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It is shown that for a wide class of problems in electrodynamics, the behavior of the amplitudes and 
phases at the threshold for the production of new proper waves can be determined from the conserva­
tion laws. The method proposed, which is analogous to the quantum theory of many-channel nuclear 
reactions, is employed for an explanation of the Wood anomalies. 

IN classical electrodynamics there is a wide class of 
problems, for example, the diffraction of waves from 
periodic structures, the reflection from the open end of 
a wave guide, etc., where the amplitude and the phase of 
the diffracted waves exhibit characteristic kinks for 
certain definite values of the parameters (frequency, 
angle of incidence, etc.). As noted in [I], this effect can­
not be explained in a satisfactory manner in the usual 
theory. 

On the other hand, as will be shown below, these 
singularities have much in common with the threshold 
anomalies in many-channel nuclear reactions, for whose 
description there exists a well-developed apparatus in 
quantum mechanics. l2l This similarity is not accidental 
and is due to the identity of the physical nature of the 
phenomena. Indeed, the threshold anomalies occur when 
a new reaction channel opens, which leads to character­
istic kinks in the amplitudes in the channels which were 
already open. In the electrodynamic problems the kinks 
in the amplitudes and phases also occur when a new 
spectral line appears or at the threshold for the excita­
tion of a new wave, i.e., practically also when a new re­
action channel opens, although there is no such concept 
in classical electrodynamics. 

Using the formal and physical analogy just mentioned, 
we consider below the two most characteristic examples 
of threshold effects in electrodynamics: the so-called 
Wood anomalies and the reflection and diffraction of 
light at a plane boundary between two media. 

1. WOOD ANOMALIES 

In 1902, R. W. Wood [sJ called attention to the unusual 
behavior of the spectra obtained with diffraction grat­
ings. He observed alternating bright and dark bands in 
the continuous spectra. The wave lengths corresponding 
to these bands were shifted when the angle of incidence 
of the light on the grating was altered. A qualitative 
consideration carried out by Rayleigh l4l and Wood [sJ 
showed that in the diffraction of a monochromatic wave 
these anomalies occur at angles of incidence for which 
the condition 

d (cos 8 ± 1) = n'A, ( 1) 

is satisfied, where d is the period of the grating, e is 
the angle of incidence of the wave reckoned from the 
plane of the grating, ,\ = 21T/k = 21Tc/ w is the wavelength, 
and n is an integer number. It is easy to see that con-
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dition (1) determines the threshold for the occurrence 
of a diffraction spectrum of order n. 

Let us consider a plane homogeneous periodic grat­
ing with an arbitrary structure of the period. For sim­
plicity we regard the grating as reflecting, although the 
results obtained are easily carried over to the case of 
transparent gratings. We place the y axis along the axis 
of periodicity of the grating and the x axis parallel to 
its grooves. The wave falls on the grating from the 
half-space z > 0. Then the field above the grating can 
be written as a superposition of waves of the form 

¢n~ = exp [ iy( ky- z:n) ± iz[ ;: -( ky- ~~n rrJ ' 
n=O, ±1, ±2 ... (2) 

Such a superposition is possible because owing to the 
periodicity of the grating, the component of the wave 
vector along the y axis can only change by a multiple of 
2JT/d. Depending on the polarization of the wave, the 
functions 1/J~ can describe either the electric field com­
ponent Ex or the magnetic field component Hx. 

The functions (2) are undamped waves ("open reac­
tion channels") if the inequality 

kv- ,,, I c < 2rrn I a< kv + w I c (3) 

holds. For given values of w this inequality determines 
the number N of undamped harmonics, i.e., the number 
of open channels. Energy transfer of the electromag­
netic field at large distances from the grating can occur 
only in the open channels, which we number from n1 to 
nN. If a wave O'j 1/Jj-, n1 :s j :s nN, falls on the grating, 
where O'j is an arbitrary amplitude, then the field far 
from the grating has the form 

(4) 

where Rnj is the coefficient for the transformation of 
the j -th incident wave into the n-th reflected wave. The 
energy current carried along the z axis by the wave 1/J~ 
is proportional to the z component of the wave vector] 

(5) 

which is easily seen by taking Ex or Hx for 1/J and calcu­
lating the z component of the Poynting vector. 

Taking account of the orthogonality of the functions 
1/Jj, the condition for the equality of the incident and re-

flected energies can be written in the form 
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(6) 
jj'n 

Since the amplitudes O!j are arbitrary, we obtain the 
fundamental relation 

(7) 

where the summation goes over the open channels. The 
equality (7) expresses the unitarity of the S matrix. In 
particular, if only one (the first) channel is open, then 

JSuJ 2 = JRul 2 = 1. (8) 

Let us now consider the behavior of the elements of 
the S matrix near the threshold for the opening of the 
(N + 1)-st channel, where the quantity KN +lis small. 
Below the threshold the quantity KN +1 is pure imaginary 

and above the threshold it is real [cf. (5)]. Therefore, 
near the threshold the S matrix has the form 

s = So+ ia lxN+tl below threshold, 

S = So at threshold, 

S = So + a'XN+t above threshold. 

We note here that KN +1 = 0 at the threshold, which 
agrees with condition (1). 

(9) 

In order to determine the matrix a, we substitute 
each of these expressions in (7), keeping only terms of 
first order in IKN +11. This yields 

where 

SoSo+ = 1, 
(So+ ia JxN+tl) (So+- ia+JxN+t J) = 1, 

(So+ a'XN+t) (So++ a+xN+i) + BxN+t = 1, 

f 0 O• 
B;;• =-=-- RN+t,; RN+t, ;•. 

ix;x;o 

From this we obtain 

aSo+- Soa+ = 0, 

or 

aS0+= -BI2, Soa+ = -B 12. 

(10) 

(11) 

(12) 

(13) 

Since B is a hermitian matrix, one of these equations 
is a consequence of the other. Hence 

a= -BSol2. 

Substituting this relation in (9), we find 

S =So- ilxN+tiBSo I 2 below threshold, 

S = So- XN+tBSo I 2 above threshold. 

(14) 

(15) 

Taking the corresponding matrix elements and taking 
account of the connection between S and R [cf. (7)], we 
obtain the behavior of all transformation coefficients 
Rjj' near the threshold of a new reaction channel. Using 
(5), we easily see that all amplitudes and phases of the 
scattered waves near the threshold of a new channel 
characterized by the number j, have the form 

c,+c.[:,2 -(k"- 2d )']"'. (16) 

The constants C1 and Ca are determined by the structure 
of the scattering system and by the channel number. 
Examples of such behavior determined numerically for 
concrete systems, can be found in the figures of the 
work of Va.lnshte:tn. [1] 

It is easy to see that the consideration of the diffrac­
tion of waves incident on the open end of a waveguide 
would be completely analogous. The role of the small 
parameter KN +1 is in this case played by the propaga­
tion constant of the new wave along the waveguide. 

2. FRESNEL FORMULAS 

In order to illustrate our method by a sufficiently 
simple and exactly soluble example, we consider the 
diffraction and reflection of electromagnetic waves on 
the plane boundary between two uniform media. We 
choose the z axis normal to the plane of the boundary. 
The wave falls from a medium with dielectric constant 
E1 on the boundary with the medium with Ea. Supplying 
the quantities referring to the incident, reflected, and 
diffracted waves with the indices 0, 1, and 2, respec­
tively, we have for the tangential components of the wave 
vectors 

(17) 

and for the normal components 

(18) 

If kz 2 is real, the wave penetrates into the second med­
ium; if it is imaginary, we have the case of total in­
ternal reflection. 

According to our interpretation, there are two possi­
ble reaction channels in this case. The first channel 
corresponds to the reflected wave, the second to the 
diffracted wave, which opens, according to (18), for 
k~0 = w2 E2 /c2 (i.e., when the angle of incidence is equal 
to the angle of total internal reflection). 

Let us now consider the exact expressions for the 
Fresnel coefficients, restricting ourselves to the case 
where the electric field E is perpendicular to the inci­
dent plane: (e] 

E, = R10Eo, E2 = R..Eo; 

RIO=k,o-kz2, R20=~o-. (19) 
k,o + k,. k,o + k72 

If the second reaction channel is closed (kz pure imag­
inary) then IR1o I = 1 in agreement with (8). At the thres­
hold for the second channel (kz2 = O) the coefficients 
R1o and Rao are equal to 1 and 2, respectively. Near the 
threshold 

2k,. 
Rto= 1---, 

k,o 

I k,2) 
R•o=2 1-- . 

k,o (20) 

Without entering into a detailed analysis, we note merely 
that in this case all coefficients have characteristic 
root-type singularities [cf. (18)], and formula (20) is 
completely analogous to (16) obtained for a linear per­
iodic system. Since there exists an exact solution, the 
values of the Fresnel coefficients at the threshold are 
known in this case. 
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