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We study phenomena arising when plasma layers slip over one another, using the simplest example of an 
electron current with a linear velocity profile in a strong longitudinal magnetic field. We show that in this 
case the plasma is .stable and initial perturbations are damped in time according to a power law t-0' (a > 0). 

INTRODUCTION 

!N this paper we consider the vibrations of a plane 
electron current moving along a magnetic field with a 
velocity changing linearly in the transverse direction. 
We assume that the magnetic field is sufficiently large 
and thus inhibits transverse motion of the plasma in the 
vibrations. Harrisonl1 J has studied the stability of such 
a flow in its simplest form. More complicated systems 
were considered in a number of other papers (see, e.g., 
l2 - 41 ). The authors of these papers arrived at the con
clusion that the slipping of plasma layers in flow with a 
variable velocity is a destabilizing factor. The instabil
ity observed by them for sufficiently large velocity gra
dients was called the slipping-instability. 

At the same time the influence of slipping of layers 
of a continuous medium on its vibrations was studied in 
the theory of plane -parallel flow of an ideal liquid (see, 
e.g., [SJ) and also in connection with "flute" vibrations 
of a rarefied plasma in an electric field. l6 , 71 It was 
shown in those cases that for the simplest velocity pro
files such slipping leads to the elimination of all un
damped vibrations, i.e., to the stabilization of the cur
rent. (In hydrodynamics this statement of the content of 
Rayleigh's theorem.) The relatively general proof of 
this statement given in l7 J can be transferred to the 
system considered here. However, it refers only to the 
short-wavelength (quasi-classical) vibrations, localized 
in the interior part of the plasma. 

In the present paper we study vibrations with arbi
trary wavelength. We find that for each value of kz (kz 
is the component of the wave vector along the magnetic 
field) there are up to two neutral eigenvibrations, the 
phase velocity of which is the same as the current ve
locity at its left-hand and right-hand boundaries, re
spectively, while the imaginary part of the frequency 
vanishes in the hydrodynamic approximation. We note 
that in the case of a plasma at rest there is a complete 
set of eigenvibrations for each value of kz and one can 
expand a perturbation with an arbitrary profile across 
the magnetic field in terms of them. 

In the problem considered the eigenfunctions are not 
a complete set. We shall therefore follow l6 ' s, 91 where 
a similar situation was studied and use a Laplace trans
form method to track directly the fate of the initial per
turbations. As in the papers quoted above it turns out 
that the elementary excitations which form a complete 
set are the so-called modulated beams (similar to the 
van Kampen waves) moving with the local plasma ve
locity; they are described by the solutions with a dis-

801 

continuous derivative. An arbitrary perturbation con
sisting of such beams is deformed in the course of time 
and spread out along the magnetic field which leads to 
a damping which asymptotically follows a power law 
t-0' (0 <a< %). Harrison's conclusion about the insta
bility of flow with a linear velocity profile is thus in
correct. We indicate the mathematical errors which 
led to his conclusion. 

When solving time-dependent problems by the La
place transform method one assumes that the perturba
tion arises instantaneously at t = 0. We show that a 
current moving with a variable velocity "resonates" 
when a perturbation is suddenly switched on. As are
sult the damping law (the quantity a) is changed in 
some cases. This effect was not taken into account in 
earlier papers (see la, 81 ). 

1. BASIC EQUATIONS 

We consider the vibrations of an electron current 
with a velocity changing in the transverse direction in 
the simplest case. In particular, we assume that the 
current is uniform in density and moves along a uniform 
and sufficiently large magnetic field. One shows easily 
that if the conditions w H » wp, w H » V~ are satisfied, 
we need not take into account the displacement of the 
electrons across the magnetic field. Here w H is the 
electron cyclotron frequency, Wp the plasma frequency, 
and V~ the velocity gradient of the current. We shall 
assume that the current is included between two con
ducting surfaces at a distance 2a from one another and 
that its velocity changes linearly, V0 (x) = V~(x)(-a <x <a). 
The Ox axis is at right angles to the boundary surfaces, 
the Oz axis parallel to them along the magnetic field. It 
is clear that as the velocity gradient of the current de
creases the vibrations of this system change to the 
usual Langmuir vibrations. 

We want to trace the evolution in time of an arbitrary 
initial perturbation. To do this we apply as usual the 
Laplace transform method. The behavior of the system 
will be described by means of a kinetic equation linear
ized with respect to small perturbations and the Pois
son equation. One finds easily from these equations 

{ 
J2 (•)~2 . -- - } 

---:--- k?- k}--- (1 + tjnsW(s)) (jlp.k ax' V1· 2 

= -4:te \ dv ___}I.(_x2'01)_- . 
J p + ik,V0'x + ik,v 

(1) 

Here <Pp, k is the Laplace transform of the perturbed 

potential <Pk(t): ~ 
(jlp.k = ~ dt e-Pt4lk(t), 
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fk(x, v, 0) is the initial perturbation of the electron dis
tribution function. (We assume the unperturbed distri
bution to be Maxwellian.) The spatial dependence of the 
perturbed quantities is chosen in accordance with the 
symmetry of the problem to be of the form 
[exp {ikzz + ikyy}] cp(x); W(s) is the probability inte
gral of a complex argument: 

( 2i r ) ip - k, Vo' X 
W(s)=e~''\ 1+i=Je''dt , s=-------

. yn 0 k,v,. 

Owing to the Stokes phenomenon, the function W(s) has 
different asymptotic behavior in different regions of the 
complex argument s (see, e.g., [lOJ ): 

T-F(s)-+ e~•'+__!__!_(1+-;+ .. .), IImsi<IResl; 
1 _, 1 ~= -yn s 2s 

(2) 

i 1 ( 1 ) lV(s)-+ e~''(1--signlms)+--- 1+----;-+ ... , IImsi>IResl. 
lsi~= l'rr s 2s 

It follows from these expressions that effects connected 
with the finite temperature of the electrons are import
ant not only when Is I .S 1, but also when Is I» 1, if 
-3JT/4 < arg s < -JT/4. In the other regions of the com
plex variable s the transition to the asymptotic behav
ior leads to the usual hydrodynamic equations 

{ a• k,~wp2 } 
-k 2 -k 2 - m k 

·ax' ' '" (P + ik,V0'x) 2 -,-p. 

{ n.(x,O) ik,V.(x,O)no} 
= -4ne 1 + 1 • 

p + ik,Vo x (p+ik,Vo x)'. 
(3) 

Here nk(x, 0) and Vk(x, O) are, respectively, the initial 
perturbations of the plasma density and velocity. 

To find the solution of the inhomogeneous Eqs. (1) 
and (3) we use a Green function in the following repre
sentation 

Gp,k,xo(x)= W 
1 lg;.(x)g~ .• (xo), (x<x0) 

g~,k (x) g;,.(x0), (x > x0) (4) 

Here gf), k(x) are t~e solutions of the hom_o~eneous 
equations which satisfy the boundary conditions at the 
right-hand (left-hand) end of the interval (-a, a), re
spectively. These functions can be expressed in terms 
of the linearly independent solutions of the homogeneous 
equations 

'l'; .• (x) = 'fJt.p,k (x)<p,,p_k(±a)- 'fJ2,p,k(x) 'Pt,p,k (±a). (5) 

We denoted by W in Eq. (3) the functional determinant 
w(g+' g-) 

W = [<p,,p,tc{a)<p,,p,k (-a)- 'fJ2.p,k(a) 'l't,p,k (-a)] 

[ O<fJt;p,k IJ<p,,p,k ] 
X -a;:- 'fJ2,p,k---;;-;;-- 'l't,p,k = const. (6) 

If there are eigenfunctions of the homogeneous equa
tions satisfying the boundary conditions at both ends, 
W vanishes. For such values of p the Green function 
has a pole. Using the Green function we can write the 
solution of Eq. (1) in the form 

t r fk(x,v,O) 
rpp,k(:r) = J dx0Gp,k,xo (x)4ne J dv · + 'k V, + 'k · 

--a P l z o X 1, zV 
(7) 

When Is I » 1, 3JT/4 > arg s > -JT/4 we get from Eq. (7) 

r _ f n•(xo,O) ik,V.(x0,0)no} ( ) 
<pp,k(x)=j<lXoGp,k,x,(x)4nel +'kV' -~(-+--~)' · 8 

-(I P "l z o Xo P l z o Xo 

The time dependence of the perturbed potential is deter
mined by performing the inverse Laplace transforma
tion: 

i o+ioo 

'f••(x,t)=-. ~ dpeP1<pp,k(x). 
2m . 

0'-100 

2. THE EIGENVIBRATION PROBLEM 

(9) 

We consider first of all the eigenvibration problem 
in the hydrodynamic approximation. Following Harri
sonllJ we introduce in the homogeneous equation which 
corresponds to Eq. (3) a new function 1/! (r) 
= r-1 ; 2 Cflp, k(x), where r = x- ip/kz V~, 

II 1 I v2 
~· +-IJ! - kt'IJ! --lj!= 0. r r' 

(10) 

Here v2 = %- wp/V~2 , ki = k~ + ky· We multiply (10) 
by r<jJ * and integrate over the layer containing the 
plasma. Taking the boundary conditions into account 
and separating the real and imaginary parts of the inte
gral relation obtained we find 

idxRer{ IIJ!1 1'+ k,'IIJ!I'+ 1;~, l¢1'}= o, (11) 

Imw~\ d:r{ I..P1 1'+k,'IIJ!I'- 1 :~ 2 1¢1'}=0. (12) 
-a 

If the plasma velocity changes sufficiently slowly 
wp > % V'o2 (v2 < O), (12) can be satisfie~ only by_ neutral 
vibrations with Im w = 0. One sees easily that m the 
limiting case wp » V~2 such vibrations change to the 
usual plasma vibrations with frequency 

-w2 = k,'wp2 / k', k2 = k,' + ky2 + n2 (n I 2a)'. 

More interesting is the problem of the plasma vi
brations when wp < Vd 2 when v2 > 0. (We note that 
v2 = 1/ 4 - wp/V02 < 1/ 4 .) In that case (12) allows ~he pos
sibility of vibrations with Im w * 0. However, m order 
to show that such vibrations exist indeed it is neces
sary to construct the eigenfunctions of Eq. (10) with 
Im w * 0. Such an attempt was made in llJ. The Bessel 
functions were there expressed in the form J ± v (r) 
= A±r±VF(r), where the function F(r) was chosen to be 
the same for J±v which is incorrect. Moreover, ex
pressions in the dispersion relations were raised to an 
integral power, which led to the appearance of fictitious 
roots. All this was the cause of the incorrect conclu
sion about the instability of the plasma when Wp < 
< 1/4 V'o2. 

We shall show in the following that when Wp < 1/4 V~2 

there are no eigenfunctions of Eq. (10) with Im w > 0. 
It follows from (11) that for eigenvibrations there is 
necessarily a point Xc (-a < xc < a) such that in it the 
phase velocity of the wave is the same as the local 
plasma velocity Re( w/kz) = V~xc (Re r = 0). It follows 
from this that the eigenfunctions, if they exist, cannot 
vanish in more than two points. To prove this asser
tion it is sufficient to substitute as the limits of inte
gration in (11) successively the coordinates of two ad
jacent points in which 1/J (r) vanishes according to the 
assumptions. However, owing to the monotonic behav
ior of the velocity profile, the relation Re(w/kz) = V0Xc 
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and with it also Eq. (11) can be satisfied only once. 
We consider now the position of the zeroes of the 

function lf; in more detail. An arbitrary solution of (10) 
can be written in the form 

(13) 

where Z1 = ik1 (X- ip/kz V[J. It haS a branch point 
z1 = 0. We must give the rule for going around this 
point, or what amounts to the same, the position of the 
cut in the plane of the complex variable z1. To do this 
we note that it follows from (2) that the hydrodynamic 
Eqs. (3) and (10) are already invalid in the region 

-3n I 4 < arg s < -n I 4 (I arg zd > 3n I 4). 

when Is I » 1. This region is shaded in the figure. 
Therefore, if we wish to use only hydrodynamic equa
tions we must go around the point z1 = 0 from the side 
of the positive values of Re z1. 

The position of the zeroes of the function lf; in the 
complex plane of the variable z1 is determined by the 
constant C in Eq. (13). The trajectory of the zeroes is 
for changing C given by the equations 

(14) 

(15) 

If C = 0, the zeroes of the function lf; are the same as 
those of J _11 (z 1) and they are all on the real axis. The 
zeroes of J 11 lie also on the real axis while the zeroes 
of J 11 (z 1) and J -v<zJ alternateY11 Since we have for 
Im z1 = 0, Re z1 > 0 that Im J±v(z1) = 0, the zeroes of 
the function lf; lying on the real positive semi-axis cor
respond to real values of the function C. The Bessel 
functions satisfy the equation J±v(zt) = J;/;v(z 1) so that 
complex conjugate values of C according to (14) corre
spond to z t and it is hence sufficient to consider the 
case Im C > 0. Equation (15) shows that when d Im C > 0 
all the zeroes move from the real semi-axis 
Re z 1 >0 into the upper half-plane. They only return to 
the real axis when Im C = 0. Therefore, if Im C 2: 0 all 
zeroes starting from the semiaxis Im z1, Re z1 > 0 lie 
in the upper half-plane. However, to satisfy the bound
ary conditions two zeroes of the function lf; must lie on 
the line Re z1 = Re k1 (ix + p/kz V~) = const and, as was 
shown earlier, on different sides of the real axis. 

We now trace the trajectories of the zeroes which 
for C = 0 are on the lower side of the cut Im Z1 = 0, 
Re z 1 < 0. These zeroes cannot go into the right-hand 
half -plane when Im C > 0. Indeed, to do that they must 
cross the imaginary semi-axis l!ll z1 < 0, but on the 
axis we can write (14) as C = -e1V1T L 11 (yl )/111 ( Y 1 ), 
whence follows Im C < 0. A more detailed study shows 
that when Im C > 0 the trajectories of the zeroes on 

Jy(X,,t*}•D 
J_'l(r,,tk+d=O 

the lower edge of the cut are distributed inside the 
shaded region (in the figure this region is indicated by 
double hatching), i.e., they are in the region where the 
hydrodynamic equations themselves are inapplicable. 

We have thus shown that in the right-hand half-plane 
Re z 1 > 0 all zeroes lie on one side of the real axis and 
that there are therefore no eigenfunctions for Eq. (10) 
corresponding to increasing or stationary vibrations 
(Re p 2: 0). We now recall that Eq. (10) was obtained 
from (3) by the substitution cp = r 112 ¢ (r) where 
r = x- ip/kzV~. If p = -ikzV~a at x =a, where r = 0, 
cp vanishes even if lf; = C J 11 + L 11 * 0. If p = ikz V~a, 
then the situation is similar at x = -a. In order that 
for p = -ikzV~a the function lf; from (13) be an eigen
function it is necessary to put the constant 
C = -Lv(-2iakl)/Jv(2iak1). 

We found thus for each value of kz up to two eigen
frequencies w = ± kz V~ a with the corresponding eigen
functions. Usually, for instance, in the problem of 
Langmuir vibrations in a plasma at rest there corre
sponds to each value of kz a denumerable set of eigen
functions in terms of which we can expand a perturba
tion with a given kz and which depends arbitrarily on 
the other coordinates. We note that when k1a » 1 the 
eigenfunctions found by us decrease from the boundaries 

of the plasma exponentially cp ~ ek1<x ±a>. This expres
sion is obtained by using the asymptotic expressions 
for the Bessel functions (see, e.g., [111 ). 

It follows from the figure that when p = ±ikz v~a the 
boundary points fall in the shaded region where we must 
take into account effects connected with the fact that the 
electron temperature is finite (see Eq. (1)). Under the 
influence of these effects the zeroes of the eigenfunc
tions can shift in the complex plane over distances of 
the order vT/V~. To this displacement there corre
sponds a change of the order of kz VT in the eigenfre
quencies. It is thus possible that the eigenvibrations 
found by us are in fact increasing (damped) with small 
increments (decrements) lim w I :S kz VT· 

An exact use of (1) in the shaded region is difficult 
since the interior "potential" v2/x2 occurring in (3) is 
changed to the very complicated expression 
WpVT2 (1 + iv"iTsW(s)). Inside the shaded region W(s) 
has the asymptotic behavior 2e-S2 » 1 
(s = (ip- kz V~x)/kz VT). In this region the solution os
cillates very fast and, possibly, vanishes. In this case 
vibrations with such values of Re w and Im w < 0 
( I Im w I » kz VT ) that at least one of the end points 
falls in the shaded area are damped. This condition is 
necessary since we showed earlier that if both points 
x =±a lie outside the shaded region, damping of the 
vibration is also impossible. However, damped vibra
tions with lim w I » kz VT even if they exist, must give 
a small contribution to the asymptotic time dependence 
of the initial perturbation (see next section). 

3. EVOLUTION OF THE INITIAL PERTURBATIONS 

The evolution in time of the perturbations is deter
mined by Eqs. (7)-(9). We are interested in the 
asymptotic value of cpk(x, t) as t- oo, which is well 
known to determine the singularities of the integrand in 
(9). Usually these are the poles of the Green function 
corresponding to the frequency eigenvalues. In our 
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case, as in a number of other problems on plasma (liq
uid) vibrations with a variable velocity, the eigenfunc
tions do not form a complete set and there appears a 
new kind of elementary solutions- similar to van Kam
pen waves which determine the evolution of the initial 
perturbations. [6 ' 8 ' 9 J 

The integrand in (9) depends on the combinations 
p + ikzV~, p + ikzV~x0 ,p ± ikzV~a (see Eqs. (4)-(6)). 
It is thus convenient when studying (9) to use a figure in 
which we give the plane of the complex variable ik1x 
+ k1 p/kz V~. In particular, the integration contour is 
depicted in that figure by a line parallel to the ordinate 
axis and lying in the right-hand half-plane. The Green 
function in (7) and (8) is constructed from the solutions 
of the homogeneous equations. The hydrodynamic Eq. (3) 
has a singularity at x = ip/kzV~. Therefore, for given 
x and x 0 the singularities of the Green function are in 
the points p = -ikzV~x, -ikzV~x0 , ± ikzV~a. These 
singularities are removed when one takes the thermal 
smearing into account, but it then turns out that the hy
drodynamic approximation is valid only outside the 
shaded areas 

larg(p + ik,Vo'x) I < 3n/4, 

larg(p + ik,Vo'xo) I < 3n/4 

and so on. Simple considerations show that for not too 
large values of the time when kzvTt « 1 we can use 
for the integrand the hydrodynamic approximation tak
ing into account the rule for going around the branch 
point by a cut in the left-hand half-plane. 

The complete evaluation of the asymptotic expres
sions is rather complicated. We demonstrate the cal
culation technique by estimating the contribution to the 
asymptotic behavior from the singularities at 
p = -ikzV~x and p = -ikzV~x0 • We shall assume also 
that at t = 0 only the plasma density in the region xo < x 
is perturbed. As the problem is linear the contributions 
to the asymptotic behavior from different perturbations 
can be evaluated separately. In the case considered we 
have 

( t)- f d 4nenk(xo,O) 1 a+coo d ptg;;,k(x)g;,k(xo) 
ll'k x, - _:'a Xo W 2ni a~ioo pe p + ik,Vo'Xo · (16) 

We have changed here the order of integration as the 
integrals are absolutely converging for sufficiently 
large a • The functions g± are constructed from the 
solutions of the homogeneous equation (see (5)) which 
we have chosen in the form 

2'""q'l· 
q>1,2(q) = J±V(q) ""'q112±V. 

f(±v+1) q~o 

It follows from the last expression that the largest con
tribution to the asymptotic behavior is given by the 
functions Cfl2 (kl p/kz V~ + ik1 X) and Cfl2 (kl p/kz V~ + ikl Xo)• 
When lx -xol «a, we have (see, e.g., [l2l) 

i a+ioo 
<1> (x t)=- f d ePt lj>2,p,k(x)q>,,p,k(Xo) 

k,x, ' 2ni J. P P+ik,Vo'xo 
0'-'tOO 

""' Zf(vr'~'/.) t•(k,Vo'(x-xo))-vHexp{- ! k,V0'(x+xo)t} 

X {'•-•( ~k,V0'(x-x0)t )+ ilv( ~k,V0'(x-x0)t )}. 
(17) 

If I kz V~ (x- Xo)t I« 1, we may assume the singulari
ties to be confluent, and to evaluate the asymptotic be
havior we can put x = Xa· Indeed, in that case we have 
from (17) 

t'IN-1 

<I>k,x,(x, t)""' f(Zv) exp{- ik,V0'xt}. 

In the opposite limiting case I kz v~ (x - Xo)t I » 1 the 
contributions from the singularities in the points 
p = -ikzV~x and p = -ikzV~Xo separate and we can 
calculate them separately: 

1 I t )•-'I• 
<I>k,x,(x,t)""'-r_(_·_'_'_/_) 1 'kV'( ) exp{-ik,V0'x0t} 

·y - 1- !? \ l z o Xo- X 

1 + r '/ (ik,Vo'(xo-x))-v+'htv-'!.exp{~ ik,V0'xt}. 
(v- 2) 

(18) 

(19) 

Equations (17)-(19) are valid for IXo -xl «a and it is 
clear that expressions such as (19) can be obtained also 
when lx-Xol~a. 

The asymptotic behavior of Cflk(x, t) in the point x is 
thus made up of perturbations of two types with frequen
cies w = kz V~Xo and w = kz V~x, respectively. Here, as 
before, Xa is the "source" position (see (3), (8)) and x 
the observation point. The contributions of these per
turbations are separated when i kz V~ (x- Xo)t I » 1. A 
perturbation of the first kind is caused by a plane layer 
of electrons localized at the point Xo· This layer is 
modulated with a wavevector k = {0, ky, kz} and moves 
with a velocity V0z(Xo) = V~x0• It excites a wave with a 
laboratory -system frequency w = kz V ~ x0• The field of 
such a layer is described by the Green function 
Gp, k, xo(x). 

Perturbations of the second kind with a frequency 
w = kzV~x are to a well-defined degree connected with 
the use of the Laplace transformation. Indeed, solving 
the problem with the initial data, using the Laplace 
transforms, we assume that the perturbations arise in
stantaneously at t = 0. The expansion of a discontinuous 
function of the time in a Fourier integral contains all 
frequencies so that when suddenly a modulated layer of 
electrons with coordinate x = x0 occurs the whole spec
trum of frequencies must, generally speaking, be ex
cited and not only the frequency corresponding to the 
local drift velocity w = kz V~ Xo· In accordance with this 
the right-hand side of (3) will be non-vanishing, even 
for perturbations localized at x0 , for arbitrary values 
of p, although perturbations with p = -ikz V~Xo occur 
with the largest weight. At a point x * ·Xo the mutual 
interference of the field with W *- kz V~ X leads to their 
destruction after a time t ~ (kz V~ (x- Xo)) -l. However, 
perturbations with a frequency w ~ kz V~ x resonate 
with the motion of the plasma at the point x and as a 
result this point is a branch point for the field of a per
turbation with w = kzV~x (see (10), (13)). The branch 
point also contributes to the asymptotic behavior (19). 

We note that in [6 , BJ, where similar problems were 
considered, only perturbations of the first kind were 
taken into account. However, perturbations of the sec
ond kind give, generally speaking, similar and in some 
cases even larger contributions to the asymptotic be
havior. Its exact magnitude must, in view of what we 
have said earlier, be determined by the concrete de
tails of the process of switching on the initial perturba
tion. It is thus inexpedient to evaluate exactly the 
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asymptotic expressions in the present case. 
Perturbations of the first kind enter into the asymp

totic behavior through a Fourier integral of the kind 

In accordance with [l3 J its asymptotic behavior is 
for kz v~ at » 1 also determined by the branch point of 
the function f(x, Xo) when x = x0 (see (19)). Evaluating 
the Fourier integral we find that the contribution from 
perturbations of the first kind are damped in time as 
ev- 2 ' where 0 < v < % (see the preceding section). 
The contribution from perturbations of the second type 
can also easily be estimated. It turns out that in the 
given case it just determines the asymptotic behavior 
of cpk(x, t): 

(20) 

One finds similarly the part of the asymptotic behavior 
of cpk(x, t) which is connected with a perturbation of 
the velocity Vk(Xo, 0). In that case the contribution 
from perturbations of the first and second kind are 
equal in order of magnitude: 

4l'teVk(O)notk, ')""-1 , 
cpk(x,t)~ k1 Vo' \y;;Vot exp{-ik,V0 xt}. (21) 

In Eqs. (20) and (21) nk(O) and Vk(O) denote certain 
average values of the initial perturbations of the plas
ma density and its velocity. 

We found in the preceding section that to each value 
of k there correspond two eigenfunctions with frequen
cies w = ± kz V~ a. For those frequencies the functional 
determinant W vanishes and the Green function be
comes infinite. However, although usually the poles of 
the Green function correspond to the eigenfrequencies, 
here we have a branch point. This singularity also 
makes a contribution to the asymptotic behavior of 
cpk(x, t) and when evaluating it it is necessary to take 
into account that the functions g± occurring in the nu
merator of the Green function also have branch points 
for p = ±ikzV~a. The total contribution of these singu
larities to the asymptotic behavior is to order of mag
nitude equal to 

4l'te [ k Vk(O)no ]( k )-2v-1 'Pk(x,t)~k,2 nk(O)+ 1 Vo' k:Vo't exp{=Fik,Vo'at}. 

(22) 
If initially the plasma velocity is perturbed near the 

boundaries I kz v~ (x0 ± a)t I :s 1, the damping becomes 
much slower. In that case the combination kzk;1 V~ t 
occurs in the asymptotic behavior with the power 
-v - %. Finally, if the perturbations are non -vanish
ing near the boundaries and the observation occurs in 
the same region I kz V~ (x ± a)t I « 1, we have for 
cpk(X, t) 

4l'te [ 1 k Vo't )-1 k V (O)n J IJ'k(x,t)~-(x±a) nk(O)\-•_ + 1 k, 0 e'fih,Vo'at.(23) 
k, k 1 V0 

In conclusion we note that very short wavelength 
perturbations with k1a » 1 are localized near the re
gion of the initial emergence over distances of the or
der of ox R:J k; 1 « a. 

Over large time intervals, when kzVTt » 1 small 
ranges of p (OpR:J kzVT) and x (OXR:J vT/V~) become im
portant. In that case it is necessary to use the kinetic 

expressions (see (1), (7)), When taking the thermal 
spread into account the integrand in (9) becomes ana
lytic and therefore the asymptotic behavior of cpk(x, t) 
is damped faster than any power of t- 1• Thus, for in
stance, 

2l'ti 
0'-ioo 

V 2l'tT { 2T } --;;;:- exp - k,2 -;;;: t2 • 

The eigenvibrations found in the preceding section had 
a frequency w = ± kz V~ a. When kinetic effects are con
sidered the values of the frequencies may change by 
quantities of the order of kzVT· Not excluded is the 
possibility that these vibrations become increasing with 
Im w :S kzVT· We must note that when k1a » 1 such vi
brations, if they exist, will be localized near the bound
aries of the plasma at distances of the order of ox R:J k; 1 

and thus will not influence the evolution of perturbations 
inside the plasma. 

CONCLUSION 

We have thus studied the stability of an electron cur
rent with a linear velocity profile in a strong longitudi
nal magnetic field. We showed in Sec. 2 that in the hy
drodynamic approximation the imaginary part of the 
frequency of the eigenvibrations equals zero in the case 
considered and that the corresponding eigenfunctions do 
not give a complete set. In Sec. 3 we used the Laplace 
transform method to solve the problem of the evolution 
of arbitrary initial perturbations. We found that initial 
perturbations are damped asymptotically as ca 
(0 < a < %) and that thus the current considered is 
stable. 

The authors are grateful to Academician M.A. Leon
tovich, B. B. Kadomtsev, V. V. Arsenin, and D. D. Ryu
tov for discussion of this paper. 
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