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It is shown that the amplitudes for direct nuclear reactions leading to the formation of three particles 
and corresponding to triangular knock-out graphs with rearrangement of the nuclei at the vertices, 
can be expressed in terms of a universal function of two dimensionless variables for arbitrary mas
ses of the virtual particles. The behavior of the differential cross section near the singularities is 
calculated and contour maps of the corresponding surfaces are drawn. Comparison of the data ob
tained with experiment permits one to establish the mechanism of the reaction. 

1. INTRODUCTION 

IN an earlier paper, [1J the amplitude for the reaction 

A+x-+B+y+x (1) 

has been investigated as a function of the square of the 
momentum transfer q2 = IPx- p~l 2 (px, PX are the mo
menta of the particle x before and after the reaction) 
and the energy w of the particles B and y in the system 
of their center of mass. The behavior of the reaction 
amplitude was considered near the singularities of the 
triangular graph corresponding to the account of elastic 
and inelastic scattering of the particles in the final 
state. It was shown that the modulus of the amplitude 
and its real and imaginary parts have extremal geome
tric loci given by the projection of the curves of the 
complex singularities of the amplitude on the (q2 , w) 
plane. 

In the present paper we consider the amplitude for 
reactions of the more general type 

A+x-rB+y+~ (~ 

The reaction (2) with z f x cannot proceed without a 
"rearrangement" of the nuclei in the virtual processes 
corresponding to the. vertices of the graphs. We must 
therefore consider the triangular graph (Fig. 1) with 
arbitrary masses of the virtual particles. The graph of 
Fig. 1 includes the process studied in [1J as a special 
case. The amplitude corresponding to this graph has 
singularities in the variables t and w, where 

t = -(Px- Pz) 2 + 2(mx- mz) (Ex- Ez), 

ro = Eu +EB- (Pu + PB)2{2(my +m8 ) 

(m, p, and E are the mass, the momentum, and the 
kinetic energy of the corresponding particles). 

(3) 

The location of the regions of nonregular behavior of 
the reaction amplitude and the character of its behavior 
are determined by the masses of the virtual particles. 
Therefore the investigation of the behavior of the differ
ential cross section near the singularities of the ampli
tude enables one, in principle, to identify the mechanism 
of the reaction. 

2. REACTION AMPLITUDE 

The amplitude M~ corresponding to the graph of 
Fig. 1 is a function of the two variables t and w (for 
constant vertices of the graph). In analogy to [1J, it is 
convenient for a general discussion to go over to dimen-
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FIG. 1. Triangular graph corresponding to 
the reaction x + A -> B + y + z which depends 
on t and w 

sionless variables (everywhere in the following we take 
n = c = 1) ~ and ,\: 

(4) 

where m1 , m2 , and m3 are the masses of the virtual par
ticles 1, 2, and 3, 

(5) 

The calculation of the Feynman integral correspond
ing to the graph of Fig. 1 (cf. [1 ' 2l) yields the following 
expression for the amplitude: 

Mt. = Cft.(6, J.). (6) 

Here (as in [ll) 
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m2ms mt2 
C = - i MAMxzM2y, 

2nx m~dmB+mv) 

x2 = 2m,e, m13 = m1m3/ (mt + m3) 
(7) 

is a rectangular matrix in the spinor indices of the ini
tial and final particles which is independent of the kine
matic variables and is expressed through the amplitudes 
for the virtual processes 

MA(A-+1+3), Mxz(x+3-r2+z), M2y(1+2~~B+y). 

The amplitudes for the virtual processes in (6) are taken 
at values of the kinematic variables corresponding to a 
singular point of the graph (where the intermediate par
ticles are on the mass shell). Formula (6) is correct 
only if near this point the quantities MA, Mxy, and M2Y 

vary slowly compared to the function fA(~,,\). 
The amplitude f~ (~, ,\) as a function of the complex 

variables ~ and ,\ has the form 

ft.('¢,, J.) 

t t+l'-s+l'-J. = --In ---''---'---"-'----'----
l'-J. 1-i-l'-'G-l'-J.' 

(8) 
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where 0 ::=:: arctan X < JT. For.\ > 0 expression (8) is 
identical with formulas (2.16) and (2.17) of[1l. 

In the general case considered by us, the variable .\ 
can also take on negative values in the physical region 
(for mx < mz). For.\< 0 we obtain from (8) (for ~ > 0 

we replaceR by -ivY, cfYl): 

-1 [ 2l'- ~A ft. ( ~. A) = --==- arc tg --''---"--
l'-A ~+1+A 

. i s+(1-l'-A)'J + In , (9j 
2 ~+(1+l'-A)' 

(9) 

0 ~ arclg X < n, s ~ 0, A < 0; 

i 1+l'-~+l'-A /t. (~. A)= -==-In--==-----= , !', ~ 0, A < 0. 
Y-A 1+l'-£-l'-A (10) 

It is seen from (9) and (10) that the reaction ampli
tude has, as a function of A., a "moving" singularity .\~, 
whose position is determined by the equation 

At-.= s -1- 2l'-6. (11) 

For ~ > 0 this singularity is complex. Since in the gen
eral case under consideration.\ may be negative in the 
physical region, one may, for mx < mz, get close to the 
singular point ~ = 0, .\ = -1 (for small t and w), in the 
neighborhood of which the amplitude varies rapidly. 

FIG. 2. Contour map of the sur
face lf~-. (~,;\)12 corresponding to the 
graph of Fig. I. 

FIG. 3. Contour map of 

Imfd (tA) 

FIG. 4. Contour map of 
Refd(tA) 
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As a function of ~' the reaction amplitude has a 
normal singularity along the straight line ~ = 0 and a 
"moving" singularity 

~ 

G!o. = A- 1 + 2l'-A. (12) 

The differential cross section for the reaction, 
a 2aja~aA. is determined [cf. [l]' formulas (2.18) to (2.20), 
(2. 23), and (2.24)] by the functions If~(~, A.) 12, Re f~, and 
Im f~. The contour maps (level lines) of the surfaces 
corresponding to these functions are shown in Figs. 2 
to 4 for the region A. ( 0 and ~ ( 0. The dashed straight 
lines in these figures indicate the projections of the 
complex singularities (11) and (12). The dashed line 
starting at the point ~ = 0, .\ = -1 is the curve of the real 
singularity ( 11) . 

FIG. 5. Triangular graph corresponding to the 
reaction x +A --> B + y + z which depends on w 

and w 0 

3. CONCLUDING REMARKS 

The triangular graph considered by us is the sim
plest of the graphs leading to singularities of the reac
tion amplitude with respect to the variables t and w. 

The main result of the present paper is that the am
plitude corresponding to the graph of Fig. 1 is expressed 
through a universal function f~ (~, A.) of the dimension
less variables ~ and A.. The function f~ ( ~' A.) is indepen
dent of the masses of the virtual particles, so that the 
results obtained above apply to all possible virtual proc
esses involved in the graph of Fig. 1. Thus the calcula
tion and investigation of this class of graphs may be 
considered as accomplished exhaustively. 

We note that this situation is not at all the same for 
all triangular graphs. For example, the triangular 
graph leading to singularities in w and Wo (w0 is the en
ergy of the colliding particles in the system of their 
center of mass) (cf. Fig. 5) does not permit such a re
duction to a universal function of two variables. It re
duces to a function of two kinematic variables and of 
one variable which depends on the masses of the virtual 
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particles, so that it is impossible to investigate it in 
detail and to give a graphic description for an arbitrary 
reaction. 

Although the behavior of the amplitude for the reac
tions considered above is determined by a universal 
function of the two dimensionless variables g and A., the 
behavior of the differential cross section as a function 
oft and w depends essentially on the masses of the vir
tual particles [this follows from (4)]. Therefore a com
parison of the results obtained above with the experi
mental data can be used for establishing the mechanism 
of the reaction. 

The authors express their gratitude to I. Baranova 
for carrying out the numerical calculations. 
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