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It is shown that if T « T c and the super conducting and normal layers have thicknesses as « an the 
thermal resistance of the intermediate state of superconductors is determined mainly by tunneling of 
the thermal excitations through the s-layers, and not by jumps over the barrier. 

As shown by Andreev[11 , thermal electronic excitations 
in normal layers of the intermediate state, with energy 
w < 1:!. (1:!. is the size of the gap, fJ. = 1) are reflected 
from the n-s interface between the normal and the super­
conducting half-spaces. This result was used inu 1 to 
calculate the thermal conductivity of the intermediate 
state in a direction perpendicular to the stratification 
lines. The mechanism of the thermal conductivity con­
sists of successive over-the-barrier jumps of the 
thermal electronic excitations from one normal layer 
to another. However, taking into account the finite thick­
ness of the layers forming the intermediate state, one 
can expect in principle that, besides the over-the-bar­
rier transitions, some contribution to the thermal con­
ductivity will be made by excitations that tunnel through 
the superconducting layers. Although the thickness of 
the superconducting layers is quite large (compared 
with~, the radius of the Cooper pair), calculation shows 
that this question is not trivial, and the tunnel effects 
cannot be neglected in the general case. 

Let us estimate the probability of tunneling for a 
barrier of rectangular form of height 1:!. and width as 
(as-width of superconducting layer, an-width of normal 
layer). Let 

{
0 -oo<x<;;;O, 

il = il 0 <;;; x <;;; a,, 
0 a,<;;;x<+oo. (1) 

The assumed model is valid if the inequalities ~ « as 
« an are satisfied, that is, 10-3 ::; as< 10-2 em. The 
corresponding smoothly-varying parts of the wave func­
tions from [1 J are 

(1]) f1). ;0) . = A e•k• + B! e-•k•, 
• X \. 0 \ 1 

- oo <x~O; 

( 1]) = . .; ( )'1 + unkJ(w )eik,•· + D_( 1'1- unk1/w ) e-ik,r, 

X )'2 \.- i)'1- unk1/w )'2 + i)'1 + unkJ/w 

( 1] J = E ( 1) eikr + F ( 0) e-ikr a,~ X < + oo. 
\xJ \o. \1 ' 

(2) 

Here G) is a two-component wave function describing 

the excitation in the intermediate state, u is the Fermi 
velocity, and 

w r 
k=n--; n=--, 

u lrl 
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The case nx < 0 corresponds to a "hole" (in the term­
inology of[11 ) incident on the barrier from the side of 
negative x; the case nx > 0 corresponds to incidence of 
a "particle"; A, B, C, D, E, and F are arbitrary con­
stants. 

Assuming for concreteness nx > 0 (tunneling of a 
"particle," wherein only a "particle" moving from the 
barrier is present in the region as :::ox< oo, that is, 
E "' 0 and F = 0), joining the wave function on the inter­
face, and using the usual definition of the transparency 
of the barrier d(w), we get 

lEI' 4e-"'"• 
d(w)=w•= 1-(il'-w')/w'' 

(3) 
x = u-'1' L\ 2 - w2, w < L\. 

We now calculate the heat flux Wt directed from the 
normal to the superconducting phase and due to the tun­
nel excitations, 

d•p 
W 1 = ~ 2wno(w)d(w) (2~3· 

vx>O 
(4) 

where v = dw/dp, w =II: I, 1: = u(p- Po), Po-Fermi mo­
mentum, no(w)--equilibrium distribution function (when 
T « 1:!. we have n0 (w) Rj e-w/T). The integration of (4) 
is in analogy with the procedure used in[1 J. Only the 
expressions for the transparency of the barrier d(w) 
are different, and accordingly the limits of integration 
with respect to w. In [1 J 1:!. :::o w < + oo, whereas here 
0 :::o w ::::; LJ.. As a result of the integration we get 

( Po ) ( 2/la, ) W 1 :;:::; 4 - T2 exp\ --- . 
, n u 

Comparing the flux Wt with the flux WT due to the 
above- the- barrier transitions, calculated in [1 J , we find 

W 1 T2 exp(- 2/la,/u) 
-:;:::;y ·--
WT T)'L\Texp(-Ll/T) 

(y~1, li=1, k=i). 

Thus, the fluxes Wt and WT become comparable when 

2~a, I u = t. IT, 

which corresponds to a temperature 

T:;:::; liu I ka,, 

(5) 

(5a) 

k is Boltzmann's constant, and u is the Fermi velocity. 
Putting as~ 10-2-10-3 em and u ~ 108 em/sec, we get 
T ~ 0.1-1°K. This estimate allows us to conclude that 
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the exponential growth of the thermal resistivity with 
temperature in the intermediate state, predicted in[1 J, 

should be observed only up to a definite quite low but 
experimentally attainable temperature, T ~ 0.1-1°K. 
Below this temperature, the principal role in the heat 
flux is assumed by tunneling thermal excitations, and 
the temperature dependence of the thermal resistance 
assumes a power-law form. 

It should be noted that the exponential variation of 
the thermal resistance with decreasing temperature 
can be violated also as a result of phonon thermal con­
ductivity, boundary effects, etc. However, unlike other 
factors leading to the power-law dependence of the 
thermal conductivity on the temperature, the tunneling 
thermal resistance, which replaces the above-the-bar­
rier resistance at low temperatures, depends exponen­
tially on the external magnetic field (the external field 
determines the thickness of the superconducting and 

normal layers of the intermediate state). Therefore the 
tunneling thermal resistance can be easily separated 
against the background of the remaining possible power­
law dependences. 

In conclusion we emphasize that the results are valid 
when as/an << 1. In the case when as ~ an it is neces­
sary to take into account the quantization of the excita­
tion energy in normal layers [2 J, which becomes apprec­
iable at the same temperatures as the effect considered 
above. 
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