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We consider an exactly soluble model of a spin array with two sublattices, in which the nearest-neigh
bor interaction is connected solely with the transverse spin components and is different for left-hand 
and right-hand neighbors. The system reduces to a perfect quasi-particle Fermi gas. In the excitation 
spectrum which consists of two branches there is a gap which depends on the magnetic field. At zero 
temperature the magnetic susceptibility has two square root singularities with respect to the field in 
the points where the gap vanishes. The magnetic field and temperature dependence of the susceptibility 
of the array is similar to the corresponding dependence for an antiferromagnetic. We have calculated 
the spin pair-correlators. There is no long-range order in the system. An important difference in the 
classical solution of the same problem lies in the fact that in fields below the saturation field there is 
in the classical case a gapless "acoustic" branch of the spectrum which does not exist in actual fact. 

1. A number of authorsl1' 2 l have shown that one can 
find an exact solution of a one-dimensional model of a 
chain of spins with anisotropic nearest-neighbor inter
actions which does not contain the z-components of the 
spin operators (the x-y model) and that one can thus ob
tain complete information about the properties of the 
model. 

In the present paper, in contradistinction to the prev
ious ones, we consider a chain with two sublattices 
where the interaction constants are different for left
hand and right-hand neighbors. A magnetic field along 
the z axis is applied to the chain and the effective mag
netic moments of the spins may also be different. The 
inequality of the interaction constants leads to a field
dependent gap in the spectrum and a peculiar behavior 
of the magnetic and mechanical moments which is con
nected with this. There are at zero temperature two 
phase transition points, as far as the field is concerned, 
in the system, where the magnetic susceptibility has a 
square-root singularity. At finite temperatures the 
singularity is smeared out. 

The system reminds one in many respects of an anti
ferromagnetic, although there is no long-range order in 
our case. A comparison between the exact quantum con
sideration and the classical one shows that even if we 
forget about the difference in the statistics of the exci
tations there is an important difference both in the exci
tation spectrum and in the properties of the ground state. 

2. The Hamiltonian of the system considered has the 
form 

(1) 

Snj is the spin operator of the j-th sublattice (j = 1, 2) 
in the n-th elementary cell; J.J. 1 and J.1.2 are, respectively, 
the effective magnetic moments of the atoms of the first 
and the second sublattice; H is the external magnetic 
field; J 1 the interaction constant inside the cell, and J 2 

the interaction constant between the cells (we shall as
sume that J1 > 0, J2 > 0). 
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We shall change from the spin operators to Fermi 
operators through the transformations 

Snt+ = II O'miD'm2Un1, Sn2+ = n Om11Jm2anian2, 

m<n m<n 

(2) 
m<n m<n 

where s~j = s~j ± is~j' amj = 2s~j = 1- 2a:Ujamj' and 

the operators amj• a~j satisfy the fermion commutation 
relations. These transformations are completely 
analogous to those applied earlier. [J-sl Substituting (2) 
into the Hamiltonian (1) and transforming to the Fourier 
components of the Fermi operators 

(-n ~'A< n), 

where N is the number of cells, we get 

:Je =- _1_ ~ { (/1 + J.e-")aM+a,2 + (11 + l 2e;")a,.+a,,} 
2 ); 

"' "' f-li + f-12 + f-1 1H LJ aM+a"' + f-12ll LJ a,.+a,.-N--;--H. (3) 
); ); 2 

To diagonalize the Hamiltonian (3) using a canonical 
unitary transformation we change to new Fermi opera
tors bi\1> bx.2 : 

It is convenient to write Eqs. (3) and (4) in a compact 
form by introducing matrix notation 

( aM ) _ ( bM) U _I uu" u,z" ) 
a'A..= a1.2 ' b'J..- b'J..2 ' A-\ u21'J.. u22'},.1 

A,= ( f-11ll - 1/z(J, + l 2e-;")). 
- 1/z(J, + lze;"j f.lzll 

In this notation the Hamiltonian (3) and the transforma
tion ( 4) can be written as follows: 

(3') 

(4') 
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Substituting (4') into (3') and using the unitarity of the 
matrix UA, we get 

The diagonalization of the Hamiltonian thus reduces to 
the requirement that the matrix Ui1AA UA be diagonal, 
i.e., 

We change to a set of linear equations for the matrix 
elements of the unitary transformation: 

AAUA =· UABA. (5) 

We find from this the two branches of the spectrum: 
EM= 'h(f!l + 1-12)H + '12[(1-11- f12l'H2+IJ1+ /2e'xl 2]'h, 

(6) 
e.,= 1l2(f11 + 1-12)H- 'l2[(1-11- ~-t2)2H2+IJ1 + J2e'AI2J"'. 

The solution UA of the set (5) has the form 

where cp and l/J are arbitrary phases which do not appear 
anywhere in the following. Noting that %(JJ. 1 + JJ.2)H 
= %(t:Al + E:A2) we get finally 

,o/f=,~(b~;+bA;- 1i.)eA; (j=1,2). 
~:I 

(B) 

The two branches of the spectrum correspond to the 
fact that the chain consists of two sublattices. It is 
clear from Eqs. (6) that E:A1 > 0 for all values of H :::: 0. 
As far as E:A2 is concerned, we must distinguish three 
ranges of magnetic field values. In the first range when 
0 < H < Ht, where 

H, = IJ,- l2l I 2ffl,f12, 

E:A2 is negative for all A. In the second range when 
Ht < H < H2, where 

H2 = (h + !2) I 2l'fllf12, 

(9) 

(10) 

E:A2 > 0 when IAI > Acr and E:A2 < 0 when IAI < Acr• where 

(11) 

Finally, in the third range when H > H2, E:A2 is positive 
for all A. In correspondence with such a behavior of the 
spectrum the ground state is re-ordered when the mag
netic field changes from H1 to H2. 

This re-ordering can be directly taken into account 
in the Hamiltonian (B) if we introduce the creation and 
annihilation operators of the "true" quasi-particles
the excitations above the ground state of the system. To 
do this we define new Fermi operators c"- using the 
equations 

{ b1.2 when P·l > Acr 

cu = b~2+ when 11.1 <I. cr. 

Using the new operators we can write the Hamiltonian 
(B) as follows: 

3f= ~(cl.;+c,;- 1l2)1e•;l, 
1.;1 (12) 

where the ground state corresponds to zero occupation 
numbers of the newly introduced quasiparticles, i.e., 

f ~81.2 When<H<H, 
1"' fli+fl• 11 A tfeo=-2tJie•;l =-N--2-H+ ~ e~.when H 1 <;.H<H2 

jAI<Acr 

l OwhenH.<H (13) 

When H < H1 it is clear from (6) and (12) that the energy 
spectrum has a gap, 

11 (H) = 'l2 [(Ill - 1-12) 2H2 + (J,- /2) 2] '!, - 112 (f11 + 1-12)H, 

which is equal to %1Jt- J2l when H = 0 and which tends 
to zero when H = H1 (see Fig. 1). The existence of the 
gap is essentially connected with the fact that the inter
action constants J, and J2 are different. 

From the classical point of view the system consid
ered should have a gapless "acoustic" branch. To 
understand the absence of an "acoustic" branch it is 
simplest to consider the limiting case J2 = 0. The chain 
then splits into non-interacting cells, each of which has 
four quantum states corresponding to the two spins in a 
cell. One checks easily that in that case there is a two
fold degenerate level corresponding to an elementary 
excitation and differing from the ground state by the 
"gap" JJ2. When we switch to an arbitrarily weak in
teraction J 2 between the cells the corresponding level of 
the chain splits into two bands (which coincide at H = 0) 
and the gap remains. 

Fig. I. Magnetic field depen
dence of the gap in the energy 
spectrum (full-drawn line) and of 
the susceptibility at T = 0 (dotted A(H} l{H) 

line). When H < H1 the ground 
state is "antiferromagnetic" and 
the gap D. decreases with increas-
ing field. In the interval from H1 

to Hz, where D.= 0, a re-ordering 
of the ground state occurs. When 
H < Hz the ground state is 
"ferromagnetic", and there is H._ J,-Jz 

again a gap which increases with ,-up:;p:;_ 
the field. In the points H1 and 
Hz the susceptibility has a square-
root singularity at T = 0. 

~ 
/1 
/I 
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I I 
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3. Using Eq. (12) for the ground state energy we can 
find the magnetic moment of the chain at zero tempera
ture for different ranges of the magnetic field. 

In the first range 

H"' (1-11- 112) 2 
Mo(H)=-2-~RI11-f!2)2H2+Ili+J2e'ii2J'h, (14) 

or, changing from a sum to an integral, 

Mo(H)= l\'H(J.LI-f!2)•kK(k) (O,;;;;H,;;;;HI), (15) 
2'!!f/llo 

k2=----~-
(f!l- f1•) 2H2 +(J, + '•) 2 

where K(k) is the complete elliptical integral of the first 
kind. 

It is clear from Eq. (14) that the moment Mo = 0 for 
H = 0, i.e., there is no spontaneous magnetization. 
Moreover, M0(H) = 0 if J.1. 1 = J.1. 2 in the whole of the first 
range. We note that if J 1 = J2 = J, JJ. 1 1- J.1.2 the magnetiza-
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tion has a singularity at H = 0, viz., 

Mo(H)= _ NIJ.L•- J.Lzl IJ.L•- J.LziH In IJ.L•- J.Lzl~ 
n 2J 2J . 

In the second range 

Mo(H)=N(J.L!-ti-'•1(1-Acr)+ NH(J.L•-J.Lz)"kF(:A.cr • k), 
2 n 2n"f/1/ 2 2 (16) 

where 
•err• 

F(.Acr,k)=) dtp. 
2 0 11- k2 sin2 tp 

is the incomplete elliptical integral of the first kind, and 
Acr and k are, respectively, defined by Eqs. (11) and 
(15). At the boundaries of the range Acr(Hi) = rr, 
Acr(H2) = 0. In these points the derivative aAcr/aH can 
be seen from (11) to have a square root singularity. 
Because of this there occurs a singularity in the mag
netic susceptibility. We write it in the form 

(17) 

where. XreK is the part of the susc~ptibility which is 
non-smgufar, JJ.o = JJ. 1JJ. 2/(JJ. 1 + J1. 2) lS the reduced mag
netic moment. The occurrence of a singularity in x can 
be considered to be a phase transition with respect to 
the magnetic field. It is here important that the transi
tion takes place at zero temperature. 

In the third range Mo(H) = %N(JJ. 1 + J1. 2 ), i.e., the 
magnetization reaches saturation at H = H2 • 

4. The magnetic properties of the system can be 
tracked in more detail by considering each of the sub
lattices separately. To do this we evaluate the mean 
value of the z-component of the spin in the ,ground state. 
Using Eq. (2) for sz in terms of Fermi operators, and 
also Eq. (4), we get (( sj) = ( s~j), j = 1, 2). 

1 1 
(s,')=--·--- ~ lzz•'l• 2 ]1," ~ ,_ • 

11-l"''"cr (18) 

These formulae are valid for all three field ranges, if 
we take in the first range Acr = rr, and in the third 
Acr = 0. 

When 0 ::; H ::; H1 , it follows from (18) and (7) that 

(s,')= -(sz')= (f.ti- f.tz)HkK(k). (19) 
2rt"f/,!2 

From this it is clear that when H ::; H1 the average 
mechanical moments at both sites in the elementary 
cell are equal in magnitude and opposite in direction so 
that the total mechanical moment vanishes. At the same 
time the total magnetic moment is non-vanishing if 
!1.1 r !1.2 (see (14)). Furthermore, it follows from Eq. (19) 
that the average spin of each of the sublattices increa
ses with the field while it is parallel to the field in the 
sublattice with the larger J1. and antiparallel to the field 
_in the other sublattice. 

Such a behavior of the spin system is connected with 
the presence of a gap in the first region and with the 
character of the ground state. This can be followed in 
detail for the example when J 2 = 0. The ground state of 
the cell can then easily be seen to be a superposition of 
two "antiferromagnetic" states with opposite values of 
the z-component in the sites, while there are "ferro-

Fig. 2. Magnetic field depen-
dence of the average sublattice <s:> <s:> 

spin. When H < H1 the mechan
ical moments of the sublattices 
completely cancel one another· 
while the moment of the sublat
tice with the smaller value of p 
(dotted) is antiparallel to the 
field. In the second region both 
moments increase reaching satura
tion for H = H2 • 

H 

magnetic" states with the same values of the z-compon
ents which are split off from the ground state. For 
H = 0 both "antiferromagnetic" states are equally prob
able. When an arbitrarily weak field is switched on that 
"antiferromagnetic" state in which the spin with the 
larger J1. is parallel to the field becomes more probable. 
The probability of that state acquires a correction pro
portional to (JJ. 1 - JJ. 2)H/J (the ratio of the Zeeman en
ergy to the gap magnitude). The correction to the prob
ability for the second state differs in sign through the 
different sign in the Zeeman energy. As a result the 
average spin values in both sites become different from 
zero and proportional to ± (!1.1 - JJ.z)H. In the second 
region where there is no gap, the average spin ( s~) 
shows a monotonic increase reaching the maximum 
value % for H = H2 • The average spin (s~) reaches a 
maximum negative value for H = H1 and in the second 
region it increases monotonically, changes sign and be
comes equal to ?'2 at H = H2 (see Fig. 2). The corre
sponding analytical expressions have the form 

<s:.z>= ~ (1- Acr) ± (f.ti- f.tz)Hk F( A1cr, k). 
2 n 2n"f/,!2 2 

5. Let us now consider the magnetic properties of 
the system at finite temperatures. The free energy of 
the chain follows from (8) to be equal to 

6·- 1 ~Jn/ 2 h ~E>.;\) 
.r = - 1.1 ,LJ \ c 2' • 

I" A:/ 

1 
~ = kBT. (20) 

Hence, the magnetization Mz = -a.f'jaH is determined 
by the equation 

M, = ___!_ ~ 08'":!th ~e;.; 
2 •:~ aH 2 · (21) 

We consider the behavior of the magnetization as 
function of the temperature in the field range 0 ::s H ::; H1• 

Using Eq. (14) we can write (21) in the form 

M,(H,T)=Mo(H)+E!_+I•z ~[ 1 - 1 ] 
2 • ~. 1 + exp(-~E>.z) 1+ exp( PeM) 

(f.1J-J.Lz) 2H ~ 
-- --·-- ~ [(111- f.tz) 2H2 +Ilt +lze''"l!]-'1• 

2 ). 

x [rrex!(~eu)+ 1+eip~-~e,2) J. (22) 

The last term increases monotonically with tempera
ture and as T -co cancels Mo(H). When J1. 1 = J1. 2 there 
remains in (22) only the second term which tends to 
zero as T-o or as T -co, i.e., the magnetization has 
a maximum as function of the temperature (when kB T 
'"""J). Such a temperature dependence of the magnetiza
tion is characteristic for antiferromagnetics in fields 
below the critical field (starting from which there is at 
zero temperature a non-vanishing momentl6 l). We see 
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thus that in the model considered the one-dimensional 
chain "simulates" antiferromagnetism. We note, how
ever, that there is here no long range order and that 
the pair correlators tend to zero when the distance be
tween the sites increases (see Sec. 6). 

A finite temperature smears out the singularity in 
the susceptibility which occurs for T = 0 and for H, 
equal to H1 or H2. The general expression for x has the 
form 

1 .._, il'e,; ~e,; .._, (De,; ' 2 ~ 
X= 2::: aH2 th-2+ "[} aH) 4~h'(~~';/2) . (23) 

The function li(E, {3) = {3/4cosh2 {f3E/2) behaves as f3 -oo 

as a li-function of E. One verifies easily that as f3 - oo 

the term containing that li-function gives the singular 
part of the susceptibility. When f3 » J and IH- H1,2l 
<< H the corresponding term gives the main contribution 
to the susceptibility. Using the steepness of the function 
li(E, {3) for large {3, we get for H close to H1 

N .,, ( 2H '/, "" R 

(H T) I =_i!O_. • ) r a -''-~ 
X ' H,H, :n \H,'- H12 J e 4 ch'(~el2) · 

-l.lo(H-Ht) 

1 
. [e + ll<J(H- Hi)J'h +X reg 

As f3- oo the integral gives a square root singularity 
for H - H1 + 0. Introducing the dimensionless parame
ters 

S• = ~1-to(H- Ht) I 2, sz = ~lto(H,- H) I 2, 

we get the expression for the singular part of X in the 
form 

'! 00 

' Npo'( ~HI \)'!'\ d.r H-Ht.-?"11, X sing(H, 7)= -- 1--- J , ~ 
2n 1H 22 -H12 0 yxch'(x-s•) 

(24) 
N~t~' ( ~H2 \ 'I• f dx 

ysing(ll,T)=--- ~~-) J-=-----, H,-H<H. 
2n l!,'-H,' 0 yxch2 (x-sz) 

As ~ 1,2 - 00 we get the zero temperature singularity in 
the susceptibility which was considered above, and as 
~ 1,2 -0 the square root singularity with respect to the 
temperature. There are thus two isolated singular 
points in the model. As ~ » 1 the susceptibility has 
narrow asymmetric maxima, the remnants of smeared
out singularities. 

We note that if J 2 = 0, when H1 = H2, Eqs. (24) be
come inapplicable, since we assumed in the derivation 
that J..Lo(H2 - H1) » 1/{3. It follows from the general Eq. 
{23) that in that case 

N~ (ae, )' / ~e. Y.sing=z; aH ch'z (J,=O). 

Hence it is clear that for the critical values of the field 
when E2 = 0 the magnetic susceptibility is inversely 
proportional to the temperature. At zero temperature 
x has a li-function-type singularity with respect to the 
field. It follows f:r;om (22) that the magnetic moment 
undergoes a jump equal to NJ..Lo. This means that as 
J 2 = 0 there occurs a first order transition with respect 
to the field at zero temperature. 

6. The degree of order in the chain can be charac
terized by the pair correlators: 

Ef'm;, nk = (sn;'Smk') -- (sn;')(Smk') (j,k = 1, 2)o {25) 

Expressing the spin operators in terms of the Fermi 

operators, we find 

where nA.j = (ef3EA.j + 1)-1. The values of the coefficients 
u\ were given in {7). 

J We restrict ourselves for the sake of simplicity to 
the case of zero temperature and J..L1 = J..L2· Then n,\1 = 0 
for all A., and n,\2 = 0 for IA.I > A.cr and n,\2 = 1 for 
IA.I < Aero As a result we get expressions for the corre
lators in the different magnetic field ranges. 

When H :5 H1 
fPmi, n! = !!Pm2, n2 = 0, 

i.e., in the first range both correlators are independent 
of the field, while the first one referring to spins on 
equivalent sites vanishes rigorously1> while the second 
one decreases inversely proportional to the square of 
the distance for large n- m. 

When H1 :5 H :5 H2 
1 sin2 (n- m)J.,,~ 

o
0Pml,nl=- ( 2:rt)'~0-~ ' 

~cr 

1 I r . J, + J,ei' I' 
oYm!n2=- (4n)' -~cre•(n-m)AfJI +J~~"'d)'. 0 

For fixed n- m, the first correlator oscillates with the 
magnetic field vanishing for field values 

r kn ]'I· H(I•J = 2-''• I H12 + ll22 + (ll,2 - HJ2)cos--
L n-m 

(k=0,1,.oozn-m) 

in particular, when H = H1 or H = H2. 
In the third range both correlators vanish. This is 

connected with the fact that a nominal magnetization is 
reached due to the orientation producing magnetic field. 

7. Let us now consider the results to which a class
ical discussion leads. To do this we replace, as is 
usually done in such a case, [sJ the spin operators by 
classical vectors of length s. The elementary excitation 
(spin wave) spectrum is classically determined as the 
small vibration spectrum of the spin system near its 
equilibrium position which is obtained from the mini
mum energy requirement. Minimizing the Hamiltonian 
(1) with respect to the spin orientation we find a (uni
form) solution. 

For a field H < H2 = (J1 + J2)s/v'(J..L 1J..L 2) the minimum 
is attained for 

~-t2H [ (~-t,H) 2 +s'(!, +Jz)'J'/, 
costl,= (Jt+lz)~< (~-tzH)'+~(J.+J;)' 

where ~1 and ~2 are the angles between the spin vectors 
of the first and the second sublattice and the z-axis, 
while the vectors of all spins lie in one plane. 

For a field H > H2 all spins are in the equilibrium 
position parallel to the z-axis. We draw attention to the 

1lThe lack of field dependence and the strict vanishing of the first 
correlator occurs only when /-1 1 = /-1 2 ° 
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fact that in a classical discussion the total spin of the 
lattice is non-vanishing in an arbitrarily weak field while 
in an exact quanta! discussion the total spin vanishes up 
to a field H1 = (J1- J2)sjf(JJ.1JJ.2) (s = 1/2). 

Linearizing the equations of motion for the spins we 
find by standard methods the exci~ations whiCh consist, 
as in the quanta! case, of two branches. For a field 
H > H2 for s = % the classical dispersion law is the 
same as the quantal one. However, for H < H2 there is 
an essential difference between the classical and the 
quanta! result which exists first of all in the occurrence 
of a gapless "acoustic" branch in the classical case. 
In the particular case JJ. 1 = JJ. 2 = JJ. the classical disper
sion law has in this region the form 

2(.)=/ 1 ±ll1+JaeiAI )[(/ +J) 2s"±( /J2) IJ1+J2eiAI J. 
e1,2 A \ .. Jl + J, I 2 f4 Jl +/a · 

There is thus a range of magnetic fields where the 
classical discussion leads to incorrect results. More-

over, when quantizing the classical oscillations we are 
led to Bose excitations while an exact treatment (for 
spin %) leads to Fermi statistics. 
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