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The spectra of electromagnetic waves propagating perpendicular to a static magnetic field in the elec
tron-hole plasma of a magnetic semiconductor or metal are investigated. It is assumed that the electrons 
(or holes) obey a quadratic isotropic dispersion law and have an arbitrary isotropic velocity distribution. 
The frequency behavior of the interacting cyclotron and spin waves is determined as a function of the 
wave vector for arbitrary ratios between the wavelength and the electron (or hole) Larmor radius. Sim
ple analytic expressions for the frequencies are derived for all values of the wave vector in a plasma 
with low gas -kinetic pressure when the mean electron (or hole) velocity is considerably slower than the 
Alfven velocity. 

SEVERAL branches of electromagnetic waves propa
gating perpendicular to a static external magnetic field 
can exist in the electron-hole plasma of a semicondue
tor or metal, just as in the case of an ordinary electron
ion plasma. [lJ The frequencies of these waves are close 
to the cyclotron frequencies of electrons or holes (ions) 
and to their respective subharmonics; we shall there
fore call them cyclotron waves. The existence of cyclo
tron waves follows from the finite Larmor radius of 
charge carriers. 

Long-wave cyclotron frequencies (corresponding to 
wavelengths considerably exceeding the electron Lar
mor radius) have recently been studied theoretically 
and have been observed experimentally in the electron 
plasma of alkali metals by Walsh and Platz man. lZ, 3 J 

Kaner and Skobov have determined frequencies of short
wave cyclotron waves (having wavelengths considerably 
shorter than the electron Larmor radius). l 4J 

We know that, in addition to the cyclotron waves in 
high-density plasmas, the propagation of an extraordi
nary electromagnetic wave is possible; at low frequen
cies, when there are equal numbers of electrons and 
holes, this wave becomes a magnetosonic wave. The 
cyclotron and extraordinary waves are not isolated 
branches; when their frequencies overlap they interact 
and the extraordinary wave becomes a cyclotron wave 
(compare with the discussion in llJ ). • 

In the cases of magnetic semiconductors and metals, 
where spin waves can propagate, an investigation of 
electromagnetic wave propagation must take into ac
count both the dielectric constant and magnetic perme
ability. The cyclotron and spin wave spectra are there
fore considerably modified. The interaction between 
ordinary cyclotron waves and spin waves in ferromag
netic semiconductors and metals has been investigated 
in [SJ. 

We note that weakly damped cyclotron waves can ex
ist only when the effective frequency v of collisions be
tween carriers is considerably below the wave frequen
cy w; when w ~ nw3 (n = 1, 2, ... ) we have the condition 
that v must be much smaller than the difference 
I w - nwB 1. The existence of cyclotron waves is also 
subject to the requirement that the angle e between the 

wave vector k and the magnetic field B shall be close 
to rr /2, so that 

~os 9 ~ 1/,ln I 2- 91 2 ~ I w - nwBI I k<..v). 

In the present work we investig<\te the spectra of 
electromagnetic waves propagating perpendicular to a 
static magnetic field in a magnetic semiconductor or 
metal. We determine the frequency behavior of the in
teracting cyclotron and spin waves as a function of the 
wave vector for all ratios between the wavelength and 
the Larmor radius of carriers obeying a quadratic dis
persian law and an arbitrary isotropic velocity distri
bution law. We note that a discrepancy between the ac
tual electron (or hole) dispersion and an isotropic quad
ratic law leads to momentum-dependence of the cyclo
tron frequency and to strong damping of the cyclotron 
waves. 

1. THE DISPERSION EQUATION ,, 
Let us consider the propagation of electromagnetic 

waves in an electron-hole plasma perpendicular to a 
magnetic field B. The dispersion equation relating the 
frequency and wave vector of these waves is separated 
into the two equations 

where 

(kc/ w) 2 = e3 (w, k)f.t-L(w), 

(kef w)' = f.l3(w, k)e-L(w, k), 

1.1·-L ( <u) = (l.ltf.lt' -- f122 ) / f.lz, f.ll = f.lt eos2 <p + ftt' sin' <p, 

e-L(w, k) = [e1 (w, k)e1'(w, k)- e,2 (w, k)]/e,(w, k). 

11.1) 

(1.2) 

Here q and IJ.i are components of the dielectric con
stant and magnetic permeability tensors, respectively: 

(e,,)=(-z:: 1
::, ~ ), (f.l,,)=(-~~: 1~:, ~ )· (1.3) 

0 0 Ea 0 0 ft3 

The z axis is parallel to B, and cp is the azimuthal 
angle in the space of the wave-vector k. 

In a nonmagnetic medium ( IJ.ij = <\j) where there is 
no spatial dispersion of the dielectric constant tensor 
£ij, Eq. (1.1) determines the frequency of the ordinary 
wave, while the frequency of the extraordinary wave is 
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determined from Eq. (1.2). The quantities f:i are rep
resented by [SJ 

00 2 ' 
, _ 1 "' "' wp .. a1 
Et--~LJ , 

<> n~-oo W(W- nWB<>) 

(1.4) 
.. 2 

"' ~ wp,. aa 
Es=1-L..i 2.; , 

" n~-oo W(W- nWBa) 

.. 2 
E __ "' "' lja Wp<> a2 

2 --.LJ .Liw(w-nwB,.)' 
a n=-oo 

where 

(1. 5) 

wpa = 41Tna e~ /m~ and WBa = I ea I B/m~ c are the 

plasma and cyclotron frequencies of carriers having an 
effective mass m&, charge ea and equilibrium density 
na; na = ea/leal; f0 (v) is the velocity distribution of 
particles of kind a, normalized to unity; Jn (.\) and 
J~(.\) are Bessel functions and their derivatives; 
.\ = kv sin J/ wBa; v 1 and v 11 are the particle velocity 
components perpendicular and parallel to B. 

For a Maxwellian particle velocity distribution we 
have 

a,= (n2e-<IS)In(6), a,'= [(n2 /6 + 2~)/,.(6)- 2(;/,.'(s)]e-<, (1 6) 
a2 =e-in(-I,(s)+I,.'(s)], as=e-<I,.(s) • 

Here ~ = (kv a/WBa)2 , va = -../T aim~ is the thermal 
velocity of the particles, and InW and I~(~) are a mod
fied Bessel function and its derivative. 

For a degenerate Fermi distribution we would have 

"'2 
a1 = 3 ~ (n/~) 2 !,.2 (~ sin ~)sin~ d~, 

0 

a{= 3 r!,.'2 (~sin~)sin3 ~d~, 
0 

"(2 
a2 =3 \ (n/~)ln(~sin~)J,.'(~sin~)sin2 ~d~, 

:t/2 

a3 = 3 ~ J,.Z(~sin~)cos2 ~sin~d~, 
0 

(1. 7) 

where {3 = kvF/WBa• vF is the limiting Fermi velocity, 
and J is the polar angle in velocity space. 

We shall now present the values of the coefficients 
ai in the long-wave (kPLa « 1) and short-wave 
(kPLa » 1) cases; PLa = (v)/ WBa is the Larmor radius 
and (v) is the mean particle velocity. When kPLa « 1 
we have 

- - 2n 1 v2n-2) n2 2nll ( k )2"-2{ 
IJ:!- (2"·nl) 2 (2n+1)11 (J)B<> ( + )( 

n+1 k 2 n+2 k" } - -----(v2n) +-----(v2n+2) 
n w8 ,.2 4n(n +f) WB<>4 (1.8) 

as=_ (2n+~)__ [ 2nll (2n+2)1!](-k_\zn(v'"). 
(2"·nl) 2 (2n+1)!! (2n+3)!! WBa) 

For a Maxwellian distribution we obtain 

a1 =a{= a,= n2s"-1 / (2"·n!), aa = 'S" I (2"·n!). 

For a degenerate Fermi distribution ai is obtained 
from (1.8) with (v2m) = 3viF/(2m + 3). 

In the short-wave case we have 

a1 = -2na2 = 2nn2/ 0 (0) (wB,.f k) 3, a{= aa = (•llBa/2k)<1/v). (1.9) 

For a Maxwellian distribution this becomes 

a1 = -2naz = n2 / (l'21is'''), a,'= as,= 1/l'2n6. (1.10) 

For a degenerate Fermi distribution we obtain 

We shall consider ferromagnets and ferrites in 
which only one spin-wave branch exists, so that 

(1.11) 

(1.12) 

where w0 > wm, and Wm is the frequency of longitudi
nal magnetostatic oscillations. The frequencies w0 and 
wm are of the same order of magnitude as the cyclotron 
frequency of a free electron (wB = eBofmc). 

In ferromagnets and ferrites J1 3 = 1 and the extraor
dinary waves do not interact with the spin waves. In 
antiferromagnets the magnetic susceptibility tensor 
Xij = (J.lij- Oij)/41T is proportional to X0/(w2- w~es), 
where Xo ~ 10-3 is the static magnetic susceptibility, 
and significant interactions of the ordinary and extra
ordinary waves with spin waves occur only when 
w ~ Wres· Near the resonance frequency Wres. Ill and 
J13(w) are, as previously, derived from (1.12), where 
w0 , wm, and w differ from Wres by an amount Xo· 

2. THE ORDINARY WAVE 

We shall first study the dispersion equation (1.1), 
from which the frequencies of ordinary cyclotron waves 
and spin waves are derived. It is easy to determine the 
frequency behavior of these waves as a function of the 
wave vector, by solving (1.1) graphically. We represent 
(1.1) in the form 

h(w, k) = h(w, k), 

where 

It= ea, 

With f1(w) increasing monotonically with the frequency 
and vanishing at ± oo for w - nwB a 'f 0, and with f2(w) 
decreasing monotonically as w increases, while f2- + oo 

for w - 0 and f2- ± oo for w - w0 ± 0, it is easily 
shown that each interval wj < w < wj + 1 contains one in
tersection point of the f1(w) and. f2(w) curves that cor
responds to the solution w = w<l + 1)(k) (j = 0, 1, ... ). 
Here 

(2.1) 

comprise an increasing sequence of frequencies from 
the set {nwBa, w0 }. In the interval ws < wm < ws + 1 
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FIG. I 

the abscissa of the intersection point w = w<s + 1> (k) of 
the f1 and f2 curves can lie in either one of the two in
tervals (ws, wm) and (wm, Ws +1). 

The behavior of the eigenfrequencies wj (k) as a func
tion of the wave vector is shown schematically in Fig. 1. 
Let wr < wr + 1 < ••• be frequencies of the sequence 
(2.1) that exceed w0 = wr -1, and let Ws > Ws_ 1 > ••• be 
frequencies .of (2.1) that are below Wm· The eigenfre
quencies w<J>(k) (j :S s or j 2:: r) behave as functions of 
the wave vector in qualitatively the same manner as for 
nonmagnetic media: As k increases these frequencies 
at first decrease from the value w<j > = Wj for k = 0; 
after reaching a minimum point they again approach 
Wj as k- oo (see Fig. 1 in ~ 11 ). 

The eigenfrequencies w<J > (k) (s + 2 :S j :S r - 1) de
crease monotonically, as k increases, from the value 
Wj for k = 0; wj + 1 is approached as k - ""· The fre
quency w<S + 1>(k) also decreases monotonically as k 
increases if £3(wm, k) > 0 for all k; in this case the 
abscissa of the intersection point of f1(w) and f2 (w) al
ways lies in the interval (wm, ws + 1). If for some value 
k = ko we have £3(wm, ko) = O, then w<S + 1> (k) decreases, 
as k increases, from w = Ws + 1 for k = 0; a minimum 
is reached at k = km < ko, followed by a monotonic ap
proach to w = wm as k- oo; in this case w<S + u(k) is 
represented by the dashed line in Fig. 1. 

We shall now derive analytic expressions for the 
eigenfrequencies. In a low -pressure plasma when (v) 
« VAa• where VAa = B0 fvi47Tmana is the Alfven ve
loc;ity, for not very small values of kPLa we find that 
w<J>(k) is close to nwBa or to wm: 

w = nwna[1- Wm.'as(n)fl.J.(nwna) I (!w.;a)2] (n = 1, 2, ... ), (2.2) 

The correction terms in (2.2) and (2.3) are of the 
order (v2)/vA.a· When kPLa « 1, Eq. (1.1) easily 
yields 

w = nwna[1·- Wpa2aa(n) fL.J.(nwna) I (k2c 2 + (up 2fl.J.(nwna))], 

or w = w+, or w = U 1, 2 , where wp = ~ w~ a and 

1 - -
W± = {wp2 (w0 -,w)+[wp•(wu- w) 2 

2(k2c'+w/) -
+ 4(k2c2 + Wp 2 ) (k2c2wm2 + wp2wor;;)J'I'}, 

(2.4) 

(2.5) 

(2.6) 
4wpa2aa(n)w+(Wo- "'+) (w+ + ;;;) ]'/, 

+ (k2c'+ wp2 ) (w+-w-) · 

The frequencies w<j>(k) (j 2:: r or j :S s) are deter
mined from (2.2) for k2c 2 « w~ and from (2.4) from 
kPLa « 1. These two expressions become converted 
into each other in the region of k2c 2 « wp and kPLa 
« 1, where both (2.2) and (2.4) are applicable. 

When kPLa is not very small, w<s +1>(k) is deter
mined from (2.3). If none of the frequencies nwB a is 

contained within the interval (wm, w0), then w<s +1>(k) 
(s + 1 = r- 1) for small kPLa is determined from Eq. 
(2. 5) for w+. Equations (2. 5) and (2.3) coincide for k2c 2 

2 
» Wp and kp La « 1. 

If the interval (wm, w0 ) contains one or more of the 
frequen.cies nwB a, then for very small kPLa we find 
that w<Jl(k)(s+1:Sj:Sr-1) is 9-eterminedfrom (2.2),for 
kPLa - 0 the frequencies w<J >(k) (s + 1 :S j :S r- 2) 
approach nwB a and are determined from (2.4) and 
w<r- 1>(k) is determineq from (2. 5) for w+. For kPLa 
« 1 the frequencies w<Jl(k) (s + 1 :S j :S r- 1) are de
termined from (2. 5) for w+ if w+ is not too close to 
nwBa• and from (2.6) if w+ ~ nwBa· With increasing 
distance from the point where w+ = nwBa the expres
sions (2.6) for U1, 2 "are matched" to (2.4) and (2.2). 

We have thus fo~.md that Eqs. (2.2)-(2.6) determine 
the frequencies w<Jl(k) of ordinary waves in a low
pressure plasma for the entire range of the wave vec
tor k. 

We shall now determine the frequencies of ordinary 
cyclotron waves in a high-pressure plasma when (v) 
» VAa· Since (v) » VAa we can neglect the left-hand 
side of (1. J.) in zeroth approximation. We then find that 
the spin -wave frequency equals w0 , while the frequency 
of the ordinary cyclotron waves is determined from the 
equation £3 = 0, i.e., 

L; ~ Wpa2as(n) 
w -nWBa 

a n=-oo 

0. (2.7) 

For Gmall values (kPLa « 1) of the wave vector Eq. 
(2. 7) yields 

w = IH•l.oa(1- Wpa2aa(n) lwp2 ] (n = 1, 2, ... ), (2.8) 

where a3 is given by (1.8). Equation (2.8) is a special 
case of (2.4), whi.ch with k- 0 can be applied to a 
plasma where (v)/v A a can assume any arbitrary value. 
Equation (2.8) was obtained in r21 for n = 1 in the case 
of a degenerate Fermi distribution. 

When the coupling of cyclotron and spin waves is 
taken into account we find that the frequencies of these 
coupled spin and ordinary cyclotron waves in the case 
(v) »VA a are determined from. 

w = wo(1 + k2c2 (wo2 - Wm2) I Wo3ea(wo) (wo+ ;;})], (2.9) 

w = w<0>(k) [1 + k2c2/w<0>3 _!!_ fl.l.(w<0>) l (2.10) aw<0> _' 

where w<o> is the solution of (2. 7). 
In the region of very short waves subject to the con

dition (kPLa)3 » (v) 2/vA.a » 1 we easily obtain from 
( 1.1) the result 
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(n= 1,2, ... ), 

(2.11.) 
or 

w=wm[i+ (wo-wm)(wm+;;;) 2; ~ ( Wp"2WB" )(~) ]· 

4wmk3c2 a n=-oo Wm - n<Oet V a 

(2.12) 

Equation (2.11) was obtained in l 4l for a degenerate 
Fermi distribution with fll = 1. 

To conclude this section we shall consider the inter
action of spin and ordinary cyclotron waves in antifer
romagnets, where fll (w) differs from unity by the 
small quantity ~ Xo in the entire frequency range except 
within narrow regions near the poles w = wres of the 
magnetic susceptibility tensor components /l1, Jl~, and 
f1 2 • By taking the magnetic susceptibility into account 
we obtain the c9rrection ~ Xo to the cyclotron-wave 
frequencies w<Jl(k) in a nonmagnetic medium: 

w = w<il(k) + [~-t_~_(w) -1] /TJ'(w) lffi~ffiul, (2.13) 

where 7)(w) = k2c 2/w2£3 (w, k), 7) 1 = d7](w)/.dw, w<j>(k) is 
the solution of (1.1) for fll = 1, and 7)(w<l ') = 1. 

The spin-wave frequency is easily obtained from 
(1.1) when we consider that for w ~ w0 ~ Wm we have 
fll(w) ~ (w- w0)/(w- wm) to terms of the order ~x0 : 

w = wo{1 + T] (wo) (wo- Wm} I [1- T] (wo) ]wo}. 

The correction to w0 in (2.14) is of the. order 
(w0 - wm)/w0 ~xo if w0 is not near w<l'(k). 

(2.14) 

The interaction of cyclotron and spin waves becomes 
significant when w0 ~ w<j>(k). Equations (2.13) and 
(2.14) may then be inapplicable, and the frequencies of 
spin and cyclotron waves are obtained using 

w = tj2 ( -w0 +wUJ) ± 1h[ (wo- wUl) 2 - 4(wo- Wm) / T]1 (wo)] '''· (2.1.5) 

At the intersection point w0 = wd> of noninteracting 
waves the frequency correction is of the order . 
...f (w0 - wm)w0 ~ w0 x ~I 2 As the difference w0 - w<J > 
increases (2.15) is transformed into (2.13) and ~2.14) 
when in the latter equations we ass~me w0 ~ w<J' and 
neglect terms of the order (w0 - w<l')/w0 compared 
with unity. 

3. EXTRAORDINARY WAVES IN A ONE
COMPONENT PLASMA 

We shall now investigate the dispersion equation 
(1.2), and shall consider first a nonmagnetic medium 
( fl 3 = 1) and a plasma consisting of electrons as the 
only kind of charge carrier. To determine how the so
lutions of (1.2) behave qualitatively we investigate this 
equation graphically in the case when the plasma fre
quency wp considerably exceeds the cyclotron frequen
cy WB of the electrons. We set h(w) = k2c 2/w2; and 
f2 = £ 1 (w, k), and becomes infinite for w = nwB and w~, 
where wD. represents the zeros of £1(w), i.e., the solu
tions of 

n=i 
(3.1) 

Considering that f(O) < 0 and f(w) - 'f ao for w - nc.t'B 
'f 0 and of(w)/3 w < o, i.e., f(w) is a decreasing func
tion, it is easily proved that (3.1) has the solutions 
w = w~, w~, ••. , where nwB < w~ < (n + 1)wB. 

The function f1 = k2c2/ w2 decreases monotonically 
as w increases; f1(w)- ao for w-0 and f2(w)- ±0 
for w - nwB 'f 0 and w - w~ 'f 0. 

The interval {mwB, (m + 1)wB} (m = 1, 2, ... ) con
tains two intersection points of the ft(w) and f2(w) 
curves which correspond to the solutions w<M+ 1 (k) and 
W<2> (k') m - 1 2 · w' 1' > w' 2' · the interval m+1 , - ' ' ... , m.+1 m+1.' <1> 

(0, wB) contains only the smgle solutiOn W1 (k). 
As k increases in the small-k region the frequen

cies w~1'(k) (n = 1, 2, ... ) decrease monotonically. from 
nwB at k = 0· after a minimum is reached nwB 1s 

' • ( 2) ) again approached. The frequencies wn (k) (n = 2, 3, ... 
decrease monotonically as k increases, from w = nwB 
at k = 0 to (n - 1)wB as k - ao. The behavior of the 
frequencies w~ 2'(k) as a function of the wave vector 
in the present case of arbitrary isotropic electron ve
locity distributions is qualitatively the same as in the 
case of a Maxwellian velocity distribution (see Fig. 5 
in l 1l ). We derive explicit expressions for the frequen
cies w' 1'(k) in a low-pressure plasma. The expres
sions f~r w~ll(k) (n = 1, 2, ... )are derived from (1.2), 
retaining only resonance terms ~ 1/(<u- nwB) in £1, 
£~, and £2 for kpL » K"' (v2)/vA.a: 

(3.2) 

In the short-wave region (kpL » 1) we shall have 
a1, a 2 « a~ ~ a 3 , and (3.2) coincides with (2.2) and (2.13) 
for the frequency of the ordinary cyclotron wave. 

Equation (3. 2) cannot be used for w~> (n = 2, 3, ... ) 
when we have kpL « 1 in the region kpL :S K. In this 
case we must retain terms ~ 1/ (w + WB) in £1, £ ~, and 
£2 in addition to the resonance terms .. We thus obtain 

w~1l- nwB {!)p2(atai'- a:!2) (n + 1) 
----

nwB [k2c2 (n + 1) + 2nffip2] at 
(n = 2, 3, ... ), where 

at a{ - a,z ;:;:;; ( __!:__)'n+2 
a1 WB 

2n!! [ n + 2 
(2nn!)2(2n+1) !! (n + 1) (2n + 3) 

1 (vZn )2 ·] 
- 2n + 1 (v2n-2) 

(3.3) 

Equations (3.2) and (3.3) determine the ordinarycyclo
tron-wave frequencies w~1 '(k) (n = 1, 2, .•. ) in a low
pressure plasma. 

We obtain the frequencies w~2'(k) (n = 2, 3, ... ) for 
kpL « 1 when a1 ~a~~ a 2 and we have retained in £1, 
£~, and £2 the resonance terms and terms 
~ 1/(w + WB); 

w~2'- nwB = _ a1 (n -1}[(n + 1)k2c2 + 2nffip2] (n = 2, 3, ... ), (3.4) 
nwB n2(k2cz + illp2) 

where a 1 ~ (kpd2n - 2. It is obvious that for identical 
values of kpL the frequencies represented by (3.3) are 
considerably closer to nwB than the frequencies repre
sented by (3.4). The difference Wh2 ' - nwB is enhanced 
as the wave vector is increased. In the region k 2c 2 

» w~ (but kpL « 1), Eq. (3.4) has the simpler form 

(ffi~>- nffiB}/nwB =- a1(n2 --1)/n2• (3. 5) 

This last equation represents longitudinal (electro
static) waves with the frequency w~'; it is the solution 
of the dispersion equation £1 (w, k) = 0 for longitudinal 
waves. Equation (3. 5) can no longer be used when kpL 
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~ 1; to determine w~>(k) = w~_ 1 we must then solve 
(3.1) numerically. For kpL » 1 the equation £ 1 = 0 has 
the solution 

we;? =(n-1)wB[1+2nfo(O)wB(Wp2lk8c8)] (n=2,3, ... ), (3.6) 

and approaches (n - 1)wB for k - oo, 

Equations (3.2)-(3.4) were derived in [lJ for plas
mas having a Maxwellian electron velocity distribution. 
In the cases of high-pressure plasmas (K;::; 1), Equa
tions (3.2) and (3.4) can also be used when kpL--+ 0 and 
(2.13) and (3.6) can be used when kpL- oo, 

4. EXTRAORDINARY WAVES IN A TWO
COMPONENT PLASMA 

We now proceed to investigate the dispersion equa
tion (1.2) in the case of a plasma that consists of two 
kinds of carriers having charges e 1 and e 2 (with e1e2 
< 0), masses m1 and m2 (with m1 > m2), and the equi
librium densities n1 and n2 • Neglecting spatial disper
sion of the dielectric constant, we obtain 

e1 = e/ = -wpt2 I (w2 - WBt') - wp-l I (w•- WB22), ( 4. 1) 

82 = -t]tWpt2WBtl W (w0 - ·WBt2 ) - '1]2Wp22WB21 W (ro2 - WB22) 

(where we shall assume I E 1, 21 » 1 and shall neglect 
the displacement current). The solution of the disper
sion equation (kc/ w) 2 = E 1 (w) now becomes 

ro(k) = ~ (Wpt2WB2- Ulp22WBt) 2+k2c2 (Wpt2WB22 + Wpi'WBt2 ) -l'i• (4. 2 ) 
L ( Ulpt2 + Wp22) (Wpt2 + Wp22 + k 2c2) - • 

With increase of the wave vector the extraordinary
wave frequency grows monotonically and approaches the 
("hybrid") plasma resonance frequency 

w(oo) = [(Wpt2WB22 + Wp22WBt2) I (IDpt2 + Wp22)l"'. (4.3) 

With decrease of the wave vector in a noncompensated 
plasma, w(k) approaches w(O), which is defined by 

w(O) = lwv,•WB2- Wp22wBd I (cupt2 + t>lp22). (4.4) 

We note that wB1 < w(oo) < wB2 , and that w(O) can be 
either smaller or greater than the cyclotron frequency 
WB1· 

For small k in a compensated plasma the ordinary 
wave becomes a magnetosonic wave: 

ffi = kv.1.., (4. 5) 

where 

Besides the extraordinary wave with the frequency 
(4.2), for small k the dispersion equation (1.2) pos
sesses two solutions that approach nwBa (n = 2, 3, ... ) 
for k - 0 and one solution that approaches wB a for 
k-0. 

If kPLa is not very small and only the resonance 
terms are retained in (1.4) we obtain 

(w- nwBa.) I w = -wpa.2 (u,a{- a.') I a1k2c2 < 0 (n = 1, 2, ... ). (4. 7) 

With n = 1 this equation is also valid for k- 0. 
With increase of the wave vector, the frequency 

given by (4.7) for small kPLa decreases from nWBa 
to a minimum for kPLa ~ 1; this represents a maxi
mum deviation of 

I (w- nwBa.) I wl ~ Xa.~1, 

which is followed by a reapproach to nwBa. When 
kPLa » 1 we have a simplified form of (4. 7): 

(4. 7') 

where a~ is given by (1.9). Since a;_= a 3 , for short 
waves the extraordinary cyclotron wave obeys the same 
dispersion law as the ordinary cyclotron wave with the 
frequency (2.2). 

In addition to (4. 7), Eq. (1.2) possesses solutions that 
correspond (for not very small kPLa) to longitudinal 
cyclotron waves. The dispersion equation for these 
branches is 

e1(k,w)=-L; L; Wpa2at/w(w-nwBa.)=O. (4.8) 

Considering that 

e1 (0,k) = L; L; 2wpa.2a,ln2wBa.2 > 0, 
(X. 11=-CO 

o£1/ow > 0, and £1 (w, k)- 'f oo for w- nwBa ± 0, we 
find that a zero of £1 (w, k) corresponding to a longitudi
nal cyclotron wave is found between two neighboring 
poles. As the wave vector increases, the frequency of 
the longitudinal cyclotron wave approaches nwfu: 

(w- nwBa.) I w = Wpa.2a, I n2wBa.2 (n = 1, 2, ... ) (4.9) 

[where a1 is given by (1.9)]. 
For small kpw the longitudinal-wave frequency 

obtained from (4.8) is 

(w - nwBa.) I w = Wpa.2a,l n2WBa.2e, (n = 2, 3, ... ) , (4.10) 

where E 1 is given by ( 4.1). 
Thus, when kpw is not very small, between two 

neighboring poles w = nwBa and lwB{3 of £1 (w, k) we 
find two solutions of (1.2), corresponding to an extra
ordinary cyclotron wave and a longitudinal cyclotron 
wave, respectively. 

The spectral pattern is greatly complicated for small 
values of kpLQ!, in which case we must take into ac
count the interaction of the extraordinary wave having 
the frequency w(k) given by (4.2), with the extraordi
nary and longitudinal cyclotron waves. If w"" Wfu and 
w is not near w(k), then (4.7) can be used, as previous
ly, for the frequency of the extraordinary cyclotron 
wave. If w "=' nwBa where n = 2, 3, ... , then to deter
mine the corrections to the frequencies nwfu, we must 
take into account a term ~ 1/(w- Wfu) besides the res
onance terms 1/(w- nwBa) in the tensor Eij· In this 
last case we have 

e,(w, k) = e,- Wpa.2a, I w(w- nwBa.), 
et' (w, k) = e1 - ·Wpa.2at' I w (w- nwBa.), 
e.(w, k) = e2- t]a.Wpa.2a2l w (w - nwB,.). 

(4.11) 

Inserting (4.11) into (1.2), we obtain 

w-nroBa 
(I) 

or 

Wpa2 a1a{- a22 

k2c2 - 2w2 ( e1 - 'l]a.E2) a, 
(n = 2,3, ... ),(4.12) 

w-nooncx; 
(J) 

Wpa.2at(2e1- 2'1]a.82- k2c2lw2 ) 

k2c2e, - w2 ( e,2 - ez2) 
(4.13) 

This last equation is inapplicable to the case of k - kn_, 
where 
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When k = ku, the cyclotron and extraordinary branches 
obviously "intersect" at w(k) = swB11 so that their in
teraction must be taken into account at k = kn_. 

For k 1'::! ko_, we find, in place of (4.13) and (4.2), that 
w = W±, where 

l!l±-nlllBa=I[w(k)_i]±~{[w(k) -t]'+4o)'''; (4.14) 
Ill 2 nl!lBcx 2 nlllBcx r 

for n = 2,3 ... , 

(4.15a) 

Equations (4.12) and (4.13) cannot be used for k - qn, 
where 

In this case we find, in place of (4.12) and (4.13), 

where 
- lllpcx2a1 k2c2/w2- 28! + 2T)cxB2 
Ill±= nwBcx + 2 ( )2 Ill Bt -T)cxB2 

+ [wp"•a12(k2c2/w2-2et+2TJcxB2) 2 ...l- lllpcx2(atat'-a22) ]'''.(4.17) 
- 4w2(et- T)cxe2) 2 Bt- T)cxB2 

Figure 2 shows the behavior scheme of the eigenfre
quencies as functions of the wave vector when w(O) 
> swB1; this last case is possible only in a charged 
plasma where n1 - nz > s[nz + (mdm1 )n1]. 

We shall denote the increasing sequence of the fre
quencies nwBa by w1, w2, ... and shall assume that s 
resonance frequencies wB1, 2wB11 ... , swB1 are lo
cated between zero and w(O); that the frequencies 
(s + 1)wB11 ... , lwB 1 are located between w(O) and w(oo); 
and that the frequencies (l + 1)wB11 ... , rwB1 are lo
cated between w(oo) and wB2 = wr+ 1. The two eigenfre
quencies between Ws and Ws _1 will be denoted by 
w~ll(k) and w~2>(k) (with Ws > w~1 > > w~2>). The equa
tions determining wj1• 2>(k) in the case of w(O) > WB1 
are listed in the accompanying table. 

s (U J 

2W8!~----~ -~~--:'!' 
wu, -- - - - l -- 2 : 

w, 
0 1' 

FIG. 2 

Eigenfrequency 

roi1l (k), ro~~1 (k) 

ro~l(k)}m=2, ... ,s 

w:!> (k) m;;;. r + 2 

ro:!> (k), 

m=s+2, ... ,l 

ro~!l1 (k) 

.,~>(k), 
m=l+ 1, ... , r 

ro:!> (k), 

m=l+2, ... , r+1 

Region of wave
vector variation 

k < q,+l 

k:::::::: qs+l 

k>qs+l' kpL~1 

k<qm-1 

kzqm-1 

qm-1 <k<km-1 
kzkm_1 

km-1 <k<km 
kzkm 

k>km, kpL ~ 1 

k< ql 
kzq1 

ql <k<kl 
kzk1 
k>k 

k<qm-1 

kzqm-1 

k>qm-1• kpL~1 

Equation 

(4.7) 

(4.12) 

(4,13) 

(4.2) 

(4.14) for ro_, n = s + 1 

(4.13) 

(4.12) 

(4.17) for w+, n=m-1 

(4.13), n = m- 1 

(4.14) for "'+• n = m -1 
(4.2) 

(4.14) for ro_, n = m 
(4.13), n =m 

(4.12) 
(4.17) for w+, n = l 

(4.13), n = l 

(4.14) for "'+• n = l 
(4.2) 

(4.13), n = m 
(4.17) for w_, n = m 

(4.12), n =m 

(4.12), ll=m-1 

(4.17) for w+, n=m-1 

(4.13), n=m-1 

If w(O) is smaller than WB1 [which occurs for 
n1 {1- m2/m1) < 2n2l then wp~k) (in Fig. 3) is obtained 
from {4.2) for k < k1, from {4.14) and (4.15b) for k~ k1, 
and from (4.12) for k > k1. 

We obtain w~2 l (k) from (4.12) for w(oo) >2wB1 and 
w(O) < WB1 and when k < k1; from (4.14) and (4.15b) 
for w+ when k ~ k1; from (4.2) when k1 < k < kz; from 
(4.14) for w_ with n = 2 when k~ k2; and from (4.13) 
with n = 2 when k>kz and kpL « 1. This wave be
comes longitudinal when k2c2 » w2 IE1 ± 7JE2I. 

When WB1< w(O) < w(oo) < 2wB11 we obtain w~2>(k) 
from (4.12) for k < k1, from (4.14) and (4.15b) for w+ 
with k ~ k1, from (4.2) for k > k1 and kpL « 1. This 
wave becomes longitudinal when k2c2 » w2 IE1 ± 7JE 21. 

The behavior of w~(k) (m ~ 2) and w~(k) (m ~ 3) 
when w(O) < WB1 is the same as when w(O) > WB1 and 
is derived from the same equations. 

We shall now consider the interaction of spin waves 
with the extraordinary wave and cyclotron waves in an 
antiferromagnetic semiconductor or metal. Since the 
dispersion equation {1.2) becomes (1.1) following the 
substitutions E 1 - E3 and J.1.3 - J.Ll, and J.1.3(w) has the 
same form as (1.12), the frequencies of the interacting 
extraordinary wave and cyclotron waves will be obtained 
from (2.13)-(2.17), in which we must insert 77(w) 
= (k2c2/w2)E1(w, k) and replace J.L 1(w) with J.1.3(w). 

The behavior exhibited by the frequencies of the in
teracting waves near the intersection of the noninter
acting branches is shown qualitatively in Fig. 4 for a 
plasma consisting of two kinds of carriers, when 

w(fr) 

OL-----------------~h• 

FIG. 3 FIG. 4 
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(n- 1)wBt < Wm <min w~11 (k) <max w~1 (k) < nwB! < w(oo). 

5. CONCLUSION 

We shall now discuss briefly the feasibility of inves
tigating cyclotron waves experimentally in alkali met
als, where electrons obey a quadratic isotropic disper
sion law. Since in these metals m * ~ 10 -ZT g, 
n0 ~ 1022/cm3 , and vp~1Q8 em/sec, we find that we 
here have a high -pressure plasma (vp > v A) in magnetic 
fields H0 < 106 gauss. In this case when kpL < 1 the 
ordinary cyclotron wave frequencies are given by (2.8): 

(w- nwB) I WB = -an (kpL) 2n (n = 1, 2, 3, · · .), (5.1) 

but in the case of the extraordinary cyclotron wave the 
frequency is given by Eq. (3.2) for the fundamental res
onance: 

(w- WB) I WB = -~tVF2 I VA2(kpL) 2 (n = 1) (5. 2) 

and by (3.3) for integral multiple harmonics: 

(w- nwn) I WB = -~n(kpL) 2n+2 (n = 2, 3, ... ); (5.3) 

the frequencies of the plasma cyclotron wave are given 
by (3.4): 

(w- nwB) I WB = -yn(kpL) 2n-2 (n = 2, 3, ... ). (5.4) 

The coefficients an, f3n, and Yn here decrease very 
rapidly like (n!) - 1 as n increases. 

The experiments reported in [2J were performed on 
a pure sodium slab of thickness L = 10-3 -10-2 em, in 
a field H0 ~ 103 -104 gauss at low temperature T = 1.3°K 
with 11/ w ~ 0.1 and w ~ 1010/sec. The resonance at 
w"" wB was observed when the electric field E of the 
wave was parallel to the magnetic field, while the reso
nance at w ""'2wB was observed with E perpendicular 
to the magnetic field; in the latter case resonance at 
wB was not observed. Standing waves were excited in 
the sodium plate, with a wave vector 
k = 2JT (Z- 1/ 4 )/L (Z = 1, 2, ... ). 

The experimental dependence of the ordinary cyclo
tron wave frequency w""' wB on the wave vector is well 
represented by ( 5.1)YJ It follows from (5.2) that the 
resonance of the extraordinary wave at wB could not 
be observed in the experiments of Walsh and Platzman, 
where (vp/vA) 2 ~ 104 and PL ~ 10-3 em while the min-

imum wave vector was kmin ~ 2JT/L ~ 600 em. At WB 
waves subject to these conditions could be observed 
only in thick slabs (L ;?, 1 em). 

The resonance at 2wB that was observed by Walsh 
and Platzman must be attributed to the excitement of a 
plasma cyclotron wave having the frequency given by 
(5.4). [We note that the corrections~ (kpL) 2 to the fre
quency of this wave are of the same order as for an or
dinary wave with w""' wB.] 

The higher harmonics (n ::=-: 2 for the ordinary and 
extraordinary cyclotron waves and n ::=-:3 for the plasma 
wave) have frequencies very close to nwB. The obser
vation of these harmonics under the conditions of [2 J 
was evidently impeded because the condition I w - nwB I 
> 11 was violated. 

The authors are grateful to A. I. Akhiezer for his 
interest in this work. 
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