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A model is considered in which the interaction has the form of a bilinear term involving derivatives. 
Such an interaction can be solved exactly, but specific difficulties arise owing to the presence of the 
derivatives, which consist in determining the correct ordering of the differential operators which oc­
cur in complicated expressions. 

1. INTRODUCTION 

A general discussion of the S-matrix within the axiom­
atic framework leads to the conclusion that the arbi­
trariness involved in extending the S-matrix off the 
energy shell consists in the freedom of choosing the 
renormalization constant multiplying the propagator [l]. 

Such a renormalization of the propagator can be natur­
ally interpreted as a renormalization of the Heisenberg 
field (or current) by a factor which is the square root of 
the renormalization constant of the propagator. But 
from perturbation theory we know that the field strength 
renormalization is achieved by means of introducing 
into the interaction Lagrangian terms which involve 
derivatives of the fields [a]. From the point of view of 
the axiomatic approach this means that the coefficient 
functions of the Wick polynomial in terms of which the 
S-matrix is represented, or the vacuum expectation 
values of the functional derivatives of the S-matrix, 
must contain, in the case of a scalar field, Klein-Gordon 
differential operators. 

On the other hand, it is usually assumed that the in­
teraction Lagrangian (in renormalizable theories) does 
not involve differential operators, and this fact simpli­
fies the situation considerably. Indeed, in this case a 
hermitian Lagrangian always leads to a unitary 
S-matrix, the Dyson T-products coincide with the Wick 
T-products, etcYJ. This means that the renormaliza­
tion of the field operators perturbs this simple situa­
tion, and we run into all the complications implied by 
the presence of derivatives in the theory. 

In the usual perturbation theory this question is not 
simple either. Thus, for instance, in considering the 
renormalization of external lines one encounters an ex­
pression of the type 

rp'(k)=<p(k)+(Z-1)-- 1 . (k•-m•)<p(k) 
k2-m2 -!s ' 

which contains a well-known indeterminacy: the wave 
function cp(k) effectively contains a delta function 
ll(ma- k2), therefore, it would seem that the second 
term is either zero or (Z - 1)cp(k), depending on the 
"order of operation": 

1 ( 1.1) 
(Z-1) . (k•-m2)6(m•-k•) 

k2-m2-!s 
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1 
(Z-1) . [(k•-m')6(m'-k')]=O 

k2 -m2 -!e 

(Z-1) [ 1 . (k'-m2)]6(m•-k•)=(Z-1)6(k2-m2) 
k2 -m2 -!s 

The first alternative implies cp' = cp, the second one im­
plies cp' = Zcp. For selfconsistency of the renormaliza­
tion procedure it would be necessary that cp' = Z 112cp. 
This should be obtained as a result of summation of all 
terms of the perturbation expansion and a ''correct 
application" of the hypothesis of adiabatic switching off 
of the interaction r4J. 

A formulation of rules of handling integrals involving 
derivatives of delta functions, constituting the equivalent 
in axiomatic theory of the adiabatic hypothesis of per­
turbation theory, was given in [sJ. It consisted in requir­
ing that an integral involving a Klein-Gordon operator 
acting on a delta function, in the case that the functions 
cp1 and cpa do not decrease sufficiently fast at infinity, 
should be given the following interpretation: 

~ dx1dx2<p!(x1) (-Kx,)6(x1 - x2)<pz(x2) 

(1.2) 

where -Kx =-Ox+ rna. In solving problems arising in 
a theory with derivatives these rules should be applied 
repeatedly in the complicated expressions arising in 
iterative solutions. Therefore, our aim will be, first of 
all, to derive algorithms which operate automatically. 
Making use of these rules we show how the whole prob­
lem of renormalization of the field operators can be 
handled, resorting to methods from both perturbation 
theory and the axiomatic approach. As a result we ob­
tain a consistent treatment of this problem in which the 
results can be exhibited in closed (summed) form. 

As a start we consider a model problem in which the 
only interaction is the ''interaction" which leads to the 
renormalization of the Heisenberg field operator. This 
is in fact a model of a quadratic interaction, and there­
fore its perturbation theory is simple in the combina­
torial sense, since the interaction vertices correspond­
ing to this model have only two lines each. Owing to 
this circumstance all perturbation expansions can be 
summed and yield final results in closed form. 

The problem turns out to be nontrivial only owing to 
the presence of derivatives in the interaction Lagran­
gian. Thus, in this model the combinatorial complica­
tions of perturbation theory are separated from the 
difficulties related to the presence of derivatives, and 
it is the latter category that will be investigated here in 
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"pure form." 
Summing up, one can say that the renormalization of 

the field operators is technically complicated because of 
the need to take into account at all times the presence 
of derivatives, and therefore the rules for handling 
integrals are not quite usual. As will be seen, all re­
normalization constants have in fact operator character 
(in the classical sense of differential or integral opera­
tors), and are not numerical, and only under special 
conditions can they be replaced by numbers. 

We solve the equations of motion in a definite model 
and determine the Heisenberg field and current opera­
tors. In particular, we discuss the problem of the well­
known difficulty involving the so-called integrability 
condition: 

6j(x) - 6j(y) = iU(x),j(y)]. 
6cp(y) 6cp(x) (1.3) 

The difficulty consists in the fact that this condition 
must hold both for the renormalized and unrenormal­
ized theories. But in the usual approach to renormaliza­
tion, the current operator is multiplied by a factor Z112, 

and this leads to a contradiction with (1.3), where the 
left hand side is linear in the current, whereas the right 
hand side is quadratic. 

2. DESCRIPTION OF THE MODEL 

It is known that the quasilocal terms in the interac­
tion Lagrangian of the scalar theory which lead to the 
renormalization of the field operator will have the fol­
lowing form (according to perturbation theory [2J): 

1/.{Z -1) (-K-.}6(~1- ~): cp(~i)'I'(S2): 

We consider a model in which this term will be the 
only interaction term. According to the rules of per­
turbation theory the corresponding S-matrix should be 
written in the form 

S= Tn·exP{- ~ (Z-1) 5 d~1d~ (-K,,)c5(~1 - ~):<p(~1 )cp(~):}. 
(2.1) 

Here the operator (-K~) which acts on a(~l- ~2) should 
be understood in the serise of the rules for handling such 
integrals formulated in the preceding section. 

The S-matrix (2.1) is causal because the Lagrangian 
is local. This S-matrix does not lead to a real interac­
tion of the particles, a fact which will become clear from 
the structure of the Heisenberg field and current opera­
tors. 

We define the current j(x) according to our usual 
rule[6J: 

6S 
j(x)= i--S+. (2.2) 

6cp(x) 

Since we are in possession of an explicit expression for 
the S-matrix, the functional derivative can be computed 
and yields for the current 

j(x) = (Z -1)Tw { ~ dx1 (- Kx,)li(x- x!)rp(x1)S }s+. (2.3) 

Making use of the definition of the Heisenberg field 
operator 

A (x) = Tw{rp(x)S}S+, (2.4) 

we rewrite the expression for the current in the form 

j(x)=(Z-1) ~ ds(-K,)II(x-~)A(~). (2.5) 

We introduce a special notation for this integral opera­
tor 

(2.6) 

Then 
" j(x) = (Z -1) (-K6)A(x). (2.7) 

This expression of the current in terms of the field 
(in the present case as a linear transformation of the 
Heisenberg field) is the dynamical coupling, which is 
true only due to the definite model chosen by us. This 
is the dynamical principle of our model. 

In addition to this relation between field and current 
we have another relation given by the Yang-Feldman 
equation, and which is not at all specific for the model 
under consideration, but, on the contrary, is valid for 
any theory: 

A(x) = rp(x)-) drj)•<lv(x _ Pi(s). (2.8) 

Introducing again an integral operator 

fJ•d•f(x) = 5 d~D•d•(x-s)f(s), (2.9) 

we can rewrite the Yang-Feldman relation in the form 

A(x) = rp(x) _!Jad•j(x). (2.10) 

Thus in our model we have two equations which express 
the current and field in terms of the free field cp(x). 
These equations form a closed system, and by solving 
them one can express A(x) and j(x) in terms of cp(x). 

Indeed, substituting (2. 7) into (2.10) and defining yet 
another integral operator 

it(x) = 5 ds,d1;2Dad•(x- st) (- K,,)ll(1;!- s2)/(~). (2.11) 

we obtain directly 

A(x) =<p(x)- (Z-1)iA(:r). (2.12) 

This equation can be solved formally: 
1 

A(x)= , <p(x). 
1-(1-Z)L 

(2.13) 

Such a solution involving an inverse operator should, 
of course, be interpreted as the sum of a power series 

A(x)= ~(1-Z)•L~cp(x). (2.14) 
\1=0 

This circumstance relates the model under considera­
tion with perturbation theory. 

We note now that the operator f. involves derivatives 
of the delta function. In forming powers of f. which oc­
cur in the expansion (2.14) we shall have to make use 
repeatedly of the rules for handling such integrals 
formulated in the preceding section (this has the mean­
ing of an "adiabatic method"). For this reason the 
rules must be formalized to such an extent as to make 
their application as automatic as possible. 

In order to achieve this we introduce one more integ­
ral operator 

ft(x)=) d1;c5(x-1;)/(1;). (2.15) 

This is the identity operator so long as the expression 
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is not subject to differentiation, but we need the opera­
tor in order to define correctly the order in which the 
differential operators act. The meaning of this operator 
is easily illustrated on the following simple example. 
We consider a <p(x) such tpat (-K~cp(x) = 0, and try to 
find the meaning of (-Kx)I<p(x). According to the rules 
of the preceding section 

(-Kx)I'P(x)= sd~(-Kt)ll(x-~)'P(~)==(-Kb)'P(x) (2.16) 
= 1/ 2 (- K,qJ(x)) + 1/,qJ(x) (- Kx) = 1/,,p(x) (- Kx)· 

The free differential operator in the right hand side 
must act on the test functions or on other functions of 
the same variable if (-Kii) cp(x) is one of the factors in a 
more complicated expression. Thus, here f is no longer 
the unit operatoro The reason for this lies, of course, 
in the fact that one of the integrations can no longer be 
removed by means of the delta function, before taking 
care of the action of the differential operators. 

The operator f which has been introduced looks 
somewhat artificial, since it is expressed in terms of a 
delta function, which itself is defined only as a general­
ized function, associating to each (admissible) test func­
tion its value at the point where the argument of the 
delta function vanishes: 

S f(x) ll(x- a)dx = f(a). 
A 

The artificial character of the rules of operation with I 
is caused by the fact (this is explained in detail in [sJ) 
that we have written this operator in a limiting form 
which has only symbolic meaning, namely the meaning 
described by the rules of operation. If we would carry 
out all reasonings making use of smooth cutoff func­
tions, no doubts would arise as to the significance of the 
operator f, but this would complicate all calculations 
considerably. 

There are some important relations among the dif­
ferential operators that have been introduced, and we 
shall make use of these relations. Two relations follow 
directly from the definitions. These are 

(-f!)I = f( -If) =:(-£b), 

[Jadv (- Kb) 2 £. 

(2.17) 

( 2.18) 

In addition, the properties of the function Dadv imply 
that 

(-f5)JJadv =: D"d"(-ff) = J, 

and finally, according to (1.2) 

(2.19) 

(X} (-Kb) {Y) = 1/. {X}(- !HY} + 1/.{X}(- f5){Y}. (2.20) 

Making use of these relations we can transform 
powers of the operator L. Indeed, 
iN(x) =from (2.18) = Ln-1 lJadv (- i6) f (x), 

=from (2.20) = r;,£n-lfladv (-/f)/ (x) + 1!zLn-1fladv(-!fl f (x), 

=from(2.19J = 1j,Ln-1Jf(x) +1f2L"-1 Dadv (-~)f(x). (2.21) 

Noting that a lowering of the power of the operator L 
leads to the appearance of powers of the operator f, we 
compute the general expression 

£m jkj(x) = £m-1 lJadv ( _ Kb) jHj(x) 

= r;,£m-ljk+If(x) + r;2£m fk-1f(x). 

(2. 22) 

These expressions have the form of recursion relations 
for the quantities H(m, k) = :Cmfk with respect to the 
two discrete variables m and k. For solving these re­
cursion relations it is convenient to reduce them to the 
form of a difference equation of the diffusion type, equa­
tion which can be solved by means of Green's functions, 
since unlike the differential equation describing diffu­
sion, the difference equation has characteristics. (The 
reason for the latter circumstance consists in the fact 
that the binomial coefficients used in constructing the 
Green's function of the equation with finite differences 
vanish for finite values of their variables, in distinction 
from the Gaussian function.) Following this procedure 
we are led to the following fundamental formula for the 
operator {1- (1- Z)Lr1 : 

1 1 
1-(1-Z)l/(x)= 1-(1-y:Z)i/(x) 

+(1- ,rz) 1 J)adv 1 (-K/( )) (2 2 ) 
r 1-(1- yZ)I 1-(1- yZ) I x · • 3 

Making use of this formula, we now proceed to dis­
cuss other aspects of our model. 

3. THE HEISENBERG OPERATORS OF THE MODEL 

The field operator. Equation (2.23) is already a solu­
tion of the fundamental equation for the Heisenberg field 
operator. Since the operators entering this equation will 
be encountered repeatedly, we introduce for them the 
special notation: 

f1 = {1-(1-fZ) Jn 
J.adu = N j)adv N. 

In this notation Eq. (2.23) takes the form 

{1-(1-Z)Lr1 f(x) = Nf(x) + (1- yZ) 3."d"(-Kxf(x)). 

(3.1) 

(3.2) 

(3.3) 

Thus the Heisenberg field A(x) can be written in the 
form 

(3.4) 

We stress the fact that A(x) contains two different 
parts: the first term does not vanish on the energy 
shell, whereas the second one does. If A(x) is not sub­
jected to further differentiations we can set all opera­
tors f equal to one. Then the field A(x) becomes a sim­
ple function of the field <p(x): 

1 1-yZ 'ad• 
A(x)=vz'P(x)+ y-D (-K<p(x)). 

On the energy shell the fields A(x) and cp(x) differ 
only by the renormalization factor z-112, but off the en­
ergy shell they differ, in general, by the additional term. 
It is to be noted that the part of the field A(x) associated 
with the energy shell, and the part associated with the 
exterior of the shell are subject to different renormal­
izations. 

It is easy to see that if we do not distinguish between 
the different orders in which the operators act, and 
carry over the action of, say, (-K) in the second term 
from the field <p to the function Dadv, we would obtain 
the result that the field is renormalized with the constant 
z-I_ On the contrary, if the action of the operator (-K) 
in the first term in the derivation is carried over to the 
field <p we are led to the conclusion that on the energy 



770 B. V. MEDVEDEV and M. K. POLIVANOV 

shell the fields A(x) and cp(x) are equal. Thus, if one 
does not distinguish the order of action of the operators 
(which is here automatically taken into account via the 
rule (L2) and the operator f, (2.15)) we would be led to 
the alternative which was discussed in the introduction, 
in connection with Eq. (1.1). 

We also remark that A(x) locally commutes with cp(x) 
and therefore these two fields belong to the same 
Borchers class l7l. This agrees with the fact that our 
modelS-matrix differs from the identity operator only 
outside the energy shell. 

The current operator. Making use of the expression 
for the operator A(x) we can now determine the corre­
sponding current operator j (x), utilizing the fundamental 
formula (2. 7). For this we shall need to determine the 
action of the operator (-K6) on N. We first remark that 
according to (3.4) and (2.20) 

( -K!i)I/(x) = 'M/(x) ( -Kx) + 1/2( -K)lf(x) 

= 'J.lf(x) ( -Kx) + 1/2( -fa)t(x). (3. 5) 
~ ~ 

But acc~r2di,!l$ to the definition ~f N '.we l_l.ave N - 1 
= (1 - Z 1 )IN. Therefore, cons1dermg Nf(x) as a new 
function, we find, according to (3. 5) 

(-KlJ)T{Nf(x)} = 'MNJ(x) (-Kx) +'1•(-KlJ)Nf(x). (3.6) 

and then we let the operator (- Ko) act on (3.6). 
ing out the computation, we obtain 

/'., A 1 {A } (-Ko)Nf(x)=--- Nf(x) (-Kx) + (-Kf(x)) . 
1+1Z 

Carry-

(3. 7) 

With the aid of this formula we easily compute that 

j(x) = -(1- yz)N{<p(x) (-Kx) 
+ (-K<p(x))}- (1-l'ZJ 2!1'adv(-Krp(x)) (-Kx). (3.8} 

It can be seen from (3.6) that in the same manner as 
the field, the current operator contains terms which 
vanish on the energy shell, as well as terms which do 
not vanish there, and the powers of the renormalization 
constant for these terms are different. We note that the 
current operator contains "free" Klein-Gordon opera­
tors. Since the current is a generalized function, this 
is not at all surprising. Any generalized function has to 
be interpreted in the sense of being integrated with 
functions belonging to the class of test functions, on 
which these operators are supposed to act. This is a 
consequence of the symbolical notation adopted by us. 

We now compute the current commutator [j(x), j(y)]. 
We note that as a consequence of the exact equation 
(-ISJD(x- y) = 0 only terms which do not vanish on the 
energy shell contribute to the commutator of the cur­
rents, i.e., only the first term in (3.8) contributes. 
After this remark it is easy to see that 

[j (x), j(y)) = -i (1-l'Z) 21(x- y) ( -_Kx) ( -:Ku). (3.9) 

We also verify that our current, when substituted 
into the Yang-Feldman equation (2.10), leads to the same 
expression (3.4) for the field. Indeed, 

A(x) =rp(x) _[Jad•j(x) =<p(x) +Dadv{(1-y".Z)1V[<p(x)(-Kx) 
+ (-K<p(x))] + (1-y".Z)2Aadv(-K<p(x)) (-Kx)}. 

(3.10) 

The free operators (-Kx) acting on :Dadv yield f, and 
making use of (3.6), we see in the right hand side we 
again obtain the expression (3.4). 

Applying the operator (-K) to the Yang-Feldman 
equation we obtain 

(-KA(x)) = (-K<p(x)) -Tj(x). (3oll) 

This is exactly the form of the Klein-Gordon equation 
for our model. The usual Klein-Gordon equation 
(-KA(x)) = j(x) is generally not valid in this case. It 
will be satisfied only if we return to the energy shell, 
setting (-Kcp(x)) = 0, and in addition requiring that 
f = 1, i.e., if one renounces the possibility of taking 
further variations and differentiations. 

One should not be surprised by this circumstance­
after all we are interested in an off-shell theory for 
which the usual equations of motion should not be expec­
ted to hold. Indeed, for the free field the fact that 
(-Kcp(x)) = 0 (the free-field limit of the equation 
(-KA(x)) = j(x)) does not hold off the energy shell is 
tautological to the words "outside the energy shell." 

4. THE INTEGRABILITY CONDITION 

We now consider the integrability condition (1.3) for 
our model. The retarded operator is defined as the 
functional derivative of the current 6j(x)/ o<p(y). Causal­
ity guarantees that this operator is retarded, i.e., that 
it vanishes in the future cone. 

Since we are in possession of a complete expression 
for j (x), we can construct an explicit expression for the 
retarded operator-the only thing being required is cau­
tion. According to the rules for variation of a functional 
which has the form of an integral over field operators 
multiplied by appropriate coefficient functions, one 
should successively eliminate one operator at a time, 
suppressing the corresponding integrations, and replac­
ing in the coefficient functions the coordinate of the 
eliminated field operator by the coordinate of the field 
with respect to which the functional derivative is taken. 
At the same time it is important that the expression 
subjected to variation should not contain derivatives of 
the fields. All derivatives should first be transposed 
onto the coefficient functions. Then the operation of 
taking functional derivatives can be written in terms of 
delta-functions, for which we have to formulate a spec­
ial condition in our symbolic calculus. 

We shall denote such a delta function by boldface 
letters: o(x- y), and its special character consists in 
the fact that it leads to the appearance of the operator 
f. This delta function is in a way "transparent" for 
differentiation operators, and therefore it need not be 
retained. (In this respect o(x - y) is a delta function 
with usual properties, whereas the kernel of the opera­
tor f exhibits unusual properties.) 

In order to illustrate the difference between the two 
kinds of delta functions, we remark that 

11'P(x) -6 x-
llrp(y)- ( y), 

(4.1) 

whereas 

1\<p~y) ~ d~ll(x-~)<Jl(~) = 1\(x-y) = ~ d~ll(x-~) 6(~-fl). (4.2) 

It is clear from Eqs. (4.1) and (4.2) that we actually 
encountered the function o(x- y) in the derivation of the 
expression (2.3) for the current, and we have immed­
iately removed it according to (4.2). We stress once 
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more the fact that the necessity of introducing the ob­
ject 6(x- y) with the usual properties of the delta func­
tion is related to the fact that the fundamental delta 
function occurring in the interaction should be interpre­
ted, strictly speaking, in a "smoothed sense," and 
should be considered a delta function only within the 
framework of the symbolic calculus utilized here (taking 
the corresponding precautions). On the other hand 
6(x - y) is an ''innocent" delta function, for which all 
these precautions are superfluous3 >. 

Our machinery is exactly suitable for transposing the 
differentiations from the field operators onto the coeffi­
cient functions. Indeed, let us compute as an example 
the functional derivative of 

~ a(;<D m <- KqJ <i:>>· 

Using the established procedure we write 

~dC<D(~)(-KqJ({;)) (4•3) 
= 2 ~ di:t dts <D (t1) (- K6 (bt- (;,)) qJ ((;,)- ~ dt (- K<D ({;)) qJ (b)· 

The right hand side is represented in a form admitting 
a functional differentiation, according to our condition. 
Thus 

_IJ_) d(;<D(1:;) (-KqJ((;)) 
6qJ(Y) 

= 2 ~ dCtd(;s<D({;t)(-KIJ(tt-b2))6(~s-y)- ~ d(;(-K<D ({;))6(~- y) 

(4.4) 

Obviously the same procedure (4.3) can be used in 
the case of an integral operator of the general form 

6 ' ' "' • 
c):p(y)O(-KqJ(z)) = 20(-Kl'J) IS(x-y)-0(-J'!) a (x- y) 

=015(x-y)(-~). (4•5) 

Making use of the formulated rules and of the expres­
sion (3.8) for the current j (x), it is easy to obtain an ex­
pression for the retarded operator: 

6j(z) - • 
l'JqJ(y) = -(1- VZ)N6(x-y){(-K.,) +(-K.)} 

-(1- VZ)2 Ll"d"(x-y)(-K.,)(-Ky). 
(4.6) 

The expression for the retarded operator contains 
terms of two kinds: a quasi-local term which is sym­
metric in x andy and is proportional to (1- Z112 )~, and 
a term whose support is localized in the past cone, 
which is not symmetric in x and y, and is proportional 
to [(1 - Z112)Nf. 

In forming the difference of the retarded and advanced 
operators, which occurs in the integrability condition 
(1.3), the symmetric (quasilocal) terms cancel, and we 
obtain 

=-(1-yZ)• {,iadu(z- y)- f.ret(z- y)} (- Kx) (- Ky) 

= (1-}'Z) 2 Li(z- Y) (- Kx) (-K.). 

(4. 7) 

3) An "innocent" delta function has other defects. Being a func­
tion of the difference x - y, it behaves improperly under differentia-
tions: 

[(-~.,)6( w-y)] = 6(w- y) (-_!;ul =P [6(w-y) (-~.)] 
= (-~)6(w-y). 

This circumstance has prompted the introduction of the other (non­
boldface) delta function, for which [(-_!;.)6(x- y)] = [6(x- Y) (-~.)]. 

Comparing (4. 7) with (3.9) -the expression of the cur­
rent commutator-we see that 

llj(z) - /Jj(y) = iU(x), i(Y)] 
6qJ (Y) ll<p (x) 

(4.8) 

i.e., the integrability condition holds in our model. 
It is interesting to analyze in detail how this happens. 

Indeed, at first sight it would seem that renormalization 
must violate this condition, since the renormalization 
constant of the current occurs with power two in the 
commutator, and only with power one in difference of 
the left hand side. As a matter of fact the situation is 
more complicated even in the simple model we have 
analyzed. The current, as well as the retarded operator 
contains both terms with the "renormalization factor" 
(1- Z112)N, and with the factor [(1- z112)N]2, but the 
quadratic factor multiplies those terms which vanish on 
the energy shell. Therefore they give a vanishing con­
tribution to the commutator, as a consequence of 
(-KD(x)) = 0. As a result the commutator as a whole is 
proportional to <1- Z112 )N2 , and does not involve higher 
power terms. At the same time, as we have seen, in the 
difference between the advanced and retarded operators 
the terms proportional to the first power of (1- z112 ):N 
cancel because of symmetry. 

5. CONCLUSION 

The field-theory model involving derivatives in the 
interaction term which we have considered corresponds 
to what one usually means by field operator renormal­
ization (or current renormalization) and allows us to 
reach several important conclusions. Firstly, we have 
convinced ourselves that the so-called renormalization 
"constants" are in general integral operators (of the 
type of N, cf. (3.1)). They become numbers only after 
one assumes that f = 1, which can be done only if no 
further differentiations of the corresponding operator 
are envisaged. Otherwise this leads to incorrect results. 
In particular, the operators f and N allow one to obtain 
the result about the renormalization of external lines 
in perturbation theory diagrams. [4J 

Another essential circumstance is related to the fact 
that the Heisenberg field and current operators contain 
even in the simplest model both terms which vanish on 
the energy shell, and terms which are related to exten­
sions of the S-matrix off the energy shell. An important 
conclusion consists in the fact that both in the current 
and the field operator, the terms on and off the energy 
shell have different renormalization "constants." We 
stress the fact that one cannot neglect the off-shell 
terms as long as one intends to carry out further differ­
entiations and variations (e.g., application of the reduc­
tion formula). In particular, these peculiarities of the 
Heisenberg operators are responsible for the consis­
tency of the integrability condition (1.3) under renorm­
alization. 

We note that our model is constructed in such a man­
ner that the S-matrix does not lead to real transitions 
among physical states. In this sense this is a theory of 
an "almost free field." However we cannot consider the 
S-matrix to be identically equal to one, since the cur­
rent has nontrivial matrix elements and the propagators 
differ from the free-field propagators. In essence the 
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S-matrix differs from the identity only off the energy 
shell4 >. Therefore the field A(x) differs from r,o(x), al-
though it belongs to the same Borchers class. . 

In the sequel we hope to apply the model to a more 
realistic case, when in addition to the renormalization 
terms the interaction contains also fundamental terms 
of the usual nature. 

In conclusion the authors would like to express their 
sincere gratitude toN. N. Bogolyubov, V. S. Vladimirov, 
0. S. Parasyuk, I. T. Todorov and A. D. Sukhanov, for 
very useful discussions and adviceo 
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