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The high frequency surface impedance of a pure superconductor is calculated for a stationary magnetic 
field near the transition point. It is shown that for low frequencies, w0 «a 2 /Tc, an additional absorp
tion ~ wo ln2 wo exists which is related to relaxation of the gap a. 

LAND AU and Khalatnikovc 1 J have shown that, near the 
point of a second order phase transition, the relaxation 
of the ordering parameter characterizing the transition 
is inhibited. The relaxation time of this parameter in
creases according to the law 

T ~ 1/ (T,-T), 

where Tc is the transition temperature. In particular, 
this leads to an anomalous absorption of the sound near 
the A point in liquid helium. It is of interest to deter
mine whether or not there are similar phenomena in 
superconductors, where the role of the ordering param
eter is played by the gap a. 

The purpose of this research is the investigation of 
dissipative processes in superconductors upon relaxa
tion of the gap a, for example, by the absorption of 
electromagnetic waves near the critical temperature. 
We shall see that the relaxation processes in supercon
ductors possess a number of distinctive features and 
can be considered exactly on the basis of the micro
scopic theory. In other well known cases, the theory 
has made it possible only to estimate the relaxation 
time in order of magnitude. 

1. DISSIPATIVE PROCESSES NEAR THE 
TRANSITION POINT 

A linear equation was obtained by the author and 
Pitaevskiic 2 J for the gap a which has the form ( a 1 is a 
small deviation of the gap from the equilibrium value) 

fl,' (wo, k) = i ( 2~) 4 flt' (wo, k) { ~ dwd3p 

X (-w++S+}{w-+~-) +2ni\ d3p 
(w+2 - £+'- fl2) (w-2 - 6-'- fl2) ' 

[ 2n_u_2u+' 2n+v+'v_2 

X - w0 - e+- £_- ill - ·_ Wo + e+ + £_- ib-

2 (n_- n+) u_'v+' l} g { 1 
+- wo + e+- £_- illJ + i (2n)' fl,(wo, k)\ J dwd'p 

-Llo' 2 1 1 
X ------- infl' 2 J d3p --

(w+' -£+2 ·- fl') (<"-2 - S-2 - fl2) B+E-

[ n_ n+ 
X - --zoo+ e+ +-e- + i6- -_-w_o_+-c-e-'--+-+'-e_-_-i-{l 

Here 

n+-n- ]' + -----,.-'-------=-- J . 
- Wo + e+- £_- ill 

(p ± k/2) 2 wo 
S± = 2m - 11· W± = w ± 2. 

(1) 
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This equation contains terms with singular denomi
nators (- wo + r.+ - r.- - i6) which can vanish for all 
values of wo, including small w0 • In particular, for Wo 

< 2a, the energy is absorbed by means of damping sim
ilar to Landau damping. The imaginary terms which 
arise from these denominators describe the relaxation 
of a that is of interest to us. 

We shall investigate in detail Eq. (1) near the transi
tion point, i.e., when a(T) « ao (ao is the value of the 
gap for T = 0). Here we shall assume that wo « a(T). 
No assumptions will be made on the relation of k • v 
and a(T). We consider (1) for small w0 • For wo = 0, 
the equation 

- k' fl,' +__1_J T,- T -~ lfll'] <''it' 
4m 11 L T, 4n2T,2 

_ __1__ 7\;(3) -fl'2fl =0 7\;(3) 
11 8n'T,' o 1 , 11 = 6n'T,2 BF 

follows from Eq. (1). Equation (2) coincides with the 
linearized Ginzburg-Landau equation, as it should. 

(2) 

We shall now be interested only in the first nonvan
ishing correction in wo. We see that this correction 
will be of the order of Wo ln (wo/ a). Such corrections 
arise also from residues in the zeroes of the difference 
denominators in Eq. (1). We rewrite Eq. (1) in the form 

B 1' + iw0 (M!l1' + N!lt) = 0. (3) 

Here Lai is the left-hand side of Eq. (2) and M and N 
are determined in the following way: 

2n2 1t g e ( ~+S- ) woM=---·-- d3p(n+-n-) 1-----
gmpo 211 (2:t) 3 e+e-

X o(- Wo + e+- B-), 

• 2n2 n g \' flo'' 
wo2'v = ------- J d'p(n+- n_) --6(- wo+ e+- e-). 

gmpo 211 (2rt) 3 e+e-

In connection with what was said above, we have left in 
the equation only terms stemming from the residues. 
We now transform from integration over p to integra
tion over ~' making here the change of variables 
x = (k· p)/p. For M and N we obtain 

n 1 (- • .• ( £+~- \ wo:lf=---J rtx jas(n+-n-) 1---/6(-wo+e+-e-), 
4 11/r _, e+e-

. n 1 ~ 1 flo' 2 
uJo.'\ =--;- J dx J dl;(n+- n_)--b(-wo + e+- e-). 

!j 1..:11 --It E+E-

We make the following change of variable in the inte-
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gration over ~: 

kvF k2 

s'= (;-2+ 8m' 

We then have ~+ = ( + VFX· Integration over x imposes 
a limitation on ~' because of the presence of the 6 
function: ( can only be larger than ~ 1 , where 

(4) 

In the· following we shall omit the prime on ~. 
After integration over x (see the similar calcula

tions in [3 J) and expansion in wo for M and N, we get 

Proceeding now to integration over ~. we finally obtain 
for M and N, for the case wo « ~. ~ « Tc, 

111=~---1_{~l[rn ~+1~1-ln 8 1~1]- e,-1~1} 
2T)kVF 4T S< w0 2T ' 

N =.!!.__1 ~ ~o'2 [In e,+l~l -In 81~1 J 
2TJ kvF 4T 1~1 2 Si wo · (5) 

Here C1 = v'!~1l 2 + 1~1 2 • 
The region of applicability of Eqs. (5) is determined 

by the inequalities 

Is• I ~l'ro~, s• < o. 
In accord with (4), this corresponds to the condition 
kvF»v'wo~. Here ~1~ -%kvF. 

For the condition 

only the term 

l'rf= _e,-~~-1-~ __ n_ 
2T 2TJ kvF 8TJT . 

(6) 

remains in the second term of Eq. (3). It is easy to un
derstand that this corresponds to an unlinearized equa
tion of the form 

~-~-a~· = [~ +~( Tc- T _ _3j3_)_it.lz)l t,• 
8TTJ at t,m TJ \ T,. 8:rt'T,• " . 

(7) 

This is the temporal Ginzburg- Landau equation. It was 
obtained earlier by Abrahams and Tsuneto. L3J In its 
properties, it is similar to a relaxation equation. [1J In 
a superconductor, however, it is suitable only if~ 
changes sufficiently rapidly in space. Equation (6), 
however, is quite rigorous. 

In the opposite limiting case studied in [2 J, when 
kvF « ~(T), the problem reduces to a system of kinetic 
equations for the excitation distribution functions and 
the equation for ~. In the case in which kvF ~ ~. the 
equation is seen to be nonlocal and it is impossible to 
represent it in any simple form. We shall see later 
that in our problem, just such values of k are signifi
cant. There is a significant difference here from the 
static case. For the application of the static Ginzburg
Landau equations, only the condition kvF « ~0 is nec
essary. 

2. HIGH FREQUENCY IMPEDANCE IN AN 
EXTERNAL MAGNETIC FIELD 

The dissipative terms in Eq. (3) describe the relax
ation of ~. i.e., the approach of ~ to its equilibrium 
value. This should lead to an anomalous absorption of 
acoustic and electromagnetic waves in superconductors 
near the transition point. 

We shall consider the case of electromagnetic 
waves. It is already clear that it is impossible to ob
serve the relaxation absorption of interest to us by 
studying the superconductor in a single (weak high
frequency) field. Actually, the change of ~ is propor
tional to the square of the magnetic field, so that in the 
linear approximation ~ does not change and the relax
ation phenomena are not generally observed. It is pos
sible to observe them if one studies the high frequency 
properties in an external magnetic field H0 • In this 
case, ~ will contain a term proportional to Ho Ho , 
where H0 is the alternating magnetic field. This term 
leads to the anomalous absorption. 

Let us consider a superconductor occupying the half 
space z > 0 and located in a constant magnetic field H0 

(H 0 is the value of the field on the surface), directed 
along the y axis. The problem consists of calculating 
the surface impedance ~ relative to a high-frequency 
field H of frequency w0 • We shall assume that it is 
also directed along the y axis. For another polariza
tion, the effect in which we are interested is absent. 

Solution of the problem is complicated by the non
linearity of the effect and the non-local character of the 
equations. However, it is essential that in most pure 
type I superconductors the penetration depth of the 
field, 6, is much less than the correlation length 
nvF/~: 

6 ~ xhvFI~, x<L 

There are two terms in the variable portion of ~ . The 
first of these changes at distances ~ 6. The dependence 
of this term on the coordinates is determined in the 
fundamental magnetic field. The temporal effects are 
not generally significant for low frequencies and one 
can use the ordinary Ginzburg- Landau equation for the 
determination of this term. The other term changes at 
distances ~nvF/ ~. At these distances, the field is 
lacking, the nonlinear effects are unimportant, and one 
can use the general linear equation (3) directly. We 
note beforehand that the dissipation of energy in the 
main takes place at these large distances. 

One can show that the first nonlinear region gives 
us boundary conditions for ~ in the second, nonlocal 
dissipative region. In the first region, the superconduc
tor is described by a set of Ginzburg- Landau equa
tions which it is convenient to represent in the form 

Here 

cl"'tp I dz'2 = x•[- (1 - A'2)'i' + ¢3], 
d2A' I dz'2 = >iJ 2A'. 

IJl = t. I il~, A' = A I ,?iHcmb, 
z' = z I 6, 6 = ><VF i y6~, 

(9) 

where 6 is the penetration depth of the magnetic field, 
~"" is the equilibrium value of the gap in the absence 
of a magnetic field, A is the vector potential, directed 
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along the x axis. The magnetic field H is expressed in 
terms of A by the formula H = dA/dz. Hem is the crit
ical field in the bulk of the superconductor 

he x 
Hr>m=-_--. 

12 e 62 

In correspondence with the setup of the problem, we 
write 

A'= A0' (z') +A' (z') e-;w,t, 
¢ = ¢o(z') + ¢(z')e-iwot, 

As has already been mentioned, we consider here 
the case of a type I superconductor with small K « 1. In 
this case, one can neglect the dependence of 1/Jo on the 
coordinates and set 1/Jo = 1. Solving Eq. (9) with 1/!0 = 1, 
we obtain the expression 

Ao' = -Ho'e-z', lfo' = Ho/'/2Hcm (¢o = 1), {10) 

for A~, where H0 is the constant magnetic_ field Of!. the 
surface. By linearizing the set {8), {9) in A' and 1/J, 
and taking (10) into account, we get the equations 

d';j; I dz'2 - x2 [2~ + 2Ao'A' + Ao'2\p] = 0, 
d'A' I dz'2 =A'+ 2A0'~' 

for if' and k. 

{11) 

(12) 

We shall solve the set (11)-{12) by the method of 
successive approximations, which corresponds to an 
expansion inK. In other words, we assume A' = A'o +Ai 
where A~ ::S KA~. For A~, we have the equation 

such that 

Ao' = -Do'e-z, (13) 

H~ is the alternating magnetic field on the surface. 
Substituting (13) in (11), and neglecting terms ~ K 2 , we 
get for ~ the equation 

d'~ / dz'2 = 2x2Ho'Ho'e-'''. 

The particular solution of this equation has the form 

~ = ¢·n= 1lzx2Hc'H0'e-2''. 

However, this solution still does not satisfy the bound
ary condition di/J/dz = 0 at z = 0. Therefore, one must 
add if!hom to it-the solution corresponding to the ho
mogeneous problem, i.e., the problem without the field. 
The solution of the homogeneous problem changes, how
ever, at large distances ~fivF/ .a., or, in dimensionless 
units, ~ 1/K. Therefore, for the determination of if! hom• 
we should use the general equation {3). In other words, 
if we represent iJ in the form 

;p = ¢n+ ¢hom, 

then 1/Jhom should satisfy the boundary condition 

or, in dimensional variables, 

d¢hom= _ d¢n= ":'_Hollo_ 
riz dz 

for z = o, 

for z= 0. (14) 

Equation (3) was introduced for the unbounded super
conductor, while here we are dealing with a half -space. 
This difficulty can be avoided if we assume if! hom (z) to 
be an even function of z. On the boundary z = 0, the 

derivative of this function, in correspondence with {14), 
should undergo a jump, equal to 

a= -2d'¢n 
dz z~o 

If we assume that if! can be considered real for the se
lected gauge of A,t> then the equation for 1/Jhom can be 
rewritten in the form 

A a 
B¢hom(z)= 4111 6(z), 

where B is the operator corresponding to the left side 
of {3). The right o-function part guarantees the jump of 
any necessary quantity. Here it is taken into account 
that the operator becomes V' 2/4m for large k. 

Carrying out a Fourier transformation, we get 

[L, + iwo(M + N) ]'¢hom= a I 4m, 

or 

'Phhom=- k2 + 2x2/62 + iw04m(M + N) 

where M and N are expressed by Eqs. (5). Now it is 
necessary to perform the inverse transformation from 
1/Jkhom to 1/Jhom(z). In what follows, however, we shall 
need only 1/Jhom(z = 0): 

x2H 0 Ho r 1 
¢hom(O) = rr.H;;;F J dkk' + 2x2/62 + iwo4m(M + N) 

0 

Introducing the new variable y = kvF/2.a. and making 
several transformations, we get for 1/Jhom(O) 

[6xHoHo (" 1 
'P:hom(O) = t;;:Hcm2-; dy Y'+3+3iwo-rt(Y)7!/. {15) 

Here T is a parameter having the meaning of a relaxa
tion time: 2 > 

while 

1 +1y'+ 1 -- 81'; 
f(u)= ln-------1y'+ 1 + 1--ln-. 
· · y Wo 

In (15), for w 0T ~ 1, the values of y ~ 1 are important, 
i.e., the values kvF ~ .a., of which we have already 
spoken above. 

In order to find the correction to the impedance, it 
is necessary to determine the correction to the vector 
potential. A~ satisfies the equation 

rJ2A:/ I dz'2 - A{= 2Ao'~ (16) 

with the boundary conditions 

(17) 

1>The fact that 1/J is real automatically guarantees the constancy of 
the density of electrons for a change in .a.. Actually, according to [ 2 ] , 

the change in the density connected with the nonstationarity of~ 
a ~· 

~P ~ il~l'a!JnA 

vanishes for real ~- In the opposite case, a change in ~ would generate 
electric fields which would change the result. 

'lin our calculations, we have actually assumed that w 0 r- 1, or 
more precisely, that w 0 r<t,IIK 2 • In the opposite case, we should have 
used in place of Eq. (8), the time-dependent equation (7). 
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where A~ = -H~ e-z' is the vector potential of the con
stant magnetic field. 

The right-hand side of Eq. (16) differs from zero 
only for z :S 6. At these distances, 1/Jhom changes lit
tle and it can be replaced by 1/Jhom<z = 0). The term 
1/Jn which enters into ~' can generally be omitted from 
the right-hand side of (16), so that it ~ K 2, in contrast 
with 11'hom ~ K 2 • We thus have 

d2.4t' I dz'2 - At'= -2H0'e-z I!J.hom(O). 

Solving this equation with the boundary conditions (17), 
we get 

.A,' (z') = Ho'I!J.hom(O) ( 1 + z') e-''. 

The impedance of the superconductor in the region 
of not very high frequencies is expressed in terms of 
the penetration depth in the following way: 

. wo 
1;;=-!-6. 

c 

The penetration depth in which we are interested is 
computed from the formula 

(18) 

where Ao and Ho are the values of the potential and the 
magnetic field on the surface. 

Substituting the value of A on the surface in (18), we 
get for 6 

- [ Ho l b = Oo 1- Ho ljlhom(O) J · 

We then have for the addition to the impedance 

(19) 

where !; = -iwo6o/c is the impedance in the absence of 
an external magnetic field and 

co 1 
I=~ dy . . 

0 y'+3+3ivf(y)/y 

Here the notation v = woT has been introduced. 
It is seen from (19) that the real part of !;, which 

determines the absorption, is equal to 

, xl"B Ho2 

I;; = -l;;o -~.~-H 2 3vl', 
lrt em 

where (-3 vi') is the imaginary part of I, 

I'=r-dy-- yf(y) . 
~ y2 (y2 + 3) 2 + 9v2j2 (y) 

(20) 

(21) 

We now investigate the behavior of the integral (21) 
at low frequencies, 3 > i.e., when woT = v « 1. We now 
break up the integral (21) into a sum of 2 integrals 

;,:1 00 
I=~+~ =I1 +I2, (22) 

where v « Y1 « 1. 
We first consider the second integral. Inasmuch as 

y » v here, we can write 

3>In reality, however, it is necessary, both in (19) and in (21), to 
go to the limit of low frequencies, since Eq. (13) for the distribution of 
the magnetic field is effective only in the frequency region w 0 < .6. 3 ITc 2 . 

For higher frequencies, the anomalous skin effect begins to be significant. 

I= r a t(y) 
2 J y ( 2 + 3)2 . 

Y1 y y 

After some calculations, we get 

1 1 4tl 
I 2 = -ln2 y1 +-lnydn- +C1 -C2, 

18 9 wo 

where 
1 co d 1 

C1 = Z ~ dy ln2 y dy (y' +3J', 

C2 = r dylny.!!_[~-J, 
~ dy (Y'+ 3)' 

-- -- SCI 
<p(y)= ln(1 +iY'+ 1)- YY'+ 1 + 1-ln-. 

uJo 

In the first integral in (22), we make the change of 
variables y2 = v2 t. We obtain 

1 t' In at 
I 1 = -- j dt--,----

9 0 4t +In' at' 

where 

t, = !11" I v2, a = v2 (4tl I wo) 2• 

Taking it into account that t 1 » 1, I 1 can reduce to 

I,= _ _!_[ lny1 ln4tl +-~ln2 y1 -ln~ln 41'. -~ln2 -v-J_!__ 
9 1•lo 2 2 Wo 2 2 36 

Here, 

r ln(ax/4) 
F(lna)= j dx---'-~.....:..,-

0 x+ln2 (ax/4) 
1 d Jn3 (ax/4) 

1 x x(x + ln2 (ax/4)) · 

Adding h and Iz, we now obtain 

I=_!_ [lr> -"-In__!:_+ ln2 _"_]- __!_p -l- C,- C,. 
18 2 v 2 2 :J(j ' 

Thus, for w0 T « 1, the absorption !;' ~ w~, ln 2 w0 • In 
the general Landau-Khalatnikov scheme, it would have 
been simply !;' ~ wil. The appearance of the additional 
factor ln 2 woT increases the absorption at low fre
quencies. This is connected with the nonlocal character 
of the dissipative terms or, in other words, with the 
dependence of the relaxation time on k. 

The region of applicability of the resultant formulas, 
as has already been noted, is limited to temperatures 
near the critical temperature, where the superconduc
tor is a London superconductor. For this case, it is 
necessary that the condition 

ti(T) I ti(O) ~4x 

be satisfied, l 41 or 

a";;;>1lx2• 

It must be noted that the resultant formulas are con
nected with the very delicate mechanism of dissipation 
in superconductors and their experimental verification 
represents considerable interest. Here, however, it 
must be kept in mind that the addition to the impedance 
!;' that has been calculated is small in comparison with 
the real part of the impedance, which exists even in the 
absence of an external magnetic field. 

The author expresses his gratitude to L. P. Pitaev
skii for help in the research and to A. A. Abrikosov for 
useful discussions. 



796 M. P. KEMOKLIDZE 

1 L. D. Landau and I. M. Khalatnikov, Dokl. Akad. 
Nauk SSSR 96, 469 (1954). 

2 M. P. Kemoklidze and L. P. Pitaevskii, Zh. Eksp. 
Teor. Fiz. 52, 1556 (1967) [Sov. Phys.-JETP 25, 1036 
(1967)]. 

3 E. Abrahams and T. Tsuneto, Phys. Rev. 152, 416 
(1966). 

4 A. A. Abrikosov and I. M. Khalatnikov, Usp. Fiz. 
Nauk 65, 551 (1958). 

Translated by R. T. Beyer 
157 


