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The thermal conductivity and viscosity of light diatomic molecules in the presence of a constant mag­
netic field are investigated on the basis of a quantum-kinetic equation in which the identity of the par­
ticles is taken into account. It is shown that in the transition from high to low temperatures, the behav­
ior of the kinetic coefficients does not change in a magnetic field. The observed quantitative difference 
in the Senftleben effect for ortho- and para-hydrogen can be explained by taking into account the differ­
ence in the statistical weights of states with rotational momenta of different parity. 

1. INTRODUCTION 

THE change in the transport coefficients of molecular 
gases in an external field was discovered in 02 by 
Senftleben l1l and confirmed to date by a series of ex­
perimental researches carried out in 02 and well as in 
other gases. [2-4] The theory of this phenomenon [5'61 is 
based on the classical kinetic equation of Boltzmann and 
is not directly applicable to the effect in light gases 
(H2, HD, D0, for which the quantum character of the 
rotational motion is significant even at room tempera­
ture. However, the method developed earlier, l6l which 
was based on the introduction of a small parameter E 

(the nonsphericity parameter) responsible for the effect:, 
and on the use of the symmetry properties of the colli­
sion operator, can also be applied to this case if the 
Boltzmann equation is replaced by the equation for the 
single-particle density matrix. Our research is devoted 
to this purpose. 

Of greatest interest to the problem referring to the 
effect in light gases is the question of the effect of 
nuclear spin. We shall assume the coupling of the 
nuclear spin to the axis to be broken (which is already 
true at H > 10 Oe); therefore, the spin of the nucleus 
affects only the statistics of the molecule. The require-· 
ment of quantum-mechanical symmetry leads to the re­
sult that in the normal term of the hydrogen molecule, 
1.6~, the levels with even (odd) values of the rotational 
angular momentum l exist only for even (odd) total spin 
of both nuclei and, consequently possess different 
nuclear multiplicities of degeneracy. Since the proba­
bility of change in the spin of H2 is very small, the hy­
drogen exists in two different modifications (para and 
ortho), which do not change into one another (in the 
absence of a catalyst). The same also applies to deuter­
ium. 

We are interested in the following experimental fact: 
the viscosities of para and normal hydrogen are differ­
ent.[?] This difference can be explained by interference 
effects, which lead to the result that the integral scat­
tering cross sections are different for different and 
identical particles. The calculations, which are carried 
out under the assumption that the interaction between 
the molecules is purely central, [aJ gave a result much 
lower ..han the experiment (at least forT > 20°K). This 
allows us to assume that the difference in the viscosities 

of para and normal hydrogen is chiefly the result of the 
noncentral interaction of the molecules. Therefore, the 
maximum change in the viscosity in the presence of a 
field l4l should be of the same order of magnitude as the 
difference in the viscosities of para- and normal hydro­
gen. Unfortunately, the experiments [4 , 51 were conducted 
in different temperature ranges, which excludes the 
possibility of their comparison. 

In connection with the problem of the change in the 
kinetic coefficients in the field, one must call attention 
to the experiments of sound dispersion, [9 - 111 which de­
termine the frequency of rotational relaxation fRDF 
(RDF =rotational degree of freedom). Since 
E ~ fRDF/fTDF (TDF = translational degree of freedom; 
fTDF ~ 103 MHz/ atm), the results [9 - 111 make it possible 
to estimate the nonsphericity parameter. 

For H2, frequency fRDF = 10 MHz/atm, for D2, fRDF 
= 15 MHz/atm, for HD, fRDF ~ 102 MHZ/ atm. There­
fore for Ha and D2 we have E ~ 10-2, while for HD we 
have E ~ 10-1. Inasmuch as the relative chan~e in the 
transfer coefficients is of second order in E, 61 the re­
sultant order of magnitude for the hydrogen isotopes 
agrees with experiment. l3' 4l 

2. EQUATION FOR THE DENSITY MATRIX. GENERAL 
PROBLEM 

For the description of the kinetic properties of a gas 
with rotational degrees of freedom (RDF) at low tem­
peratures (T $ ti 2/21) we must consider the single­
particle density matrix 

f;,.,I' ==fur; LM'(t, r, p). 

in place of the distribution function f(t, r, u, L). Here 
L, M are the magnitude and projection of the rotational 
angular momentum Lon the fixed axis Z; the transla­
tion degrees of freedom are described classically as 
usual. The nondiagonal (in L) elements of the density 
matrix are small 

(2, 1) 

(QRDF is the inverse of the relaxation time of the RDF), 
ft2 

hww = V[L(L+ 1)-L'(L' + 1)jl 

and cannot be taken into account. The kinetic equation 
for fk1:M, was obtained by Snider [121 and by Waldman. [13] 
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In the presence of the magnetic field H, it has the form 

a{ p ~ ill A A [ ij J at + m vI+ T [LH, fl = -at- coll 

[ ~ r = 16nW ~ ~ ~ dp1 dp' . 
coil MN J/Ll L{Mt 

NN1 N'N{ 

><(LML,M, (pp1) 1t1L'NL1'N1 (p,'p + p,- p')) av · 

X fNL;. (r, p, t)f;,'~,.(r, p + p1 - p', t) · 

X(L'N'L1N,'(p', p + p1 - p') lt"li(E) ILM'L1M1(pp1)) 

(2nl!) 3 ~ r +----u:;-- LJ J dp,[(LML,M,(pp,) ltlf,NL,N,(pp,))av· 
L,M,NN, ( 2. 2) 

X t:M•(r, p, t)f/;,'M, (r, p, t)- j:/;N (r, p, t)f:;,'N, (r, p, t). 

X (LNL1N,(pp,) it" ILM'LM, (pp,)) avl, 

where (p · p1) = J'z(p - p), 

<LML,M, (pp,) It IL'NL,'N, (p'p,'}>av = (LML,M,(pp,) I tiL'NL/N,(p'p,')> 
± gL-1(LML1M 1 (pp1) ltiL,'N,L'N(p,'p')>, 

( ... ltJ ... ) is the scattering matrix introduced by 
Snider. [121 

In contrast with Snider, [12] the identity of particles 
was taken into account in (2. 2) and ·(2.3), while in con­
trast with Waldman [1sl transitions with change in L are 
considered. The sign +(-) in (?.3) corresponds to Bose 
(Fermi) statistics, gL = ~ (2Sj_, + 1) is the number of 

l 
spin states possible for a given L. In the derivation of 
(2.2) and (2.3) it was assumed that the spin states of the 
molecules do not change in the collisions. 

The density matrix is normalized, so that the parti­
cle density of the gas is 

n(r, t) = ~ ~ dpf~M = Sp~ dpf. (2.4) 
LM 

Equation (2.2) is identically satisfied by the equili­
brium density matrix 

tfl~, = n/iMM.fOJ(p)/1°), 

f~0) = (2nmT)-'I, exp ( -p2/2m), 

j},0l= gLZ-1 exp(-1!2L(L + 1)/2/T), 

Z= ~gL(2L+1)exp(-ll2L(L+1)/2IT). 
L 

. (2.5) 

Linearization of Eq. (2.2) relative to a small departure 
X from equilibrium 

(2.6) 

takes the form (the Z axis is directed along the magnetic 
field): 

/m 

- L v m [mu2 5 ll'L(J, + 1) iJ!nZ J 
[A,m]MM'= 2TY,m(u) Zr-z+--ur---TaT liMM', 

(2.7) 

• L [(2- 1\.·f.mu2 _3\ fl2L(L+1) T. iJ!nZl 
TAoo]MM' = 3 --z ' \ 2r 2 I- 2/Tcv + -z.:-'----;;r J liMM' 

(2.7) 
~~The explicit form of the azm is given in l6l; the term 

nix is obtained by linearization of n-1f<ol - 1[1lf/ot]coll· 
As in the classical case, [s,6J the linearized collision 

operator is divided into two parts: 

(2.8) 

Here jWl is the Maxwell collision operator for mole­
cules, and the second term, which is assumed to be 
small, describes processes related to the noncentral 
interaction of the molecules. 

The sought function x can be expanded in a series in 
the eigenfunctions of the operator !<ol. In the quantum 
case, the role of the spherical harmonics ~Yzm(M) is 
played by the irreducible tensors [Y1 (ti.L/v'2IT )]L , 

m MM 
the matrix elements of which differ from zero only if 
M - M' = m. These tensors go over into the normalized 
spherical harmonics of M in the quasiclassical limit if 
they are normalized by the condition 

(2.9) 

If we take it into account that in (2. 7) 

(2.10) 

it then becomes evident that all the contributions of the 
research of [6l are directly transferred to the quantum 
case by means of the simple replacement of the spheri­
cal harmonics of the rotational angular momentum by 
the corresponding irreducible tensors, and the integra­
tions over dM by taking the trace. In particular, the 
scalar product of the two quantities A and B should be 
taken in the sense 

(A, B) = ~ dp Sp f 0lA" B. (2.11) 

Then a change in the kinetic coefficients in the mag­
netic field will be given by the expressions (see [6l) 

LlCtm; I'm= E2 ~<Jill+ K" Aim> ~n > LlKnn <~nj(l) K A~·m), 

(2.12) 
'I = 11H / pT, n = (lm; l1l2• r 1r 2}. 

We recall that in the index n which characterizes the 
eigenfunction of the operator 1<0l, the numbers lm des­
cribe the tensor character of the functions, l1 and Z2 
(r1 and rz) its dependence on the direction (magnitude) 
of the velocity and rotational angular momentum. The 
eigenvalues An depend actually only on l1 and r1 
(An = Ar1 l1) · 

Equations (2.12) show that the behavior of the trans­
fer coefficients in a magnetic field does not change on 
going from high to low temperatures, for which quantum 
effects are substantial. 

3. ACCOUNT OF IDENTITY OF PARTICLES 

Experiment [4J shows that at room temperature the 
change in the first viscosity in a magnetic field for 
para hydrogen exceeds by a factor of two the corre­
sponding value for normal hydrogen. This difference 
can be explained if we assume that the interference ef­
fects, which arise from the identity of the particles in 
the nonspherical part of the interaction, is large. We 
limit ourselves to the consideration of first viscosity 
and the thermal conductivity. Since the principal role in 
these phenomena is played by transitions without change 
in Lin the collisions, we shall assume that the matrix t 
is diagonal in the rotational angular momenta of the 
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colliding molecules. Therefore the linearized collision 
operator has the form 

• • L ~ (0) • • /(OJ • ' 
[IJ(]MN = L.J/r., (hL,XhfN + -g' [11/ LLX]MN. 

L, L 
(3.1) 

where the first term describes the collisions of mole­
cules with angular momenta L and L1, considered as 
non-identical, while the second term is the correction 
to the collision integral for the identity factor in colli­
sions of particles with angular momentum L (see (2.3)). 

For the collision integral1<o>, it is natural to assume 
that the interference effects play practically no role. 
Therefore, the difference in the effects for para- and 
ortho-modifications enter in only because of the differ­
ence in their matrix elements rl)KAzm· For a descrip­
tion of the properties of the nonspherical part of the 
interaction, we have used the simplest model: 

[ILL,KAzm]MN = a1(1Jln]MNL(2Lt + 1), 

[6-fLLKAzmJMN = bl [1Jln]MNL (2£ + 1), 

al and bl depend only on l. 
The factor (2Ll + 1) in (3.2) arises because of sum­

mation in (i LLlU·zm]MN over the projections of the 
angular momentum matrix which describes a molecule 
with rotational angular momentum L1. At high tempera­
tures, the model (3.2) transforms into that used in lflJ • 

In this model, 

< lUhizm, "'n> = a{ifr r L" (L + 1)' 

+b'(2~~ r gL't£'>(£+1)'£'(2£+1). (3.3) 

Here we have introduced the notation 

ro(L) = ~~~>ro(£)(2£ + 1). 
L 

(3.4) 

It is clear that the term with bl in (3.3) must be taken 
into account only when a small number of levels are ex­
cited. At room temperatures, such a situation takes 
place only for para- and ortho-hydrogen. So far as the 
different modifications of deuterium and normal hydro­
gen are concerned, we have for them, without great er-
ror, 

(3.5) 

Therefore the effects on deuterium and its modifications 
must be identical, and the ratio of the effects on H2 and 
Da is given by the formula 

6-n, = (~)' [(~)' Z' (l + 1)~,/z• (l + 1)1,]'. (3.6) 
6-n, en, In, 

This ratio is equal to Y2, in accord with experiment, [3' 4] 

which gives the difference of EH and En : En ~ 1.4 EH . 
e 2 a a 

Such a result is not unexpected, since 
~ ~ URDF)D, (hDF)~ 

en, (/RoF)n, UmF)n, (3. 7) 

(fRDF is the frequency of rotational relaxation). 
Upon decrease in temperature ~H/~n2 tends to zero, 

because of the smaller value of the moment of inertia of 
hydrogen. 

For the ratio of the effects in parahydrogen and 
normal hydrogen, we have 
~ JazL2fL~, + b0lL'r.;-;-(Ly-;+-1")-.2g::-L--.:;1fL'<"'0>(:;;;2~L-+;---.-1);-p-n,~2 

L\nn, (a1)2£2(£ + 1)!n, 
(3.8) 

At room temperature, ~pH / ~nH ~ 2 (see [4]), which is 
2 2 

achieved for b1 ~ a1• For a decrease in temperature, 
~pH /~nH tends to zero, and as T- "",to unity. 

2 2 
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