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It is shown that in systems where removal of ions at the ends in a lohgitudinal ambipolar electric field 
is dominant, excitation of modes of longitudinal ambipolar sound, or waves whose phase velocity is of 
the order of the removal rate of ions in the ambipolar field, should be possible. In our opinion, these 
results permit us to interpret the well-known results of Vlasov [1J on the excitation and modification of 
ion-sound modes. 

1. Recently Vlasov [1], in an investigation of discharge 
plasma from a heated cathode in the presence of a con­
stant longitudinal magnetic field, discovered an interest­
ing phenomenon, which consisted of the excitation and 
modification of the modes of ion sound with frequency 

(J) r:::; Ll/ T. 
L M 

( 1) 

under conditions when the relation 

p L Jxl 
- = const-(T.M)''•-

s a H 
(2) 

is satisfied, where M is the mass of the ions, 
K = dln n/dr, p and s are the number of modes of os­
cillation along the length and the azimuth, which deter­
mine the number of nodes of the potential of the wave, 
L is the length of the plasma column, and a is the radius 
of the column. 

Relation (2) was obtained empirically. Here the fre­
quency and conditions of excitation are almost indepen­
dent of the discharge voltage. It will be shown below 
that the excitation of longitudinal ion sound under 
conditions (2) can be connected with longitudinal ambi­
polar sound, 1 > the mechanism of excitation of which is 
not connected with an external electric field. 

2. In the choice of the model on the basis of which 
the calculations were carried out, we started from the 
following considerations. In the experiments of Vlasov, 
the plasma column, negatively charged relative to the 
walls of the plasma chamber, was produced as the re­
sult of a stationary discharge in a strong magnetic field. 
We therefore assumed that the escape of ions in the 
stationary state takes place principally along the dis­
charge axis at the ends of the system, in thEl positive 
(relative to the ends) longitudinal ambipolar electric 
field, the profile of which is symmetric relative to the 
plane passing through the middle of the column (z = O), 
perpendicular to the direction of the magnetic field. 
The density profile in the stationary state is also sym­
metric relative to this plane (Fig. 1). The escape of the 
ions takes place on both sides of this plane without 
collisions with neutral atoms. We note that the conclu­
sions of this research are applicable in those cases in 
which the escape of the ions occurs only at one of the 

1>The theory of transverse ambipolar sound was developed in 121 
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FIG. I. Stationary potential profile e<p/Te (solid curve) and the 
stationary density profile n/n0 (dashed). 

ends. 
In the process of escape of the ions in an ambipolar 

field to the ends, their energy increases to ecp0 Rj T , 
where 'Po is the value of the ambipolar potential at the 
ends. This leads to the possibility of the existence of 
waves, the longitudinal component of the phase velocity 
of which is of the order of ion sound; vph Rj ,fecpO/M 
Rj ,fTe/M, which is also confirmed by calculations, as 
will be shown below. We have called these waves longi­
tudinal ambipolar sound. It will be shown below that the 
oscillation of these waves is due to the drift of the ions 
tn the magnetic field, when K f 0; it is assumed here 
that the electrons are distributed in the Boltzmann fash­
ion ( v ph < ,;T e1 me), and that there is no current in the 
plasma. 

3. In the calculation of the stationary profiles of the 
density, potential and in the analysis of the stability, we 
start out from the kinetic equation for the ions 

8/; e 8/; 
8t + div,v/;- fl~ VJP 

8ft +a;- (vwml = 16 (v) 

and the equation for the electrons 

n. = no exp ( ~: ) , 
eql' 

ne'=noT., 

{3) * 

(4) 

where J is the number of ions produced per unit time in 
a unit volume; the ions are produced in the ionization of 
aeutral atoms with zero velocity, which is taken into ac­
count by a delta function. It is assumed that in the sta­
tionary state, fio = fio (vz)o(vr)o(vcp). It is also assumed 
that even in the stationary state the electrons have a 

*[vw]=vXw. 
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Boltzmann distribution, which is valid for small electron 
currents at the ends. The prime symbol refers to exci­
ted quantities. 

In what follows, we limit ourselves to a consideration 
of the region 0 ~ z ~ L/ 2, inasmuch as both halves of 
the column are symmetric relative to the plane z = 0. 

4. The solution of the problem of the axial distribu­
tion of quantities in the stationary state reduces to the 
integration of the characteristics of the equation 

oF; e d<p oF; ~ (5) 
u,-----~=J6(u,) F;= /;odu~du,. 

{)z M dz ov, ' 

The equations of the characteristic have the form 

dz I e d<p dF; 
--;;;=du, M-di= J6(u,)' 

whence it follows that 
Mu 2 
--' =e<p(z')-e<p(z); 

2 

dF; 6 (v,) 
-=J--, 
dz u, 

(6) 

(7) 

where z' corresponds to the point of creation of the par­
ticles. We find further that 

F; = J f 6(u,) dz' =- J M ~~-
, Vz e dz' z 

For the ion density, we find 

i-2e'P(z)/M 

n;(z) = ~ ' { 2e }-'{, F;dv,=J~dz' M[<p(z')-<p(z)] . 

(8) 

(9) 

The axial distribution of the potential and the density 
in the stationary state is determined from the equation 
of quasineutrality (ne = ni = n), which, with account of 
(4) and (8), has the form 

exp ( ....:!) = _!__ ~ dz'{~[<p(z')- <p{z)l}-'/,. \ r. no, M 

The solution of this equation is given in the work of 
Langmuir and Tonks, r3J such that 

(10) 

_e<p, = _ o.s5, , = '!!_V r. 1 o 43 (11) Te L M, n z=±L/2 = , no. 

It is assumed that in the stationary state the radial 
density gradient differs from zero (K f O). 

5. For excitations of the form 

A'= A1 (z) exp (im<p- iwt) (12) 

we can obtain from Eq. (3) the following set of equations 
for the excited ion distribution function: 

oF/ e d(jl oF/ . I 1 orW e oF; O<p 1 

u -----~-=rwF· -Y---+----
' oz M dz ou, ' r or M ou, oz ' 

where 

aY e dcp oY . m2 e I im 
u,----- = ~wY +--F·cp --w HW (13) 
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v,-----= £WW --F·---w·HrY 
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(14) 
In the limit wiH >> w, Vz/L, the system (13) reduces 

to the equation 

oF;' e dcp oF/ . F' ie m oF; I e oF; ocp' 
u,-------=~w; +----<p +---. (15) 

oz M dz ou, Mr wiH or M au, oz 

The characteristics of this equation are 

Mu 2 
--' =ecp(z')-e<p(z), 
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dF/ [. I ie m oF; I e oF; ocp' J I I 
-~= !WF; +-·--cp +--- u,(z,z ). 

dz Mr WiH or M au, l}z 

n!i(z)= F,;du,= {2e[qJ(\;)-qJ(z)]/M}'I• d~ 

_ __:_ 1 d£ d<pi(£) ~ oF;(£, z') . dz' ___ _ 
M 0 d£ 0 dz' {2e[cp(z)'- c,l(z)]/M}'Iz 

(16) 

(1 7) 

The nonlocal character of the expression for the ex­
cited ion density is associated with processes of re­
moval of the excitations in the ambipolar electric field 
to the ends of the column, as a result of which the exci­
ted ion density at each point z is determined by all the 
excitations appearing in the interval 0 < z' < z. 

Under the assumption of quasineutrality, n' = n:, one 
can obtain the following equation for the excit~d o1 

potential <;?I(z) by use of (4): 

• • • 
n(z)qJ1 (z)= if.~ n((;)qJ,(£) d£-~~ d£~ ~ ~~; -~, (18) 

u,(z,S) M 0 d£ 0 {)z v,(z,z) 

where 
Te m X 

l.=w+---­
M r WiH' 

and the solution of the problem reduces to the deter­
mination of the eigenfunctions <Pm and the eigenvalues 
An of this linear homogeneous singular integra-differen­
tial equation with a non-symmetric and non-hermitian 
kernel. The solution of such a problem is difficult to say 
the least and we shall use an approximate method for 
derivation of the dispersion relation. 

In the following, an analysis is given for the case of 
parabolic profiles of the density and the potential: 

<p = -Az2; n = no(1- ar); z = 2z/L, (19) 

where, according to (11), 

A= 0.85T./e, a= 0.57. 

Stationary profiles of the potential and density (19) 
are given in Fig. 1. 

In this approximation, Eq. (17) for the excited ion 
density has the form 

-z 

(20) 

where 

X= w( 2eA)-'f, !:__ 6 =!_~!!!__"'!'_(~A )-'/• !:.._ 
M 2 ' M r WiH M 2 ' 

J Te ( 2eA )-'!, L 
!.l=-- - -~ 0,22. 

noM M 2 (21) 

In the derivation of (20), we have assumed that 

(22) 

This requirement is due to the fact that the stationary 
ambipolar field for the parabolic density profile tends 
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FIG. 2. Profile of the first mode tp1 (z)/tp1 (solid curve) and profile 
of the third mode (dashed). 

to zero as z - 0, and satisfaction of (22) is necessary 
for the validity of the linearization of Eq. (3), which has 
been carried out in the vicinity of z = 0. 

The dispersion equation is determined from the con­
dition of neutrality of the excitations: 

1 1 

~ n/ dz = ~ n/ dz, (23) 

where n~ and n{ are determined by (4) and (20). 
6. In order to find an expression from Eq. (20) for 

the excited ion density, we give the profile of the excited 
potential cp 1 (z). The symmetric 

(24) 

and antisymmetric 
'1'1 (z) = -<p,( -z) (25) 

distributions of the excited potential relative to the plane 
z = 0 are possible. 

The symmetric profiles have an even number of 
nodes (p = 2, 4, ... ) in the interval -1 :s z ::s 1, and the 
point z = 0 is necessarily an extremum point for them. 
The antisymmetric profiles have an odd number of nodes 
(p = 1, 3, ... ,) in this interval (one node is necessarily 
at the point z = 0). Thus the first, fundamental mode 
(p = 1) has a single node at the point z = 0. If we specify 
the profile of the potential cpl(z) in the form of polynom­
ials, then, as is seen from Eq. (22), the profile of the 
antisymmetric potential begins only with terms propor­
tional to z3 • 

In what follows, we shall consider the excitation of 
the first two antisymmetric modes (p = 1, 3) and the 
first two symmetric modes (p = 2, 4). The specific 
choice of the profiles of the excited potential is a diffi­
cult one. Therefore, we shall proceed in the following 
fashion. 

A. The first, fundamental mode: p = 1. We choose 
the profile of this mode in the form 

(26) 

If it is assumed that flow takes place at the conducting 
end, then dcpJdzlz=± 1 = 0, whence A1 = -0.6. The pro-

file of the first mode is shown in Fig. 2. 
By substituting the profile (26) in Eq. (20), we find 

the expression for the excited ion density: 
e<p1 _ ( 0,44 0.67ib- 0.35 _2 nti(z)=no-z --+ z r. 1 - ix 1 - 0,67ix 

0.62ib 2, + 0.16ill . 26). ( 27) 
1 - 0,53ix 1 - 0,46ia: 

The dispersion equation (23) for the fundamental mode 
has the form 

0.22 0.16ill-0.09 0.11ill 0.02i11 
0·1 = 1- ix + 1- 0.67ix - 1- 0.53ix + 1- 0.46ix · (28) 

On the stability boundary (Im x = O), it splits into two 
equations relative to x and 15 (the imaginary and real 
parts of the dispersion equation are equated to zero). 
From these two equations, it can easily be established 
that 

X!im~ 1, lillm~ -1,3 (29) 

on the boundary of stability of the first mode. 
Simple analysis2 > shows that the first mode is excited 

when \151 < 1.3. This condition can be written in the form 

s\x\ 1/ T. 
WiH>0.6-a-L V M (30) 

by taking (21) into account. In the derivation of (30), it 
was considered that m = 2s. 

For hydrogen, for example, under the experimental 
conditions of Vlasov (L = 40 em, Te = 10 eV) the critical 
magnetic field for s = 1: Her ~ 500 Oe; for this case, it 
was assumed that the decay constant of the secondary 
plasma is equal to the radius of the chamber ( IK l-1 = a 
~ 4 em). For K < 0, waves are excited with m > 0 
(helical waves). Here the frequency of oscillation, ac­
cording to (21), (29), is 

/=2:~ 0~4y~. (31) 

For hydrogen, under the experimental conditions of 
Vlasov, f ~ 30kHz, which agrees well with the frequency 
of the fundamental harmonic excited in the experiment. 

In what follows, we shall assume that for the remain­
ing modes (p = 2, 3, 4) the conditions 

btim=l-2.6; -3.9; -5.2; xum= 2; 3; 4, (32) 

hold on the boundary of stability, in accord with (1), (2), 
and (29). The conditions (32) allow us to determine the 
profiles of the remaining modes. 

B. Second mode (symmetric). We seek the profile of 
this mode in the form 

<pt(z) = <pt(1 +A2Z:Z +B,Z:4}. (33) 

The constants A2 and Ba are determined from the con­
ditions that on the boundary of stability 

Xlim= 2; bum= -2 .6. (34) 

The expression for the excited ion density, according 
to (20) and (33), has the form 

5.0 

2/i 

FIG. 3. Profile of the second mode (solid curve) and profile of 
the fourth mode (dashed). 

2) Infinitesimally small deviations from the stability limit are 
considered. 
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e<p1 n [ io + 0.22A2 i6 (A2- 0.57) + 0.66_B2 
n1 · =no-- + Z2 

' T. 2 1 - 0,57ix 2(1- 0.79ix) 

+ 0.38i6~B2- 0.57A2) z• _ 0.18ioB2 Z"]. 
1- 0.59ix 1- 0.49ix {35) 

The dispersion equation (20) on the boundary of sta­
bility reduces to a system of two equations relative to 
the coefficients Az and Bz, whence 

A2 = -10.54; B2 = 4.88. (36) 

The profile of the second mode determined in this fash­
ion (Fig. 3) actually has two modes in the interval 
-1 ::s z ::s 1. 

C. Third mode (antisymmetric). The profile of the 
third mode was chosen by us in the form 

(37) 

The constants As and Bs are determined from the condi­
tion that on the boundary of stability (Im x = 0) we will 
have 

xum= 3; ~lim= -3,9. (38) 

By forming the dispersion equation analogously to the 
case of the previous modes, and splitting it on the sta­
bility boundary into two equations relative to As and Bs, 
we find, by means of (38), that 

Aa = -2.37; Ba = 0.73. (39) 

(The profile of the third mode (Fig. 2) has three modes 
in the interval -1 ::s z ::s 1.) 

D. Fourth mode (symmetric). The profile of the 
fourth mode is expressed in the form 

(40) 

The constants A4, B4, and C4 are determined from the 
condition that on the stability limit we have 

(41) 

and the nodes of the mode p = 4 are located at equal dis­
tances. These conditions allow us to choose the values 
of the coefficients A4, B4, and C4 uniquely: 

A 4 = -9.86; B4 = 4.06; C4 = 4.80. (42) 

The profile thus determined (Fig. 3) actually has four 
nodes in the interval -1 ::s z ::s 1. 

Without doubt, such a method of determination of the 
form of the higher modes is not entirely rigorous. The 
aim of the present calculations was to trace the charac­
ter of the change in the profile of the excited modes 
upon satisfaction of (32). 

7. Thus, it is shown that under conditions when ions 
from a discharge flow through the ends in a positive 
longitudinal ambipolar electric field, a drift oscillation 
is possible of the spatial modes to the longitudinal am­
bipolar sound at the frequencies 

_ 2p l/2e<po ~ 2,6p 1/ Te 
w--yvM~I:-v M 

under conditions when 

s 1%1 1/ T. 
Will> 0,6--- L VM. 

p a 

(43) 

(44) 

In the case when flow of ions takes place only at one 
end, the mechanism of excitation of the ambipolar sound 
remains unchanged, but it is necessary to replace L/2 
in the formulas (43) and (44) by L-the length of the 
discharge region (the flow in this case takes place at 
both ends of the tube). 

The mechanism of excitation that has been consid­
ered can appear in a Penning low pressure discharge, 
where the removal of ions in the ambipolar field takes 
place at the cathode. 

In conclusion, I express my deep gratitude to B. B. 
Kadomtsev for his suggesting the problem and for val­
ued critical comments, and also to M. A. Vlasov and 
A. V. Timofeev for interest in the work. 
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Note added in proof (September 12, 1967). When the length of the 
free path of the ions is small O'i < L/2), the conditions for the excitation 
of longitudinal am bipolar sound appear at the very end of the free path, 
where there is a free removal of the ions at the ends in the longitudinal 
am bipolar field. Here, in order that the ions drift transversely to the 
column, satisfaction of the condition WiH r; > I is necessary. It must 
be expected that here the maximum of the amplitude of the 
am bipolar sound is reached near the ends. A similar situation arises 
in the case of a transverse am bipolar field. 
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