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Stimulated bremsstrahlung due to scattering of relativistic electrons by ions in the presence of a 
monochromatic electromagnetic wave is studied. The case of strong laser radiation is considered. 
Under certain assumptions, expressions are obtained for the integral cross sections for stimulated 
emission of several photons. The asymptotic case of a very strong field is considered. Expressions 
are obtained for the differential cross section of the process integrated over the directions of propa
gation of the scattered electrons. 

1. A rather large number of recent papers (for exam
ple, (l-4J) are devoted to the study of the interaction be
tween free electrons and a strong radiation field. The 
urgency of problems of this type is connected with the 
rapid progress in the development of methods of gener
ating powerful coherent monochromatic radiation. 
Modern lasers produce fields corresponding to an en
ergy density I:<: 107 MW/cm2 (after focusing the laser 
beam). In many cases the interaction between charged 
particles and a field of such high intensity cannot be 
described with the aid of the customarily employed 
perturbation theory, and requires a more exact analy
sis. Stimulated bremsstrahlung produced upon scatter
ing of slow electrons by a Coulomb potential was con
sidered by Bunkin and Fedorov[4 J. In the present paper 
this problem is considered without being limited to the 
case of small electron energies and without any assump
tions concerning the smallness of the field. 

The possibility of considering a stimulated brems
strahlung effect which is not confined to the framework 
of perturbation theory is determined by the circumstance 
that in the semiclassical approach (classical description 
of the field and quantum-mechanical description of the 
electron) there are known exact wave functions of the 
electron in the field of a plane electromagnetic wave. 
These functions are exact solutions of the Dirac equa
tion. They were obtained by Volkov[5 J and are of the 
form 

[ kA J [ r (e(pA) e2A2
) J 'IJlv,(x)= 1 + e 2(kpJ u,(p)exp i) ds {kp)- 2(kp) + i(px) , 

(1) 

where PIJ. is a 4-vector whose components are the quan
tum numbers characterizing the state of the electron 
and coincide with the components of the electron 
4- momentum in the absence of a field, ur(P) is an ordin
ary bispinor satisfying the Dirac equation, All is the 
vector potential of the field, kll is its 4-momentum, and 
s = (kx). In the case of an elliptically polarized wave, 
A4 = 0, and A = a1 cos s + a 2 sins, where the vectors a1 
and a 2 are orthogonal to each other and also to the vec
tor k. Unless the choice of the coordinate frame is 
specially stipulated, we shall henceforth assume that 
the z axis is directed along the vector k, the x axis along 
the vector a1, and they axis along the vector ~-
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The probability of the transition of the electron be
tween the states defined by the functions 1/ipr, in scatter
ing by a Coulomb potential Ze2 I lx I, can be obtained in 
the first Born approximation. The probability or the 
cross section of the electron scattering process can, as 
usual [2 ' 31 , be represented by a sum of the terms 
da = J.;nda(n), which are characterized by changes of 
the zeroth component of the "quasimomentum" by an 
amount nw: 

_ _ e"(a12 + az2) k 
P,.- p,. 4(kp) ,., 

where w = lkl is the frequency of the electromagnetic 
field, n are positive and negative integers, and 

P1,2 = -m,2 =·-(m2+ 1/ze"(a12 + ar)). 

Using the usual computation procedures[61 we obtain, 
after summing and averaging over the polarizations of 
the electron in the final and in the initial state, the fol
lowing expression for the cross section da(n): 

where 

Z2e~ M 
dcr<n> = ---dp'tr(i'- ~ + nro), 

2v/K /K' q• 

'=Po, q = P' -P+nk, 

and the square of the matrix element M is given by 

1/~= IAI 2 (m2 + ee' + pp') + 2Re {A'B(ep' + e'p)} 
-IBI 2 (m2- ee' + pp') + 2 Re {(Bp) (B'p')}- 2Re {A*C· 

x(p.p'- p'zp)} -2Re {B;C(ep'- e'p)} 

(2) 

+ 2 Re {(B'C)} (ep'.- e'p.) + ICI 2 (es' + m2 (3) 
+ P.l.P'.L- p.p'.)- 2 Re {(Cp) (C'p')}. 

We have used here the notation 

( e2 (a12 +az2)ro2 ) e2 (~~:~2 -az2)ro2 

A= Fo 1 + 4(kp) (kp') +Fa 2(kp) (kp') ' 

B _ F e~~:~, z ( 1 + f ) 
x, v - - ro 1, 2-2- kp kp' , 

e2 (a12 + az2)ro2 e2(a12- az2)w2 
B - - Fo F3 ----''--"-----=:....:...-
•- 4(kp) (kp') 2(kp) (kp') ' 

Cx, y = -roF1,2 e~1'2 (k~ - k~'), C.= 0. 

(4) 

(5) 

(6) 

Finally, the functions Fo, F1, F2 , and F3 are determined 
by the expressions 
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1 2
" 1 } ( {F0,Ft,F2,F3} =- ~ ds e-ins+if<•>{1, cos s, sins, -cos 2s 7) 

2n 0 2 
where 

( a2p a2p1 ' ( a1p 8tP1 ) f.(s)= -e ----)coss+e --- sins 
kp kp1 kp kp1 ' 

e2 (a12 - a.2) I 1 1 ) . (8) + ----8-- \ kp- kp1 sm 2s. 

In the foregoing formulas, the vectors P and P' de
termine the quasimomenta of the electron in the initial 
and final states, p 1 and pj_ are their projections on the 
(x, y) plane, E =Po, and E' = p~. 

With the aid of a number of transformations, the ex
pression (3) can be reduced to the same form as used 
by Yakovlev[31 to write down the matrix element of the 
photoproduction of a pair. (The corresponding matrix 
elements are obtained from one another with the aid of 
the substitution PJJ. ~ -pw) 

The formulas simplify somewhat in the particular 
case when the field has circular polarization (a1 = a2). 
With this, in accord with (7) and (8), the functions Fo,1,2 
are expressed in terms of Bessel functions of order lnl 
and their derivatives, and the function F3 drops out from 
the expression for the matrix element (for details 
see[31 ). 

The differential cross sections da(n) (Eq. (2)) can be 
interpreted as determining the probability of electron 
scattering in a definite direction, with a change of energy 
by a definite amount. The quantum-mechanical mean 
value of the electron energy in the state (1) is deter
mined by the expression 

< 8 ) w2e2 [ e2 (at2 - az2 ) 2 J 
E = ljlpr+iat1Jlpr = fS + 2fS (kp)' (pat)'+ (paz)'+ 32 

w3ee2a1a2 
---- (upr+(1- az)~ziUpr), (9) 

2[£ (kp) 2 

where O!z and ~z are ordinary spin matrices. The aver
age energy E coincides neither with the quasienergy ¥1 
nor with the free-electron energy E, and is connected 
with them by a very complicated relation. We can use 
as a simpler energy characteristic of the electron the 
quantity E, assuming that the field decreases very slowly 
as lxl ~ 00 • The quantities E and p determine in this 
case the energy and the momentum of the electron at 
infinity. At a fixed value of the quasienergy and a fixed 
direction of electron motion at infinity, the electron en
ergy E is given by 

4(e -l'e2 + m2 c{)S Bo) (r£- e) = e'(a12 + a2~), (10) 

where cos Bo = Pz/lpl. 
As shown by Yakovlev[31 , the number of real solu

tions of this equation can differ and depends on the 
values of the parameters contained in it. Both the aver
age energy E and the "energy at infinity" E differ from 
the quasienergy r£ and depend, for a specified value of 
the quasienergy, on the direction of propagation of the 
electrons. Therefore, when an electron is scattered by 
a Coulomb potential and the quasienergy is changed by 
an amount nw, its energy can be different and depends 
on the direction of motion of the scattering electron. 

Thus, the energy spectrum of the electrons scattered 
in each given direction is always discrete. But if we are 
interested in the integral effect summed over the propa
gation directions of the scattered electrons, then at each 
value of the quasienergy (i.e., for each n) the electron 

spectrum comprises a certain band. With increasing 
field, the bands corresponding to different n can over
lap, and consequently the energy spectrum of the scat
tered electrons becomes continuous. The condition for 
the width of the energy bands to be smaller than the dis
tance between them is 

( ea)' p1 

- -<1. 
m 2w 

(11) 

If this condition is satisfied, then the energy of the scat
tered electrons is almost isotropic, their energy spec
trum differs little from a discrete spectrum, and the 
integral cross sections a(n) determine the scattered
electron energy distribution function. Since the condition 
(11) is in practice always more stringent in the optical 
frequency region then the condition ea << m, under which 
the difference between the energy E and the quasienergy 

fS is small, the cross sections a(n) are in this case the 
cross sections for emission (when n > O) or absorption 
(when n < O) of In I quanta. 

In the case when (ea/m)2p' /2w ~ 1, the interpreta
tion of the differential cross sections (2), as well as of 
the cross sections integrated over the azimuthal angle cp 
of the momentum p', remains the same. Together with 
(10) these cross sections determine the distribution 
function with respect to the energies of the electrons 
scattered in a given direction or at a specified angle to 
the z axis. But the meaning of the integral quantities 
changes in this case. For each E' and n the conservation 
law in (2) determines the electron motion direction, i.e., 
cos e = p~/lpl, 

1 ( e2 (at2 + a.2) ) 

cos e .. = PI 81- 4(fS- nw- el) ' (12) 

The distribution with respect to the energies of the 
electrons scattered in all the directions is determined 
by the differential cross section 

zn 
Z2e4 (at2 + az2)"' 1 rd M I ld I dCJ = . LJ J <p- e e . 

SvfS n (.W - nw) (fS- nw- 81 ) 2 0 q• cos 6=cose,. 

(13) 
The sum extends over those values of n, which are de
termined by the inequalities 

1 e2 (a,'+az2) 1 e2 (at2 +a.2 ) 

fS-e- 4(e'+p') ;;;.nw;;;. fS-e- 4(e'-p') . (14) 

2. The calculation of the integral cross sections a(n) 
is meaningful in the case when condition (11) is satis
fied. If at the same time the frequency of the field w is 
much lower than the kinetic energy of the electron, 
w << p2/E, which corresponds to the cases realized in 
practice, then the electron can both absorb and emit 
energy. The total effect is determined by the total cross 
section for the emission of n photons, o(n) = a(n)- a(n) 

T e a 
where a(n) = a(n) and a(n) = a(- n) are the cross sections 

e a 
for the emission and absorption of n quanta; n > 0. 

Integration of the cross sections (2) over the direc
tion of motions of scattered electron can be performed 
analytically only in certain particular cases under 
definite assumptions concerning the magnitude of the 
field and the initial state of the electron. From the point 
of view of the role of the nonlinear effects we can dis
tinguish between three regions of field values: ea << w, 
w << ea << m, and ea >> m. 



BREMSSTRAHLUNG EFFECT ON RELATIVISTIC ELECTRONS 781 

The region ea « w is the weak-field region. In this 
case the functions Fi (Eq. (7)) can be approximated by 
the first terms of the expansions in powers of the field. 
The corresponding results are those obtained by ordin
ary perturbation theory. The small parameter which 
determines the field and with respect to which the ex
pansion is carried out is (ea/w)p/m. On going over to 
relativistic energies, the critical field at which pertur
bation theory ceases to be valid decreases compared 
with the case of slow electrons [41 • The stimulated 
bremsstrahlung of one photon in a weak field was inves
tigated earlier[71 • The multiquantum-process cross 
sections a¥?-), as well as the corrections to the cross 

section a¥>, are in this case very small 

(n) (I) ( ea P )"n 
CJT .....vaT -- • 

ro m 

The case w << ea << m is of greatest interest, since 
these are precisely the conditions corresponding to 
fields that can be obtained with the aid of modern lasers. 
The inequalities presented for the amplitude of the vec
tor potential correspond to the following limitations on 
the energy flux density I: 

5·107 W/cm2~/~ 1o•s W/cm2 

Condition (11) can be satisfied simultaneously with 
the requirement ea >> w, provided the electron energy 
is such that pw << m 2 • Owing to the smallness of the 
frequency (w « m) in the optical region, this inequality 
is satisfied for practically all electron energies obtain
able in laboratory conditions. 

Let us consider in greater detail the case of a field 
of linear polarization, a1 = a and a 2 = 0, assuming the 
conditions w « ea « m and (ea/m)2p/w < 1 are satis
fied. Under these assumptions, the quasimomenta of the 
electron PJ..L and PM differ little from its momenta PJ..L 
and p~. The matrix element M is determined by the 
functions Fi> which reduce in our case to an expression 
of the type 

1 ... 
F0 =-) dsexp{-ins+i(asins+jlsin2s)}, 

2:Jt 0 

a = ea ( Px _ Px1 
) 

.kp kp1 .' 

-~(.!_ __ 1) 
~- 8 kp kp1 • 

(15) 

By virtue of the assumptions made concerning the 
magnitude of the field, the parameters a and f3 satisfy 
the conditions Ia I » 1 and Ia I » lf31 everywhere except 
in a aarrow region of directions of the vector p'. This 
makes it possible to use the saddle-point method to 
calculate the functions Fo. It also shows that the asymp
totic form of the functions (15) differs little in this case 
from the asymptotic form of the Bessel functions Jn(a). 
The additional saddle points are located far from the 
real axis and make an exponentially small contribution 
~ exp(- a 2/lf31). The principal saddle points experience 
a small shift. This leads to small corrections to the 
asymptotic expression for the functions Fo compared 
with. the Bessel functions, and also to a change in their 
oscillatory dependence. The inequality Ia I » lf31 can be 
violated only in a very narrow region of angles, when 
lad« 1. 

1!t is easy to see that in the nonrelativistic case 
(p « m, p' « m) the expressions (2) and (3) lead to 

previously obtained results [4 1 the stimulated brems
strahlung effect on slow electrons. 

By virtue of the smallness of the parameter ea/m in 
the region Ia I» 1, expressed (3) for the matrix element 
M can be reduced to the following simpler form 

8 ( :1t :1t 4jl2 \ ( 
Mn =-;:!" (m2 + ee1 + p,pz') lal-•cos2 a- n2--4-~)' 16) 

In the region 1 » I a I when In I = 1 we can obtain for 
the matrix element M the expression 

ae [ ( 8
1 + pz') { e + p, )] M±1 =a"(m2 +ee1 +PP1)±a2 Px 1+ e-p, +Px' ,1+ e1 -p, (17 . 

e2a2 [ e' + p 1 e + p 2 J +-8 --'+-,--- ;--(- )(I I) (m"+pypy'-p,pxl) . 
e-p, e -p, e-p, e -p, 

In the case In I> 1 in the region Ia I« 1, obviously 
Mn ~ (ea) 2 1nl, but the corresponding formulas become 
more complicated. 

The contribution to the integral cross sections a(n) 
from the region with large values of the argument 
Ia I> 1 can be estimated by using the representation 
(16) for the matrix element, averaging the integrand 
over the rapid oscillations, and going over in the inte
gration with respect to the angles to a coordinate sys
tem (1, 2, 3) in which the axis 2 coincides with they 
axis, and the axis 3 lies in the (xz) plane and makes an 
angle cos[1 + (E- Pz) 2/p~r112 with the z axis. In the 
general case this leads to very complicated formulas. 
The corresponding contribution to the cross sections 
a(n) is as a rule ~(ea/w) 2 • An exception is the case 
when the value Px/( E - Pz) is close to its maximal value 
p/m 

P2 Px2 (t) P 
-----~----. 
m• ( e - p,)' ea m (18) 

In this case the contribution to the cross sections a(n) 
from the regions of large values of the argument Ia I 
» 1 will be~ ea/w. 

The contribution to the cross sections a(n) from the 
region Ia I « 1 will be ~ (ea/m) 2 1nl. In the general case 
it is therefore necessary to take into account in the 
calculation of the cross sections a<±l> all the regions, 
and the cross sections a(n) with lnl > 1 are determined 
essentially by the region Ia I » 1. The total cross sec
tion aT = 'Ena~) is determined by a large number of 

terms, and processes with absorption (emission) of 
several quanta are important. On the other hand, if con
dition (18) is satisfied, the cross sections of lower 
order are determined by the region Ia I « 1. Calcula
tion of the cross sections a~ >a with the aid of expression 
(17) yields in this case ' 

Z2 • ( )" 2 <•' :1t e ea e { ( 2 + ")"=F 2 ( 2 + ")} Oe,<l ~ - - 4-- m2p2m6 e m eoo e m , 

(ll nZ"e•(ea) 2e2 (e2 + m2) 
a,.""'- . - rop2m& 

(19) 

(20) 

The higher-order cross sections are small in this 
case, a~)~ (ea/m)<2n- 1 >a~>. At sufficiently large n, 

when (ea/m) 2 <n-l> ~ (w/ea)(m/w)3 , the cross sections 
are determined essentially by the region of large values 
of the argument and their order of magnitude is 

(21) 
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Thus, in the considered case when w << ea « m and 
ea « m(2w/p)112 , deviations from perturbation theory 
occur essentially in the cross sections for the emission 
and absorption of several photons. In the case when 
condition (18) is satisfied, the higher-order cross sec
tions remain small as before, but the smallness parame
ter is changed. The character of the field dependence of 
the total cross section oT remains unchanged, oT ~ (ea) 2 • 

3. If inequality (11) is not satisfied, then it is mean
ingful to consider the stimulated bremsstrahlung effect 
from the following two points of view. First, it is of 
interest to determine the cross sections cto(n) and 

T 
do (n) - do (n), integrated over the azimuthal angle cp, 

e a 
which defines the vector p' at a specified value of the 
angle e. Second, the question arises of calculating the 
differential cross section ( 13), which determines the 
energy distribution of the scattered electrons regardless 
of the propagation direction. We shall henceforth bear in 
mind only the second problem and confine ourselves to 
the case of a very strong field ea >> E, ea » E'. 

In this case, for practically all scattered-electron 
energies, the number of terms in the sum (13) is quite 
large. This makes it possible to go over from summa
tion to integration, and leads, with allowance for ( 12), 
to the following expression for the differential cross 
section: 

Z 2e4 p' e' de' 1 M 
da= ----J do--,, 

2vfC "' q'fC 
(22) 

where do is the element of solid angle in the direction of 
the vector p'. The possibility of going over to integra
tion in the sum over n presupposes also that the depen
dence of all the functions on n becomes sufficiently slow. 
This makes it necessary to exclude from consideration 
in such an approach a certain region of scattered-elec
tron energies near the value E' = E, since the quantity 
q-4 can become infinite when E' = E. The corresponding 
limitation can be written in the form 

(23) 

With increasing field, the energy region excluded in 
this manner becomes very narrow. 

The matrix elements M in the strong-field approxi
mation in the form 

(ea)' ' M= ----- --IFo+2F31· 
S(e- p,) (e'- p,') (24) 

Calculation of the functions Fi (15) becomes much 
simpler if the parameter {3 does not vanish. Such a 
situation occurs at sufficiently low energies of the scat
tered electron 

, (e-p,)'+m' (25) 
E < . 

2(e- p,) 

In this case the parameters a and {3 are such that lf31 
» Ia I and lf31 » 1. This makes it possible to use the 
saddle-point method. All the saddle points lie on the 
real axis. For the functions F 0 , the following asymptotic 
representation hold: 

Fo~(Znl~l-);;;{ws[P+ ~-n~-: sgnp] 

(26) 

The integration in (22) can be performed if the 
rapidly oscillating terms in the integrand are neglected. 
This makes it possible to write for the cross section 

3·25Z2e4 
da = --"- p' e' de' ( e- p,) 

ue2a-

r (e'- p,')[ (e'- p,'- e + p,)' + pj_'+ p'2 - p,'2] 

XJdx I' , +I 
-1 B - Pz - e Pz 

1 

where p~ = (p'x). 
This integral can obviously be calculated exactly, 

(27) 

but in the general case the formulas are quite cumber
some. We confine ourselves therefore to the case when 
the direction of initial electron momentum is sufficiently 
close to the z axis: 

P.L'<Z (e'- e + p,)' + p''. 

As a result of integration of (27) we get 

3 · 2°Z2e4 p' e' de' ( e - p,) [ I m2 - ( e - Pz )'I 
da = ~e~(e' _::-e-+P,Y2-:=--p'2]2 2 (e'- e + p,)' :__ p'' 

+ e - p, In~~=- e + p:_i- p') 'l 
p' (e.'-e+p,)'-p'' _· 

(28) 

If the energy of the scattered electrons does not 
satisfy the inequality (25), then the parameter {3 can 
vanish. In this case it is necessary to estimate the con
tribution made to the integral (22) by different regions. 
The contribution of the region lf31 > Ia I can be estimated 
by using the asymptotic representation (26). In estimat
ing the integral ( 27) it is necessary to take into account 
the fact that on approaching the point {3 =' 0 the integrand 
increases rapidly, making it possible to retain in the re
sults only the logarithmically large terms. The region 
lf31 < Ia I breaks up under the condition 

~ (e- Pz)<iP'2 - (e- Pz- e') 2 
ea 

into two subregions defined by the inequalities Ia I > 1 
and ial < 1. The contribution of the first subregion may 
not be small if the condition 

~ (e- p,)<"YP'2 - Px2 - (e'- B + Pz) 2 

ea 

is satisfied. If in addition we assume satisfaction of the 
inequality 

(IJ ------

- (e- Pz)< liP'' -(e'- B + p,)'- Px' -- PYI, 
ea 

which makes it possible to regard the function q-4 as 
sufficiently smooth, then the contribution of the region 
Ia I> 1, Ia I> lf31 can be estimated by using for the 
functions Fi the asymptotic form of the Bessel functions 
Jn(a) for large values of the argument and retaining the 
logarithmically large quantities. Taking all the foregoing 
into account, the cross section dO' (22) can be represented 
in the form 

3 ·24Z2e4 (e- p,) 2e'de' { 6 [p1_2 - (e'- e + p,)'+p'2]_ 
da= ------·-- -----'-l--------

v(ea)' [p1 2 + (e'- e + po)'- p'2P 

eap' ( p'' - ( e' -- e + p ) 2 )'/, 
X~ + z 

(e- p,)yp'2 - (e'- e + p,) 2 p'2 -(e'- e + p,)'- p,2 

(29) 
eaip'2 -(e' -- e + p,) 2 

X(fp'2 -(e'-e+p,) 2 -p/-py}-<Jn -
ffi(e- p,) 
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The conditions presented above, under which expres
sion (29) is valid, are satisfied in the strong-field ap
proximation everywhere with the exception of small 
regions of the initial momentum and the final energy of 
the electron. If one of these conditions is not satisfied, 
i.e., the region I a I < 1 is missing or the contribution of 
the region I a I > 1, I a I > I f31 is small, then the second 
term in expression (29) should be discarded, for then 
the cross section da is determined exclusively by the 
region 1/31 > lal » 1. 
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