximation has been 
further analyzed, the Landau- Zener formula has been 
made more precise, and its domain of applicability was 
investigated in many papers [s,eJ. 

However the two-level (or several-level) approxima­
tion turns out to be unsatisfactory in a series of cases, 
and it becomes necessary to study the interaction of a 
large number (or even an infinite number) of states, in 
particular in the case where we deal with an electron 
transition into the continuous spectrum (ionization, re­
combination, free-free transitions). In the latter case 
we have to deal with an infinite system of equations, or 
a partial differential equation, even after the problem 
has been schematized to the utmost. 

Here in real situations there naturally arises the 
case in which a system of parallel terms (eigenvalues 
of the energy operator for which the differences are 
independent of the time) is present, and in addition one 
term of a different nature, which in the zeroth approxi-
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mation intersects all these terms. When the interaction 
is taken into account there occurs a "quasi-intersec­
tion," such that the picture is approximately 1\S illus­
trated in Fig. 1. 

In the case when the level splitting at each quasi­
intersection point is small compared with the distance 
to the other levels, we can carry through the computa­
tion by considering separately each such region, and 
multiplying the transition probabilities obtained in this 
manner. In the opposite situation this cannot be done, in 
general. 

We shall show, however, that the above-mentioned 
limitation can be lifted under certain conditions; this 
justifies using the Landau- Zener formula far beyond its 
formal limits of applicability, and leads to very simple 
and intuitive conclusions on the structure of the S-ma­
trix for problems of this kind. 

Problems of this kind were initially considered for 
concrete processes (electron detachment or ionization 
in slow atomic and ionic collisions, electronic transi­
tions in crystals [7- 12 J. The method expounded in the 
present paper allows to consider all these problems in 
a unified manner, and in addition opens up possibilities 
for new applications in all those cases when one deals 
with the interaction of one state of the system with a 
group of states of a different nature (preionization, free­
free transitions in collisions, analogous processes in 
solids, etc.). 

2. NONSTATIONARY PROBLEMS 

We consider a nonstationary problem with the energy 
operator H(t) consisting of a time-independent operator 
Ho and a perturbation V(t), where V(t) has a linear time-



PROBLEMS IN QUANTUM MECHANICS 917 

dependence and is a projection operator onto some state 
I cp) l 13 J. We search for a solution of the Schri:idinger 
equation 

(1) 

in the form of a contour integral 

lljl) = ~ G(E)I<p)F(E)e-;EtdE, (2) 
r 

where G(E) = (Ho- Er 1 is the resolvent operator, the 
kernel of which is the Green's function of the operator 
Ho. Substituting (2) into (1), integrating by parts under 
the assumption that the integrated term vanishes, and 
equating the integrands, we derive an equation for the 
function F( E): 

d 
F(E)= i~ dE (F(E)(<piG(E) lrp>], (3) 

and thus, obtain a solution of ( 1) in the form 

1 G(E)Irp> ( i r dE' . ) (4) 
lljl)=N ~ <'lliG(E)Icr>exp -[3J (rpiG(E')I'Jl> -zEt dE. 

Thus, if we know the Green's function of the operator 
Ho (i.e., if we have a complete solution of the stationary 
problem) we can obtain the solution to a whole series of 
nonstationary problems of the type ( 1), with arbitrary 
state I <P), in the form of a contour integral. Here we 
have made no assumptions whatsoever about the number 
of degrees of freedom and about the character of the 
spectrum of the operator Ho. 

The integrated term in the integration by parts must 
vanish. This yields the following condition to be im­
posed on the contour C: 

[ i E dE' J I 
exp - [l- ~ <q;fG(E') I'P> - iEt c = 0. (5) 

We now show that the saddle points of the exponential 
function in (4) and (5) coincide with the instantaneous 
eigenvalues of the energy operator H. Indeed, the con­
dition determining the saddle points has the form 

<wiG(E) I'll>= -(~t)-1. (6) 

Multiplying the eigenvalue equation 

[(Ilo -E)+ I<JJ>~t(<pl] I~,)= 0 (7) 

by (<PI(Ho- Er' from the left, we are led to Eq. (6) also. 
It should be remarked that if the operator Ho has a 

continuous spectrum, the operator G(E) will have a cut 
along the region occupied by the continuous spectrum. 
Then Eq. ( 6) has solutions on the "unphysical sheet," 
corresponding to quasistationary or virtual states of the 
system, and it is possible that as t varies, the roots go 
over from the physical sheet into ·the unphysical sheet.l14 J 

For t - ± oo the eigenvalues of H converge to the 
limiting values determined from the equation 

(<piG(E) I'll>= 0. 

for t = 0 the saddle points obviously coincide with the 
eigenvalues of Ho. 

(8) 

We now consider the case when the operator Ho has 
only discrete eigenvalues. We select a basis such that 
the zeroth row and column corresponds to the state I<P). 
Then the operator H will have the matrix representation 

H = (hoo + ~t, hot, ho2· . •) 
h10, hu, hu. . . · 

\ ........... . 

Selecting further the origin of time in such a manner 
that hoo = 0, and diagonalizing the submatrix 

(
h11 , h12 ... ) 

h.,, h .... . ' 
...... 

(9) 

we obtain the representation which is most suitable for 
the case at hand l?J 

( ~t. h,, h •. . ') 
H = h1 , A1, 0.... · 

h2 , 0, A2 •.. 

........ 

By a suitable choice of phase factors one can always 
make the constants h,, h2 , ... real and positive. It is 
easy to see that if j3t is large compared to hi and Ai, 
then the eigenvalues of H are close to f3 t and A i> so 

(10) 

that the A i are the asymptotic eigenvalues of H and 
solutions of Eq. (7). It should be stressed that the eigen­
values A.i and the eigenvalues of Hoare respectively the 
poles and zeros of the function (<PI G(E) I <P), therefore 
they never coincide and will alternate with each other. 

For the case when only four levels are present, the 
general picture of the terms is represented in Fig. 1. If 
the hi are small compared to the difference IA.i+t- Ail 
then the level splitting at the quasiintersection points 
f3 ti = A i will be small and equal to 2hi. In the two-level 
approximation the Landau- Zener formula shows that the 
probability for a nonadiabatic transition (i.e., the proba­
bility for the system to ''move along'' the unperturbed 
term) will be Pi = exp(- 21Thi/ /3). The probability for 
adiabatic behavior, i.e., that the system will move along 
the real term line is qi = 1- Pi· 

Let us write Eq. (4) in this representation. The equa­
tion determining the eigenvalues of Ho is of the form 

IHo- El =- IT(A;-:- E) [E + ~ hi'(A;- E)- 1 J = 0. 
' j 

(11) 

It is easy to compute the inverse matrix (H0 - E) -1 and 
the quantities (<PIG(E)I<P), Gl<f?). We obtain 

(rplljl) =(OIIjl) =N ~L(E)dE, (nl~·) =Nhn~ (An-E)- 1L(E)dE, 
c c 

L(E) =IT (Am- E) -;hm'l~ exp (iEZ/2~- iEt). (12) 
m 

We see that the asymptotic eigenvalues Am are poles 
and branch points of the integrand. For large values of 
t the saddle points are situated close to the Ai, and as t 
varies from- oo to + oo they move over from A i to A i + ,. 
The first saddle point at t- - 00 is close to f3t, and as 
t ~ + oo it is close to A. i; the last (if it exists) is for 
t ~-oo close to the largest AN, and fort- + 00 it is 
close to f3t. 

We now wish to determine the integration path. If at 
t ~-co the system was in the state I <P), the contour is 
required only to pass through the saddle pointE""' f3t. 
The exponential in the integrand vanishes at the end 
points of the integration path, if the latter go to infinity 
via the first and third quadrants of the complex plane. 
The general form of the integration contour is illustra­
ted in Fig. 2a. If one assumes lf3tl » I Ami, then in the 
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FIG. 2. 

-ih2 //3 . 
vicinity of E = {3t the factors (Am- E) m have the1r 
absolute values close to unity, and computing the inte­
gral by the saddle-point method, we obtain 

I ~ L(E)dE I ~(2n~)''•, 
c 

consequently the normalization constant N equals 
(2rr{3r112. Obviously, all other components vanish at 
t -- oo, on account of the factors (Am - Er1. 

(13) 

Fort- + 00 the factor e-iEt vanishes rapidly in the 
lower half-plane and the saddle point E Rl {3t is to the 
right of the branch points An· In order to determine the 
asymptotic behavior it is necessary to deform the con­
tour C, representing it as a sum of loops wn which go 
around the points An as illustrated in Fig. 2a (the curve 
C'). Only the loop wn yields a finite contribution to the 
component ( n 11/J) as t - oo, and only that part of the con­
tour is essential for which the absolute squares of the 

ih2 /{3 
factors (Am- E)- m are close to one, form> n, and 
close to Pn for m < n. 

We then obtain for the transition probabilities 

ISonl 2 = lim l<nl'ljl)l 2 =hn2 (2np)-1PtP2···Pn 
·--~ 

X I ~ (l.n _E) -t-ihn21PeiEt dE : 2 

C' 

= hn'(2nM-'P•P•·. ·Pr.-tPn'1•12n/r(1 + ihn2/M 12 = Pt·· ·Pn-lqn, (14) 

l•~ool 2 =lim I (OI'Ijl) 12 = P•P• ... PN· 
·--~ 

(15) 

In the case in which the initial state fort- -oo is 
n (n "' 0), a contour which passes only through one saddle 
point is represented in Fig. 2b (the curve C). Near the 
point An the contour has a shape reminiscent of a logar­
ithmic spiral, i.e. to the curve of steepest descent for 

the function (An- E)-1- ih~/13. Making use of the formula 

Jte•t-•dt =- 2ni[r(z) (1- e""i•)]-• (Imz > 0), (16) 

where the contour a has the form of a spiral near the 
origin and goes to infinity along the upper side of the 
left hand cut, it is easy to derive the normalization fac­
tor for this case: 

N = (2n~p,pz ... Pn-t)-'"(1- Pn)'1•. (17) 

For t- +co the contour should be deformed in the man­
ner illustrated in Fig. 2b (the curve C'). 

We obtain the following expressions for the transi­
tion probabilities: 

ISnml 2 = 0, 0 < m < n, 
ISnnl 2 =pn, 

ISnml 2 = (1- Pn)Pn+t ... Pm-t(1- Pm), m > n, 

ISnol 2 = (1- Pn)Pn+i · • • PN· (18) 

We see that for m < n the transition probability is zero, 
since the contour misses the corresponding saddle 
points. This means that as t goes from t- - 00 tot- +co 
the energy of the system cannot decrease-a property 
which may be called the triangular character of the 
S- matrixusJ. (This terminology is somewhat mislead­
ing since there are matrix elements Sno which are not 
zero.) Since the operator V increases monotonically, it 
is obvious that the average energy of any state must in­
crease also. The assertion we have derived is much 
stronger. Detailed balance and time reversal invariance 
are violated by the zero-state I cp), which has different 
energies at t--oo and t- +co. 

It can also be seen from Eqs. (14), (15), and (18) that 
all transition probabilities can be computed as succes­
sive products of the probabilities Pn and qn of the ele­
mentary transitions between the states 0 and n in each 
quasi-intersection point (cf. Fig. 1). In other words, the 
S- matrix can be decomposed into a product of simple 
factors, each of which affects only a pair of "intersect­
ing" states according to the Landau- Zener formula. 
Denoting each such S-matrix by S0n we obtain 

S = SotSoo ... SoN. (19) 

This result automatically implies the triangular prop­
erty. 

In the case when the quantities hn are comparable to 
the distance between parallel terms, i.e., to I An- A.n. 1l 
and I An - An- 1l, they are no longer determined directly 
in terms of the distance between the levels at the quasi­
intersection points. It can be seen from Eq. (10) that 

hn = <niHIO>. (20) 

The assumption that these matrix elements do not de­
pend on t for sufficiently large time intervals is one of 
the fundamental conditions for the applicability of the 
method. 

It can also be seen from Eqs. (14) and (15) that the 
simplest expression results for the probability w(E) for 
the transition of the system from the state lcp) into any 
state with an energy larger than E: 

w(E) = II Pn = <exp(- 2np-t ~ hn2 ). (21) 
An <E "-n<E 

It is now easy to discuss the situation when Ho has also 
a portion of continuous spectrum. Then, if we increase, 
for example, the portion of space through which the par­
ticle moves, the eigenvalues An will become denser in 
that part of the energy interval, and the matrix elements 
hn will converge to zero. In the limit the function 
(cpiG(E)Icp)-1 will have a cut along the real axis, with 
the discontinuity ~(E) of the imaginary part equal to 

(22) 

Thus if the operator Ho has only a continuous spectrum, 
the probability w(E) becomes 
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E 

w(E)=exp[ -~-•) 1\(.li,")dE'J. 

' 
(23) 

where It is the lower limit of the continuous spectrum 
of Ho. 

If the initial state n is situated in the continuous 
spectrum, then the passage to the limit requires a 
change of normalization of the initial state, since a 
normalized wave function would vanish everywhere. 
Using a delta-function normalization in the energy, we 
obtain 

WE = (dn /dE) '1•¢n 

and in view of the fact that h~ as well as qn converge to 
zero, we obtain for the transition probability from a 
state of energy Eo into a state with energy larger than 
E, the expression 

(E E) _ li ( dn 2n h 2 \ 
w o, - m ~-- n' 

"An-+0 \ dE ~ IAn=Eo 

E d E 

X exp (-~-I) d;' hn2 dE' )= ~-1/\(E0)exp(- ~-1 ) 1\(E')dE'). (24) 
• • 

The transition probability into all states with energy 
smaller than Eo is zero. 

3. STATIONARY PROBLEMS 

Until now we have considered an energy operator H 
which was explicitly dependent on time. In other words, 
the system had an external parameter with an a priori 
given time dependence. In ionic or atomic collisions 
such a parameter is the distance between the nuclei. If 
the energy of the motion of the nuclei is small and 'com­
parable to the energy of the electronic transitions, this 
parameter should also be included into the quantum­
dynamical discussion. We assume that to this additional 
degree of freedom, to be denoted by X, corresponds an 
effective mass M, and we retain all the assumptions 
already made about the operator H in Sec. 2. We are 
then led to the stationary quantum- mechanical problem 
(cf. rs,1a,16,17l): 

[ 1 a• ] 
-2M ax• +Ho+lcp>aX(cpl .lw> =Eolw>. (25) 

where Eo is the total energy, Ho does not depend on X, 
a > 0. In this case, for large positive or negative X, the 
wave function will have the form of plane waves, multi­
plied by the wave functions of the asymptotic states, In), 
defined in Sec. 2. Each state will have two reaction 
channels, corresponding to reflection or transmission 
of the wave. We denote these channels by n (X- - 00 ) 

and n' (X- +00 ). All channels for which the energy An 
is larger than Eo will be closed. Figure 1 illustrates 
the case when channels 0, 1, 1', 2, and 2' are open, and 
3, 3', and 0' are closed. The channel 0' is always closed: 
for "motion" along a slanted term there is always re­
flection, if X is sufficiently large. 

The problem consists in determining the transition 
probabilities between the open channels. By the same 
method as in Sec. 2, it is easy to obtain the solution in 
the form of an integral: 

B 

I'll')= N ~ G(E) lcp)<I>(E)exp ( ia-1 ) <I>(E')dE' + iPXJ dE, (26) 
c 

P = [2M(E0 -E)]''•, «ll(E) = (q>IG(E) l~p)-1 dP. 
dE 

The transition to the classical limit for the motion 
along X, for Eo >> E, can be obtained by setting X = vot, 
p ~ (2MEo) 112 - Ev(/, Eo= Mv~/2, dP/dE ~ -v~\ f3 =avo. 
Then (26) goes over into (4). The function ~(E) occurring 
in the integral has poles at the same points Ai> but in 
addition it has a branch point E = Eo, corresponding to 
reflection for motion along the zero term. 

The selection of the integration contour and analysis 
of the asymptotic properties of the function llfi) can be 
carried out by the same method as for the nonstationary 
problem. The residues of the function ~(E) at the poles 
;\n, quantities which determine the probabilities of ele­
mentary transitions, are 

hn2 (dP/dE)An = hn2/vn, Vn = [2(Eo- An)/M]-'i•. 

Denoting 

(27) 

we obtain for the transition probabilities of the open 
channels nand m' the same equations, (14) and (18), as 
before. In place of the formula (15) we have S~o' = 0, 
and for transition probabilities involving reflections we 
obtain 

ISnml 2 = qnPn+l • • • PnoPnoPno-1 • • • Pm+!qm, 
I Soo 12 = Pt • • • PnoPno · • • Ph An, < Eo < Ano+l, 
1Sn•m•l 2 = 0. 

(28) 

Time reversal symmetry is here, obviously, verified, 
so that, e.g., Snm' = Sm'n', etc. 

Thus: a) transitions from the left to the right with 
decrease of energy, and transitions from the right to 
the left with increase of energy, are forbidden; b) there 
is no reflection for motion from the right to the left 
along an arbitrary term. The formula giving the decom­
position of the S- matrix taking into account reflection 
at Eo has the form 

(29) 

Consequently, the properties considered in Sec. 2 
are preserved in this case too. We must only take into 
account the presence of the turning point, and the fact 
that at the points of intersection of the unperturbed 
terms, the velocities vn have different values. If Eo» E, 
all Vn ~ vo; then, if we neglect the product P1P2 ••• Pn 
and take into account the fact that f3 = av0 , we arrive 0at 
the previous formulas (14), (15), and (18). It is also easy 
to generalize these formulas to the case when Ho has a 
continuous spectrum. 

4. POSSIBLE GENERALIZATIONS AND EXAMPLES 

In addition to the case where V has a linear time­
dependence, the problem can also be easily solved for 
any linear fractional function of time, and in particular, 
if V is inversely proportional to the time. Then the 
equation 

has the solution 
E 

lw>=N )G(E)IIJl)exp(i)(q>IG(E')I'I')dE'-iEt)dE, (31) 
c 

which has a form even simpler than (4). Unfortunately, 
the perturbation becomes infinite at t = 0, which makes 
this model more complicated in practical cases. The 
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general shape of the terms for the case of three dis­
crete states is represented in Fig. 3. In some cases, 
when terms that go off to infinity may be neglected, one 
can still utilize this model. In particular, for the non­
stationary problem 

{) 
(H0e"1 + jljl)b (QJI) /¢) = iat/¢), (32) 

i.e., for exponentially diverging terms interacting with 
one horizontal term, the substitution eat = s reduces the 
problem (32) to (30) and thus, the problem is also rigor­
ously solvable. For a system with two states this prob­
lem has been treated by Niki.tin [sJ, and also in [gJ, and 
was used for a discussion of the problem of nonresonant 
charge exchange, and for a computation of transitions 
among fine structure components in alkali metals in 
collisions. 

It is also easy to write down the solution of the corre­
sponding quantum problem. 

If the operator V depends quadratically on time, we 
are led to a second order equation for F(E), and the 
problem reduces to an investigation of this equation, 
and a discussion of the solution in the vicinity of the 
points ..\i· The quadratic time-dependence allows us to 
introduce time-reversal invariance explicitly, and thus 
facilitates the utilization of the model in concrete cases. 
We finally remark that the equation 

(Ho +!rr> e"' (rp/) /¢) = i_!_ /¢) 
ot 

(33) 

leads to a functional equation for the function F(E), 
equation which relates the values F(E) and F(E +a), 
and in some cases this equation is easily solved or 
analyzed. In the two-level approximation elementary 
transformations transform (33) into (32). 

The simplest problem referring to the class dis­
cussed in Sec. 2 is the Landau- Zener model itself. In 
this case the vector IIJI) has two components and the 
operator H is of the form 

H=(~t h) 
h ').. > (34) 

leading to the well-known solution. Another example is 
the case of one degree of freedom x, and /cp) = li(x- xo). 
Then (cp/G(E)Icp) = G(xo, Xo, E) and the solution of Eq. (1) 
has the form 

I¢)= N) _c;(xo, x, E) exp (-_!_ r dE' iEt) dE. ( 35) 
c G(xo, Xo, E) ~ J G(x0, x0, E') 

For this example it is easy to clarify the meaning of 
the asymptotic states In) and of the eigenvalues ..\n· 
Indeed, if Ho is the energy operator for a particle in a 
potential well, 

G(x0,x0,E) = ljl,(xo,E)¢2(xo,E), 

where 1Ji 1 and 1jl 2 are the solutions of the Schrodinger 
equation satisfying the boundary conditions for x- - 00 

and x - + oo, respectively. It can be seen from here that 
the equation G(xo, xo, E) = 0 has as its roots the energy 
levels in the right and left parts of the potential well, if 
the well is separated by an impenetrable barrier, and in 
addition there is one level localized near the point Xo. 
Thus, in this case there are two independent energy level 
systems before the interaction, for the two parts of the 
potential well separated by the impenetrable barrier, 
and in addition there is one level localized in the vicin­
ity of x0 • As t varies from - 00 to 0, the barrier gradually 
disappears, and the levels get "mixed up." As tap­
proaches + 00 the barrier appears again, but this time 
without the state localized at xo. This method allows one 
to determine the transition probability between all the 
levels of such a problem. 

If one assumes that Ho = - 1/2o ja x2 is the operator of 
a free particle, we obtain directly 

G(x,E) = (-2E)-'"exp (-l'-2Eixl), G(x0,x0,E) = (-2E)-''',( 36) 
~(E) ~ E'l•, -In w(E) ~ E'h (37) 

-a result derived in[10 J, i.e., we obtain the spectrum of 
emitted particles when a bound state is expelled from a 
well of small radius into the continuous spectrum. 

Another example of application of this method can be 
obtained by considering a three-dimensional potential 
well of small diameter and variable depth- a model 
which was used in [w,u J. If the nonstationary boundary 
condition at the point ro, where the well is, is written in 
the form 

I¢)=A(t)( lr~rol +~t)+0(1r-r0 l), (38) 

the problem is also exactly solvable. 
In distinction from the one-dimensional case the well 

disappears fort- + 00 , and H- H0 • At t--oo one may 
also consider H - Ho, since the well becomes very deep, 
the energy of the bound state inside E ~ - {3v2 /2 becomes 
very large, and it has no influence on the other states. 
There is no division of the system into two parts at 
t - ± oo, and in this respect too the three-dimensional 
problem is simpler than its one-dimensional counterpart. 

The solution of the nonstationary Schrodinger equa­
tion 

{) 
(- 1/2V2 + Uo(r)) I'll)= Hoi..P> = iati1P> (39) 

with the boundary condition ( 38) can be written in the 
form 

. E 

!'I')= N J G(r, r0, E)exp ( +} Greg(r0, r0, E')dE'- iEt) dE, (40) 

where Greg is the Green's function from which the singu­
lar part has been subtracted, and is determined by the 
formula 

G(r,r',E)= - 1 (-1- 1-,1 +Greg(r,r',E) ). (41) 
2n , r- r 

Thus the problem is reduced to the determination of the 
residues of the function Greg(E) at the poles, i.e., at the 
points corresponding to the discrete eigenvalues of Ho, 
and to the determination of the discontinuity of Greg(E) 
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across the cut, where Ho has its continuous spectrum. 
If Uo = 0, G(r, E) = (27Trr1exp(- (- 2Er)112), Greg{ E) = 

-(-2E)112, and it is easy to derive the same result (37) 
as in the one-dimensional case. If one considers that 
Uo = 0, but the particle moves in a half-space with the 
boundary condition 11/1) = 0 (antisymmetric case) or 
a 11/1) jan = 0 (symmetric case) on the boundary surface, 
then the Green's function is easily obtained by the 
method of images, and we arrive at the model used in [111 

for the description of the process of electron detachment 
in collisions of negative ions with an atom. The case of 
a potential Uo which has Coulomb behavior for large r, 
has been used in [121 for the description of ionization on 
slow atomic collisions. 

An example of a stationary problem discussed by this 
method is the Landau- Zener problem with one horizontal 
term, solved inu 61 • This was the example where the 
triangular property of the S- matrix was noted. 

We remark in conclusion that usually those quantum 
mechanics problems which can be exactly solved involve 
only few (one, two) nontrivial parameters, which re­
stricts their applicability. In the class of problems con­
sidered here there is an infinite number of such parame­
ters (e.g. hn, ;\n), it is possible to consider discrete, 
continuous and mixed zonal (periodic fields) spectra for 
the operator Ho. Therefore it can be expected that this 
mathematical method will be useful for the description 
of the most varied physical objects. 
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