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It is shown that when an electromagnetic wave moves in a conductor in the absence or presence of a 
stationary magnetic field stationary electric fields arise. We call these fields light-electric fields: in 
some cases they depend in a resonant manner on the wave frequency, magnetic field strength, and angle 
between the magnetic field and wave vector. A double-frequency field is also produced besides the sta
tionary field. The field strengths are estimated for various types of slow waves (with wave velocities 
«c) propagating in metals, semimetals, and semiconductors. 

1. A transverse electromagnetic wave propagating in a 
conductor produces in the latter a constant electric 
field proportional to the Poynting vector of this wave. 
We shall call this field light-electric. The electromag
netic wave can be either "fast" (with phase velocity 
close to that of light) or "slow" (Alfven wave and heli
cons). In the case of a fast wave, this field was consid
ered by Barlow[lJ neglecting diffusion and recombina
tion, and by us[2J without this neglect. In the present 
paper we consider the light-electric field produced by 
slow electromagnetic waves propagating in the presence 
of a strong external magnetic field (cyclotron frequency 
il larger than the collision frequency v). We shall in
vestigate not only a constant but also an alternating 
light-electric field of double frequency, which is also 
proportional to the Poynting vector. 

If an external magnetic field is applied to the con
ductor, the light-electric field acquires an interesting 
singularity; it turns out that not only the alternating but 
even the constant light-electric field has in some cases 
a resonant character: for a constant field, the reso
nance takes place at a frequency determined by the cy
clotron frequency and the angle between the direc
tion of propagation of the wave and the magnetic field. 
In particular, when the wave propagates transversely to 
a magnetic field, in which the Larmor radius exceeds 
the wavelength, the constant light-electric field has 
resonances at frequencies that are multiples of the cy
clotron frequency. 

2. We shall write the kinetic equation for the distri
bution function in the relaxation -frequency approxima
tion. This equation then takes the form 

of oft e of 
-+vf+vVf+[viJo]-fJ +-(Eo+Et+Ez)iJv =0, (1)* ot v m 

E1 is the field of the wave, and E0 and E 2 are respec
tively the constant part and the second harmonic of the 
light-electric field. The first and second approxima
tions with respect to the wave-field amplitude are 

oft ofo eE, ofo 
vft +at +vVft +!viJ,Ja;-+;;-a;- = 0, 
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*[vn0] = (vX n 0]. 

Multiplying these equations by the velocity v, integrat
ing, and taking into account the fact that f1 ~ E1 
~ exp ( -iwt + ik • r), we obtain for the first-approxima
tion current an expression in the form h(w, k) 
= &(w, k)E1, where & is the conductivity tensor, and 
for the second -approximation current the equation 

oj±1 • I • I e2n0± e±T 
- +v±J± =h±!Jo±I---(Ez+Eo)---Vn± ot m± m 

___ e2(n±- no±) ) 
+ !i±11Jt±l + · E1• (3 

m± 

Here llo± , m ±• and j~ are the equilibrium concentra
tions and masses of the carriers of both signs and the 
currents produced by them; the current j 1 consists of 
the second harmonic h and the de component j 0 ; the 
bar denotes time averaging. 

3. For the time -independent part j 1 we obtain the 
equation 

The term eTm -l Vn is the result of the fact that the 
electric field E0 displaces the carriers, producing a 
gradient of their concentration within the bounded crys
tal. In the case when carriers of only one sign are 
present we have j 0 = 0 and the term with Vn is negli
gibly small, as can be readily seen by comparing it with 
the term containing the electric field, and using the 
Poisson equation for the estimate. Multiplying Max
well's equation 

vectorially by il1, averaging the result over the period 
of the oscillations, and using (4) we obtain 

ro ImN2 4ro ImN2 
Eo= ----ll= ----llo, 

enoc2 enoN c2 
(5) 

where n is the Poynting vector in the medium and N is 
the refractive index of the medium. We are interested 
in the case when Re N » 1 ("slow" waves), for which 
ll "" 4ll0/Re N, where ll 0 is the flux density for a nor
mally-incident wave, with allowance fo.r the fact that 
Re N » Im N. 

We proceed to the case when there are carriers of 
both signs (inequal amounts). The situation is different 
in semiconductors, where the carrier recombination is 
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relatively slow, so that the recombination frequency 
llr « 11, and therefore we could neglect it in (2), and in 
metals (or semimetals), where llr » 11, so that the car
rier density can be assumed to be in equilibrium and 
we can put Vn = 0 in (4). 

In the former case we multiply Eqs. (4) by the 
masses m±, we subtract one from the other, and take 
into account the fact that j0+ = j0 _ = j0• We substitute in 
the resultant equation the relation for the recombina
tion kinetics, namely e±(n0 - n±) llr = div jo±, we obtain, 
by projecting (4) on the wave vector (directed along the 
x axis): 

here ln = ..fi51V; is the diffusion length and F ± = j± 
x Hdnc. 

In the case of volume recombination j I x = 0 z = 0 
(l is the thickness of the sample), we have ' 

. no(F++F-) [ ( x l-x )/ l J Jo= 1- sh-+sh-- sh- . 
~~ ~ ~ ~ 

Adding Eqs. (4) we obtain 

Eo=~(-.!.._-~\_ [jHo] + F+-F-, 
eno J.l+ J.l- ) enoc 2 

e 
J.l=-, 

mv 

(6) 

(6') 

(7) 

P.± are the static mobilities of the carriers. The poten
tial difference in the propagation direction (x axis) is 
given by 

v fl+F+-J.I....F

T= e(J.I++J.I-) 

In the perpendicular direction 

2e(ll++ J.l-) (8) 

V.L= l!iollo]J =(1-S)(F++F-) Ho.L , 
l.L en0c c~mv 

ln a= . (8') 
· lcth(l/2ln)_ 

When absorption is taken into account, the first term in 
(8) is multiplied by Ua/l)[1- exp (-l/la)], and () is re
placed by 

e' =e.( 1-ln: )-1{1- 1 [1- e-lll.J 11 +~cth-l-)}, 
\ la 2 la 2ln . 

where la is the absorption length. 
4. We now apply the results (5), (7), and (8) for the 

light-electric field in crystals having carriers of one or 
both signs to certain known types of slow waves. 

In a helical wave (helicon) in a conductor with car
riers of one sign[31 we have 

OJ<J2 [v 3nkR l ImN2= -+--· -sin2 it , 
w(ro-Qcos-1}) Qo 16 . 

where w0 is the plasma frequency and R the Larmor 
radius; further, 

Re N = [e + roo2 / w(w- Qocos -!})]''', 

& is the static dielectric constant; in metals it can be 
neglected, and in semiconductors Re N = ..fE. In semi
conductors when w « il0 cos J the field is 

Eo= 16~ ~[2.. + 3nkR sin•-!} l, 
ie J.1Ho2 Qo 16 J 

(9) 

and near resonance (w = il0 cos J) 

16nf.1 
Eo= -=-llo, 

iec2 
(10) 

if the depth of penetration of the wave exceeds the di
mensions of the crystal. Thus, the ratio of (10) to (9) is 
of the order of (il0/11)2 = (p.Ho/c)2• At resonance when 
p. ~ 106 absolute units and II0 ~ 103 W /cm3 we have E0 

~ 10-4 absolute units = 0.03 V/cm. 
In metals at w « il0 cos J we have 

E _ 16nvl'rollo [ v -1- 3nkR . 2 ... ] • o------- --sin v, 
yQoroocHo Qo 16 

near resonance 

4 iwv f.lllo 
Eo=----

Wo2 c2 ' 

(11) 

(12) 

and the ratio of (12) to (11) is ~ ( P.Ho /c)312• At reso
nance (in metals) w0 ~ 1016 sec-1 , w ~ 1011, 11 ~ 5 x 109 , 

II 0 ~ 103 W /cm\
3 

and E0 ~ 0.1 mV /em. At 11 ~ 108 sec-1 

and w0 ~ 3 x 10 (Bi) we have E0 = 1 V/cm (2. 5 
x 10-2 abs. un.). 

5. The case of almost transverse propagation cos J 
« ilw/w0 « 1. We confine ourselves to metals. Here 
we can have, in turn, two cases. 

a) When kR « 1 there propagate two waves of differ
ent polarization, for which N2 = w~/w2, and the light
electric field is E0 = 41T w111I 0 = wc2 en0• 

In bismuth n0 ~1017, 11 ~108, and when II 0 ~1Q3W/cm2 

we have E0 = 1017 abs. un. = 30 p.V/cm. 
b) When kR » 1 there propagate, according to [31 , 

two waves of different polarization, for which 

( woR )3 ( w iv )-1 
(kR)" = -c- \ 1- -;;:g---;- , 

n = 1, 2, 3, .•. In this case resonances take place at 
frequencies that are multiples of the cyclotron frequen
cy (w = nil). Using (5), we find that when w is not close 
to nil (I w- nil I » 11) the light electric field is 

Eo= 4vllo ( cwo2 )''•, 
en0c2 , (fJ3R 

(13) 

and near resonance 

Eo= 4IIo ( croo2~)'". 
enoc2 vR 

Near resonance in metals, at H0 ~ 104 Oe and II 0 

~ 103 W/cm2 we have E0 ~o.1 mV/cm. 

(14) 

6. We now proceed to conductors containing car
riers of opposite signs in equal concentrations. We con
sider Alfven and fast magnetosonic waves. For both 
metals and semiconductors we have in the first of these 
cases 

roo2 ( iv) eH w N"=e+ 1+-, [~= , cosit>-
"<t(Qcosit)2 Q (m++nL)c Q · 

As before, & can be neglected in metals, whereas in 
semiconductors, to the contrary, only & need be re
tained. The expression for N2 in magnetosonic waves 
differs only in the absence of cos J. For the force we 
have 

Using (8), we obtain in the case l « ln (8 = 1) and a 
fast magnetosonic wave 

(15) 
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and in the case l » lD (e = 0) 

V _1_ 16n sin 1} 
E_j_=-=~-ITo. 

l.L cHoN 
(16) 

In the case of propagation x of Alfven waves we put in 
these formulas H - H cos ..9-. In bismuth at Il0 

~ 103 W/cm2 and H1 ~n we have E0 ~ 0.3 V/cm. 
7. Kaner and Skobov have shown that in metals with 

carriers of both signs in equal concentrations (n+ = n_) 
helical waves can propagate, i.e., waves having a qua
dratic spectrum not only at the frequencies w » n 0 +, 
but also at frequencies w «no± when c/ woR « kR « 1. 
For these waves N2 = c2/ anR2 (w + iv) if H 11 k; 
a = a+ - a_ (a± are coefficients that depend on the 
form of the Fermi surface of the carriers); for a spher
ical surface a+ = a_ = Ys (and in this case these waves 
are missing). The indicated waves are circularly po
larized and act on the carriers with a force 

16ne2v-cB 1aw 
F± = ,1 - ITo. 

c2Q '(m+ + m .... ) 
(17) 

Therefore, for example, when l » lD we get 

(18) 

8. Let us consider the alternating light-electric field 
E2 with frequency 2w. From Eq. (3) follows an equa
tion for the current h, with a solution in the form 

j, = d(2w) (Ez+ F /e) 

( & is the conductivity tensor). Substituting this expres
sion in Maxwell's equation, we get 

4nicr(2w) 
(JV2(2w)- e)Ea- eE2n = -~~-(E, + F/e), (19) 

2w 

where E 21 and E 211 are the components of E perpen
dicular and parallel to the force F, i.e., to the direc
tion of the wave vector k. Solving this equation we ob
tain the following: 

a) For metals in which N2 » £, so that the second 
term in (19) can be neglected, we have 

E, = -F/ e (20) 

in the case of carriers of one sign and 

Gxx+F+fet + Gxx- F-je
E,= 

D'xx+ + O'xx-

in the case of carriers of both signs; here x 11 F. 

(21) 

b) For semiconductors, when N2 - £ « £, we obtain 
for the field components, by iterating with respect to 
the small parameters, the following equation (k 11 x, 
H is in the xz plane): 

Ex = _ 4niaxxF 
wee 

E __ a'"F ,-

_ 4niF _ ( _ av,a.x ) 
- O'yx • 

ew(N2 - e) cr, (22) 

These expressions hold for the cases of carriers of one 
sign; if carriers of both signs are present, then the 
equations are modified in analogy with the modification 
of (20) into (21). 

In metals the field E 2 is essentially longitudinal, 
while in semiconductors (for a helical wave) it is es
sentially transverse. In order of magnitude, in both 
cases the field is equal to F/e. 
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