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An operator method is proposed for studying quantum effects involved in the motion of charged parti
cles in a magnetic field which enables us to consider processes in an arbitrary field for particles of 
arbitrary spin. With the aid of this method studies have been made of quantum phenomena in magnetic 
bremsstrahlung synchrotron radiation, and also of the production of pairs of particles by photons and 
of one-photon annihilation of pairs of particles. 

1. INTRODUCTION 

IN classical electrodynamics the emission of radiation 
accompanying the motion of a charged particle in a 
magnetic field has been investigated in detail. Of great 
interest is the problem as to what changes will be intro
duced into the picture of the emission of radiation by a 
particle in an external magnetic field by taking into ac
count the quantum nature of the motion and of the proc
ess of radiation. The investigation of such quantum 
effects is important for applications (for example, in 
the case of the motion of particles in accelerators), and 
is also of general theoretical interest. 

With this aim in mind the problem should be solved 
within the framework of quantum electrodynamics taking 
the motion of the particle in the magnetic field into ac
count rigorously (without utilizing perturbation theory), 
while the process of emission of radiation can be treated 
within the framework of perturbation theory. The cal
culation of quantum effects has usually been carried out 
in the so-called Furry representation utilizing the exact 
solutions of the corresponding wave equations (Dirac, 
Klein- Gordon) in a constant and homogeneous magnetic 
field. With the aid of this method a number of important 
results has been obtained, but the approach itself is 
quite complicated and technically awkward and enables 
one to obtain results only in a homogeneous and constant 
magnetic field. When for the study of certain phenomena 
it became necessary to consider quantum effects in an 
inhomogeneous field this led to a sharp increase in the 
complexity of the calculations even in a weakly inhomo
geneous field. (For a detailed review of the papers along 
such lines including effects in an inhomogeneous field 
cf. in [lJ .) At the same time even when exact solutions 
of the wave equations have been utilized in order to ob
tain the final result one finally considers the quasi
classical asymptotic behaviour of the functions obtained, 
so that in this sense all the results obtained are approxi
mate. As will be seen below this circumstance is not 
accidental. 

In this paper an operator method is proposed for 
studying quantum effects involved in the motion of 
charged particles in a magnetic field. This method is 
suitable for studying any quantum phenomena in magnetic 
bremsstrahlung and also for the investigation of arbi-
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trary other processes involving electrons and photons 
in a magnetic field. (As examples of such processes in 
this paper we consider the production of pairs by pho
tons and the one-photon annihilation of a pair.) The 
method is technically sufficiently simple and enables us 
to obtain in a unified manner results for particles of 
arbitrary spin moving in an arbitrary electromagnetic 
field. 

At the basis of the method lies the fact that quantum 
effects involved in the motion of ultrarelativistic parti
cles in a magnetic field are of two types. The first of 
these is related to the quantum nature of the motion it
self of the particles in a magnetic field. The noncommu
tativity of the dynamic variables of the particle 1 > arising 
in this case is of order flwo/E (where wo = Vt/R, R is the 
instantaneous radius of curvature, E is the particle en
ergy, vt is the component of the velocity perpendicular 
to the magnetic field). The quantity 

liuJo IE = HI H 0y', (1) 

where y = E/mc 2 , His the magnetic field, Ho = m 2c3/efl 
= 4.41 x 1013 Oe (for an electron) is the critical field, is 
quite small and falls off with increasing energy. Thus, 
the motion of an electron in a magnetic field becomes 
more and more "classical" as the energy is increased. 

The second type of quantum effects is associated with 
the recoil of the particle accompanying the emission of 
radiation and is of order flw/E, where w is the frequency 
of the emitted photon. 

We shall characterize the quantum effects in mag
netic bremsstrahlung by the invariant parameter 2 > 

H Pt I vI li liwo Vt lie (I ( F 0vpv) 2 1 ) '/, 
x=--=--y'=--y'= . (2) 

H 0 me e me2 E e m'e'• 

For X << 1 the recoil (and, therefore, the magnitude 
of the quantum effects) is small, and in this case 

1lThis problem is discussed in Appendix A. 
2lTwo other invariant parameters 

eli , eli 
f = -( IFovF•vl) 1', g = --( lea.~v6Fa.~F'16 I )'1' 

m2c3 m2c3 

depend only on the field. Since in this whole approach we assume 'Y 
;I> I, then we always have X ;I> f,g. Moreover, we assume g,f ~ I, and 
this means that the field H ~ H0 . The condition indicated above is 
satisfied by a large margin for all known fields. 
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w ~ woy3 • In the essentially quantum region X :;;:, 1 the 
energy of the emitted photon is flw ~ E. Thus, for arbi
trary x quantum effects of the first type are negligibly 
small compared to the effects of the emission of radia
tion. Therefore, one can neglect the noncommutativity 
with each other of the operators for the dynamical 
variables of the particle (of magnitude ~flwo/E) and 
take into account only their commutators with the field 
of the emitted photon (of magnitude ~flw/E). This cir
cumstanc'e is utilized systematically below. 

We note that the proposed approach is applicable, 
generally speaking, for studying quantum effects in
volved in the interaction between particles and photons 
in an arbitrary external field. 

2. MAGNETIC BREMSSTRAHLUNG 

We consider the radiation emitted by a charged par
ticle in the course of its motion in a magnetic field. 
The matrix element for the transition from the initial 
state of the particle li) into the corresponding final 
state If) with the emission of a photon can be written in 
the lowest order of perturbation theory in the form3 ' 

U1;=(tl e )ei'"'M(t)dtli), (3) 
( 2n) 'f, l'2nm 

where 
eM(t) = 'J',,(P) {(je), e-ikr}'I',(P). (4) 

Here j!J.(t), r(t) are respectively the operators for the 
current and for the coordinate of the particle, Eg is the 
polarization vector for the photon, the brackets {,} de
note the symmetrized product of the operators, lii(P) is 
the wave function for a particle with a given spin in an 
external field in operator form41 the indices s and s' 
refer to the spin characteristics of the particle. 

In accordance with what has been stated in the Intro
duction in the functions lii(P) we can adopt any arbitrary 
order of writing down the operators occurring in the ex
pressions. For example, for a particle of zero spin we 
have 

M,= !_{(eP) , e-ikrf) !__, 
l'::Je m i:Je (5) 

for a particle of spin Y. we have 

Me= u,,+(P) (ae)e-ikru,(P), (6) 

where 
-- ( cp(~(t)) ) V.'1f+m p 

u= ~ _a_cp(~(t)) 
:Je+m 

(7) 

Here rp(!;(t)) is a two-component spinor which describes 
the spin states of the electron at time t. In a similar 
manner one can also write down the expressions for 
particles of higher spin. 

We shall be interested in the probability of a transi
tion accompanied by the emission of a photon summed 
over all the final states of the particle. Carrying out 
such a summation we obtain the following expression 
for the probability of a radiative transition: 

3)Jn what follows c = I. 
4>In order to obtain lJ!(P) it is sufficient to replace in the free wave 

functions the momentum p-> P(t), E-> JC =y'P2 + m2. 

where e 2/41Tb =a.= 1/137. 
Multiplying by the energy of the emitted photon 11w 

we will obviously obtain an expression for the intensity 
of the radiation: 

dl = .:.=_~<i I ) dt1 ) dt2eiw(t,-t,)M'(t2 )M(t1 ) I i). (9) 
4n (2n) 2 

The expressions (8) and (9) given above can be utilized 
for the study of any arbitrary phenomena involved in 
the emission of a photon by a particle in an external 
field. 

In accordance with what has been stated above in the 
expression forM (4)-(6) one should take into account 
only the commutators of the photon field (exp(- ik · r)) 
with the momentum P. In our subsequent discussion we 
shall utilize the relations 

Pe-ikr = e-ikr(P ~ nk), ::Jee-ikr = e-ik•(::Jf _ l!m), (10) 

the first of which is a consequence of the fact that the 
operator exp(-ik· r) is a displacement operator in 
momentum space, and for the derivation of the second 
of which one should take into account the fact that 

[.o/f e-ikrl = _ in ~ e-;kr 
' J dt ' 

(11) 

and carry out an integration by parts in expression (3). 
Utilizing (10) one can in M(t!) bring the operator 
exp(-ik· r(t1)) to the left side of the expression, and 
bring in M(t2 ) the operator exp(ik· r(t 2)) to the right side 
of the expression. After this it is necessary to investi
gate the combination exp(ik· r(t 2))exp(-ik· r(td) appear
ing in (8) and (9). The noncommutativity of the operators 
appearing here is essential, so that, generally speaking, 
it is not possible to restrict ourselves to the expansion 
of this combination in terms of the lowest commutators. 
The central point of the present approach is the unfold
ing of this combination. 

For the following discussion it is convenient to carry 
out in the integrals (8) and (9) the change of variables 

t1 = t, f2 = t + T. (12) 

An essential contribution to the integral over T comes 
from the region I vi T ~ 1/y, so that in carrying out fur
ther calculations we shall systematically expand all 
quantities in powers of IV IT and keep only the leading 
terms of the expansion. 

Moreover, for the sake of simplicity, we shall con
sider fields satisfying the condition 

(13) 

where IHI characterizes the change of the magnetic 
field along the trajectory. Physically this criterion 
means that the field along the trajectory does not change 
much during a characteristic time of emission. If we 
introduce the index of inhomogeneity 

n = liilnH /illnrl, (14) 

then the condition (13) can be written in the form 

(15) 

In all interesting cases the fields satisfy this criterion. 
As a result of unfolding (cf., Appendix B) we obtain 
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· f.r :Je ll 
e'kr(t,)e-•kr(t,) = exp)' (\)'t + ---(kp- on) ! r , 

~ :Je -liw J 
(16) 

where p = r(t2)- r(tt). 
The combination exp(ik· r(t2))exp(-ik· r(t1 )) obtained 

above evidently commutes with :Je (cf., (10)). In consid
ering its commutation with the operator P we must take 
into account the fact that in order to utilize relation 
( 1 0) it is necessary that all the operators should depend 
on a single time. Carrying out the corresponding ex
pansions and omitting terms ~1// we find that the quan
tity exp(ik·r(t2))exp(-ik·r(t,)) commutes with P. Thus, 
all the operators in expressions (8) and (9) turn out to 
commute to our degree of accuracy, and therefore all 
these operators appearing as expectation values in the 
initial state can be replaced by their classical values. 

We can now write the square of the matrix element 
in the form 

(i IM' (t,)M(t,) I i) = exp {i[ wt + E(kp- w-r) I E']}R* (t2)R(t1), (17) 

where 
eR(t) = 1I,'I',,+(P') ([j(P) + j(P')]e)'I',(P). (18) 

Here E' = E-ilw, P' = P-1\k; E, Pare no longer 
operators, but c-numbers. We note that all the informa
tion on the spin and polarization states is contained in 
R(t). 

Thus, in the unfolding operation the spin and the 
polarization characteristics of the particles are not at 
all affected, and this is connected with the fact that in 
our approximation we neglect the effect of the spin on 
the motion (terms ~nwo/E). But the function R(t) des
cribing them has the form of a matrix element for the 
transition for free particles taking conservation laws 
into account. This enables us to consider in a unified 
manner problems for arbitrary spin ( cf., also Appendix 
C). 

For the sake of definiteness we now consider parti
cles of spin 1/ 2. Then we have 

R(t) = <p1+[A + iuB]<p;, (19) 

where 

A =_1_(,P\[-1-+_1_l B=~( ~ _ _jeP] \ 
2 ' E + m E' + m _' 2 \ E + m E' + m !"(20)* 

Here we have neglected terms~ 1/y, and, moreover, in 
this whole approach it is assumed that the final electrons 
remain ultrarelativistic. 

If we utilize the equations of motion for a spin in an 
external field [2J , then it can be easily shown that with an 
accuracy up to terms ~ 1/ y we have 

<p(;(l,)) = <p(~(t,)) = <p(~(t)); 

and taking this into account we have 

W(t,)R(t,) = 11. Sp [(1 + U~;) (A(t,) 
- iuB(t,)) (1 + u~1 ) (A (t,) + iuB(ttl]. 

(21) 

(22) 

Expression (22) can be utilized for the investigation 
of any arbitrary polarization and spin phenomena in
volved in the emission of radiation by electrons in a 
magnetic field. 

We now consider the intensity of the radiation in the 

*[EP) =EX P0. 

case of a motion of an electron in an external field 
summed over the polarizations of the photons and over 
the spins of the final electrons and averaged over the 
spins of the initial electrons. Then we have 

S;S,[R'(t,)R(t,)] = A*(t,)A(tt) + B*(t,)B(t1). (23) 

The rest of the calculation is carried out as in the 
classical problem of magnetic bremsstrahlung (cf., for 
example, [3 J ). Summing over the polarizations of the 
photon we have 

"' , 1 1 E \ 2 
LJ A (t,)A(tt)= 4 \1 + E') (v(t2)v(t1 ) -1), 

), 

"' , 1 ( liw)'( 2 ) LJB (t,)B(tt)=z E' v(t2)v(t1)-1+---z • 
' 'V 

(24) 

where we have discarded terms of highest order in 1/y. 
Up to our degree of accuracy we have 

v(t,)v(tt) = 1- 1fv2 - 1 12~2,;2 • (25) 

Substituting (23)--(25) into (22), and (22) into (9) we 
obtain the following expression for the intensity of 
radiation per unit time: 

die e2 d3k r [ 1 + a 1 ( a2 \ . J 
dt=- 4n (2n)' J d-r: -,- +2 1 +a +--z )v't' 

-00 'V 

(26) 

where we have introduced et = ftw/E', n = k/w. This 
formula gives the angular and the spectral distribution 
of the intensity of radiation. 

We now introduce .J-the angle between the (v, v) 
plane and the vector nand 1/J--the angle between the 
projection of the vector non the (v, v) plane and the 
vector v. Of interest is the intensity of radiation inte
grated over the azimuthal angle of photon emission 1/J. 
It turns out to be convenient to carry out the integration 
over T and~ simultaneously. Expressing the scalar 
combinations appearing in the above expressions 

nv = lvlcosljlcosti, n~ = lvlsin¢costi (27) 

and taking into account the fact that up to terms of 
highest order in 1/l the principal contribution comes 
from small ~ and .J we obtain 

nv" v2 ll'f, ( 1 1 \ 
(1-nv)t--t'+-t'=-.- x+ x'+y+-y'. )• 

2 6 2lvl 3 3 
(28) 

where in the integral (26) we have made the substitution 
T- T + ~/lvl and we have introduced the notation 

11 = 1 - v2 cos2 {) = 1 I "12 + ti', 
1 I . I 1 y=v~ V't, X=v~ljl. (29) 

utilizing the well known integrals 

we obtain the following expression for the angular and 
the spectral distribution of the intensity of the radiation 
per unit time: 
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where 

(32) 

The calculation of the intensity of radiation from 
particles of zero spin which is carried out in the same 
manner (starting with formulas (17) and (18)) turns out 
to be even simpler. The expression for the intensity is 
obtained from (31) if in the first term in the figure 
brackets we omit the term 0' 2/2. 

As another illustration: we consider magnetic brems
strahlung from particles of spin unity. 

In this case the quantity M(t) can be written in the 
form 

M=-1-(t1)~{[g~•(eP)-e~P•-e•P~]. e-ikr} (ti)v 1 , (33) 
1~ v~ 

where ti(P) and tf(P) are the polarizations of the initial 
and the final vector particles. 

The further discussion is analogous to the case of 
particles of spin 1/ 2--one must go over to the description 
of the polarizations in terms of quantities in the rest 
system. In doing this it is easy to show that up to terms 
~ 1/ y one can assume that the polarizations in the rest 
system depend on a single time (cf., (21)). 

Carrying out an expansion in powers of lviT and inte
grating over the variables T and 1/J (cf., (26)-(30)) we 
obtain for the angular and the spectral distribution of 
the intensity of radiation from a vector particle per unit 
time 

(34) 

the quantity dle/dt is given by formula (31), while 

In order to obtain the total intensity of radiation it is 
necessary to integrate (31), (35) over the angle of emis
sion and over the frequency of the photon. For the 
evaluation of the integral over 0' it is convenient to 
introduce the representation (4 J 

A-T:ioo 

1 =-1- ~ f(-;)f(m+s) a•ds, ( 36) 
(1 + a)m 2ni '-'~ f(rn) 

where 1 - m < A. < 0. After this the integrals over 0' 

can be easily evaluated. Carrying out in the same man
ner the elementary integration over J (from which it 
can be seen that the basic method yields the region 
J ~ 1/r), we obtain for the electron 

die y} 1 
- = -- e'm"%2--. 

dt 32n21i' 2ni 

while for particles of spin unity the additional term 
d!,/dt (cf., (34)) will be given by 

dl, 3{3 1 
dt = 32n21i' e'rn'x" 2ni 

4ioo 

x ~ (3x)'f(-s) [ (s+3)f(s+4)r(; + ~ )r(; +~) 
A-i""' 

(3x)' f 3 22' ( s 7 ' ( s 8 \] ( 39 ) +--, -s+-}f(s+5)f -+- r -+-; ds. 
8 •2 3 2 3 2 3 

The integrals (37)-(39) can be evaluated by closing 
the contour of integration to the right for x « 1 (in this 
case a series in xis obtained) and to the left for x » 1 
(in this case a series in inverse powers of x is obtained). 
In view of the awkwardness of these series we write out 
here only the first terms of the corresponding expan
sions. 

For x « 1 we have 

dl,, e, v e2m"%2 ( 5513 2 ) 

-d-t- = - 6n/i2 \ 1 -16 X+ ll,, e, ,-')( + ' · · ' (40) 

where Os = 42, Be= 48, 6v = 105/2. The first term in 
these expansions is the classical expression for the in
tensity, the second term is the first quantum correction, 
both terms do not depend on the spin of the radiating 
particle, such a dependence appears only starting with 
the third term. 

For x >> 1 we have 

dl, _ e2m2 (3x)'hf(2/a) 
dt - 2n331i2 + · · · ' 

die e2m2 (3x)'h8f(2/a) 
dt n35/i2 + ' · ' ' 
d[, e2m2 (3x)'l'351'( 1/a) 
dt = 2n3,-li,-- + .. · · (41) 

For x >> 1 the photons carry away an energy of the 
order of the energy of the radiating particle, but at the 
same time it is possible to show that the principal con
tribution to the integrals (31), (35) is given by the region 
0' ~ 1, and this means that E' ~ E (thereby justifying the 
assumption concerning the ultrarelativistic nature of the 
final electrons). In this case the mean angle for the 
emission of a photon is ~x' 13/y. Thus, in the essentially 
quantum region the nature of the radiation changes ap
preciably compared to the classical region. 

It is of interest to note that for X » 1 the intensity of 
emission from a vector particle grows with the energy 
faster than in the case of particles of spin zero and 1/ 2 ; 

such a situation, generally speaking, is characteristic 
for the quantum electrodynamics of a vector particle. 

We note further that one can also obtain closed 
formulas for dl/dt which are particularly convenient for 
the case x ~ 1. utilizing the formula( 4 J 

(42) 

An analogous calculation for particles of zero spin yields we obtain 

' 
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dl, = e~m' [~ _ ~+ 2n( 1_ ~ )<P•!>(s)- _::_<P,,,(6) ], 
dt 6l"3 nli2 2x 4l"3 9 x' 9x 

_!!_:_ = e2m' { 2~ [( 16 + ~) <ll•,, (6) 
dt 2n3•1i2 3l"3 ~. x' 1 

+~(47+2_ \1<P·1,(s>]-19- 613 -+}. (43) 
X X2 X X 

where 

<IJ, = e-inv;z (J, _ J,) + einvf2(Lv _ L,), 

J 11 is the Anger function,~ = 2i/3x. 
All the expressions obtained for the intensity of 

emission depend on the kinematic characteristics of the 
particle v(t), v(t) in the given field. In a homogeneous 
field for the cases of particles of spin 1/2 and zero they 
go over into the well known expressions obtained by 
KlepikovlsJ and MatveevlsJ. All the expressions for the 
vector particles are obtained here for the first time. 

Expression (37) was also obtained in the paper by 
Nikishov and Ritus l7 J who have studied the intensity of 
emission from an electron in the field of a plane elec
tromagnetic wave and a constant crossed field. They 
have noted that for f, g << x the same expression also 
describes the radiation from an electron in an arbitrary 
homogeneous field. The investigation carried out here 
shows that such a generality of the result is physically 
associated with the fact that in essence in order to ob
tain it, it is sufficient to take into account recoil during 
emission. In this sense the approach is applicable to 
quite a wide class of external fields. Both KlepikovlsJ 
and also Nikishov and Ritus l7 J have utilized the solution 
of the equations in a definite external field; the analysis 
which is carried out here shows that it is not necessary 
to do so, and that in order to obtain the given set of re
sults it is sufficient to know the Heisenberg equations 
of motion in the given external field. 

Evidently in all the expressions the characteristics 
of the inhomogeneity of the magnetic field are contained 
only in X· This question has recently given rise to a dis
cussion (for the first term of the expansion for x « 1, 
cf., referencel1J ). We also note that a similar method 
for discussing the radiation in a magnetic field, but 
using an expansion of the commutators up to the first 
term in fiw/E has been utilized in a number of specific 
problems lB-lOl. 

3. PRODUCTION OF A PAIR OF PARTICLES BY A 
PHOTON 

The method developed in section 2 can be utilized for 
the study of a number of other processes. Here we shall 
consider the production of a pair of charged particles 
by a photon in an external field. In the lowest approxi
mation of perturbation theory the matrix element for the 
process has the form (3) (only one has to make the sub
stitution kf.l. -- kf.l.): 

Uti= <q I e ) e-iootM(t)dtl if), 
· (2n)'"l"21iro 

eM(t) = '¥,+(P) {(je), eik'}'¥;(P). 

(44) 

(45) 

where I q) and Jq) are respectively the state of the par
ticle and of the antiparticle, s and s are the indices of 
the spin states. 

We are interested in the transition probability 

summed over the final states of the produced pair. We 
carry out the procedure in two stages. First we sum 
over the final states of the antiparticle, and obtain 

dw =_a_~~ ( q I) dt1 S dt2eioo(t,-t.lM(t2 )M' (t1) I q). (46) 
(2n) 2 ro q ' 

This expression is analogous to ( 8) and further discus
sion proceeds as in Sec. 2. Utilizing formulas (10) we 
bring the quantity exp( ik · r( t 2)) to the right in M( t2), and 
we bring the quantity exp(-ik· r(t1)) to the left in M*(t1). 

Further we must take into account the fact that we 
are considering the case when the produced electron 
and positron are both ultrarelativistic. The principal 
contribution to the probability is given by the range of 
velocities of the final particles for which 1- n · v ~ 1/l, 
n is the direction of motion of the photon, and for the 
same reason JviT ~ 1/y. 

Physically this means that the created particle is 
moving at the instant of creation in the direction of mo
tion of the photon, and the photon-particle interaction 
remains significant until the particle has turned through 
an angle ~ 1/y, so that the situation is very similar to 
magnetic bremsstrahlung. Therefore the unfolding 
operation and the transition to the classical values of 
the quantities evaluated as expectation values in the 
state Jq) are carried out under the same assumptions 
as in section 2. We have 

(qJM(t2)M' (t1) Jq) = exp{ i [ ro,;- !, (kp- =)]} R(tz)R' (t,). (47) 

where 

eR(t) = 1/ 2'¥:(P) ([j(P) + j(-P')]e)'¥;(--P'), 

/iro - E = E', lik- P = P'. 

Taking into account the change in the sign of the mo
menta compared with formula (18) associated with the 
fact that now the photon is in the initial state and both 
particles are in the final state, the calculation is car
ried out as in Sec. 2 if we take into account the fact that 
L) - J d3 P /h3 • After carrying out the integration over 
q 
the relative time T and over the azimuthal angle of emis
sion of the particle 1/!, after summing over the spin of 
the final particle and after averaging over the photon 
polarizations we obtain for the probability of creation 
of an electron-positron pair per unit time 

dw. Sa ·m' r r. 3 - -· =---.) dx .) dy ch x 
dt 3n2 li2rox 0 0 

X {K•;,2 (TJ) + ch2 x(2ch2 y -1)[K•1,2 (TJ) + K•;,Z(TJ)l}, 
(48) 

where 

(49) 

kt is the photon momentum perpendicular to the direc
tion of the magnetic field. 

In discussing pair creation the assertion made in 
Sec. 2 regarding the separation of the spin characteris
tics from the unfolding operation remains valid. Thus, 
one can consider the creation of a pair of particles of 
arbitrary spin. For example, for scalar particles we 
obtain 
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Evaluating these integrals we obtain for K « 1 

dw. 3l'3 ·am2x dw, 1 dwe 
--= ----- e-8{3x -

dt 16l'2 li2w ' dt- Bdt · 
ForK» 1 we have 

dw. 
( 2 \'I• ( 5 ) 

5 3 J r \6 am2x'1> dw, 1 dw. 
- dt = 

14ff!_)\ ~; 
\ 6 

dt 5d.t' 

In a homogeneous field the probability for electrons 
goes over into that obtained by Kl.epikov[sl. 

4. SINGLE PHOTON PAIR ANNIHILATION 

(50) 

(51) 

(52) 

The matrix element for this process is the Hermitian 
conjugate of Ufi (44). The expression for M*(t.)M(t!l 
now contains lq)(q:l, We make use of the artificial de
vice: 

liiP-> <iiP· I _., ~ Iii> <iiI/) (p' + P) li• _., /) (p' + P) /i3 

• 
(53) 

(where Pis the momentum operator), with the aid o{ 
which the problem reduces to single particle expecta
tion values as in Sees. 2 and 3. 

Since we are considering the single photon annihila
tion of a pair of particles moving along curvilinear 
trajectories in a magnetic field it is difficult to describe 
this process (in contrast to the process of single photon 
annihilation in a Coulomb field) in terms of the language 
of cross sections. Apparently, the most convenient des
cription in this case is the introduction of the lifetime 
of particles moving in a medium of antiparticles in a 
magnetic field (or vice versa). 

Carrying out all the required commutations and the 
unfolding we obtain for the probability of single photon 
annihilation of a particle moving in a medium of anti
particles in a magnetic field per unit time: 

dw =annd•k li• r dr:exp{-t~[kp-w•J}R'(tz)R(t!)t.(p+p'-lik). 
dt oo J E' , 

(54) 
where n is the density of antiparticles. This expression, 
as in Sees. 2 and 3, can be utilized for particles of arbi
trary spin. 

For the single photon annihilation of an electron
positron pair after averaging over the azimuthal angle 
of the relative motion of the initial particles we have 

dw. a n m•li ( p,z ) 
dt= 3 1~1 (E+E')E'ZE• t+m; 

x{[ (E +E')2+(E2+E'2) !:2 J K•1,2(-rJ)+(Ez+E'2)( 1 + !:2 )K•1,(ll)}, 

(55) 
where 

1 (E+E')2( p,z,•J, 
l1 = s;- EE' \ 1 + ~) ; 

the quantity appearing inK is kt = ..Jw•- k~1 ; Pz = p sin J. 
<< E is the z-component of the momentum of the elec
tron and the positron in the system in which the photon 
moves perpendicular to the field. 

The principal contribution to this expression is given 
by the region in which the electron and the positron 
move in the same direction while the angle between 

their momenta is ~ 1/ y. In a homogeneous field this 
expression coincides with that obtained by Klepikov[SJ. 

APPENDIX A 

COMMUTATION PROPERTIES OF THE DYNAMIC 
VARIABLES OF A PARTICLE IN A MAGNETIC 
FIELD 

In the case of motion of charged particles in an ex
ternal magnetic field the following operator equation 
holds 

{3£, v} = c2(p- eA) = c2P. (A.l) 

Here 3£ is the Hamiltonian, vis the velocity operator, 
the brackets { ,} denote the symmetrized product of the 
operators. From this we obtain the equation for v: 

v = &{P, 3£-1}- 1/.[[v, 3£], 3£-1]. (A.2) 

Solving this equation by iteration we obtain a series in 
powers of h. In the first approximation with respect to 
11 we have 

v = c2{P, 3£~1}, (A.3) 

from where we obtain 

av; c2 [ v;v; ] 
[r;, v;] = iii ap; = iii 3[ 6;;-~ . (A.4) 

Here we have neglected the noncommutativity of the 
components of the velocity Vi and Vj· The latter in the 
same approximation is given by the expression 

1 ielic [ 1 v2 ) 1 l -[vm,Vn]=~Bmnl Hl 1-- +-. vlvH . c2 Jl-2 cz cz _ (A.5) 

From here follows the uncertainty relation for the com
ponents of the velocity. In the general case for ultra
relativistic electrons we have 

Av1Av; > elicH = liwo (A. 6) 
c'"'"'2Ez 2E' 

But if the motion takes place in the plane perpendicular 
to the magnetic field then we have 

(A.7) 

We have considered the noncommutativity of the com
ponents of the velocity in the first order with respect to 
'h. From equation (A. 2) it follows that terms of highest 
order with respect to h have the form of a series in 
fiwo/E. 

APPENDIX B 

THE UNFOLDING OF THE COMBINATION 
eik · r(t2)e-ik · r(t1) 

In order to carry out the unfolding operation we write 

(B.l) 

Then it is convenient to represent eik ·r(t2) in the form 

eikr(t,) = eik(r(t,)+o> = Leikr(t,). (B.2) 

Here L is the operator to the determination of which the 
problem is reduced. Replacing for the sake of brevity 

a= ikr(t), b = ikp- iw't, (B.3) 

we have 
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exp[£(a +b)] = e-iw•L(£)e<•, (B.4) 

where~ is a parameter. The operator L(~) satisfies the 
equation 

We now evaluate 
00 sn 
~-[a, [a, .. . [a, IJ] ..• ]]. 

n! 
n=O 

We find the commutator 

(B.5) 

(B.6) 

[a, b] = -[kr, kp] = -in(kV p) (kp) (B.7) 

by expanding p in powers of T; 

1 2 1 .. ()3+ p=v(t)T + zr' (f)t +;rrv t t ... (B.8) 

Then, replacing v(t) = P(t)/.7e and utilizing the Heisen
berg equation of motion in a magnetic field we obtain 

[a,b] = -[kr,kp] = (2fzw/3t')b. (B.9) 

In evaluating the commutator along with expanding in 
powers of 1/y we have also taken into account the fact 
that relation ( 13) holds. 

The operators Je and b appearing in (B.9) commute 
up to terms involving fl wo/E, and, therefore, the order 
in which they appear in (B.9), and also in further ex
pressions is immaterial. The fact that the commutator 
[a, b] is expressed in terms of b enables us to evaluate 
all the terms of the series (B. 6), if we take into account 
the fact that 

(B.10) 

then we have 
00 sn (tzw\n b 

e<"be-'"= ~ -(n+1)! -I b= · 
n~o n! .'Je . (1- £fzw/Jf) 2 

(B.ll) 

Solving the differential equation (B.5) with the boun
dary condition L(O) = eiwT taking into account what has 
been said regarding the operators b and 3t' we obtain 

L(s)=exp{b , 6~ +iw-r}. (B.12) 
.JC- w£ 

Then, taking into account (B.2) and (B.3) we obtain 

eik,(t,le-ikr(t,I=L(l)=exp{i[ w't+ 3t'~tzw (kp-m) ]}, (B.13) 

and this completes the solution of the unfolding problem. 

APPENDIX C 

ANOTHER METHOD OF INTEGRATING OVER TIME 

In some cases, in particular in the discussion of 
processes involving particles of higher spin, it turns 
out to be convenient to carry out the integration with 
respect to time immediately after carrying out the un-

folding operation (over t1 and t2 in formula (17)). Since 
the whole information concerning spins and polarizations 
is contained in R(t) such an approach enables us to carry 
out the discussion directly at the level of the matrix 
elements (while the method of integration over time 
adopted in this paper is necessarily associated with dis
cussing the combination R*(t2)R(t1) as a whole). 

As an illustration we consider motion in a circular 
orbit in a homogeneous magnetic field with frequency 
w 0 • Then the integrals appearing with respect to time 
(for one revolution) have the form 

" 
T mn = - 1- ) exp { iv ( I Vi I cos ti sin cp - cp)} cosm cp sin n cp dcp, ( C .1) 

Wo -Jt 

where rp = wot, 11 = Ew/E'wo = aE/Ivl; for example, 
2n 

Too=- lv(v lvlcos ti). 
Wo 

(C.2) 

In the general case Tmn is expressed in terms of J 11 

and its derivatives. These quantities are very similar 
to the classical ones and differ from them by the factor 
E/E' in v. If we utilize the well known asymptotic be
havior 

1 t.t''• ( v . \ lv(vlvlcos ti) = ---=-K•,, - ~,'h} 
n 13 3 

(C. 3) 

and the corresponding expressions for the derivatives 
of J 11 , then we can easily obtain all the expressions for 
the intensity of the radiation given in the text of this 
article. The domain of applicability of such an approach 
is the same as for the basic method. 
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