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It is shown that the existence of a narrow layer of open trajectories leads, on the one hand, to a peculiar 
dependence of the resistance on the magnetic field H, and on the other to different t~mperature depend­
ences of the resistance at various values of H within the same temperature range (m the case of 
electron-phonon interaction). A "temperature breakdown" pheno~enon is predicted, _which r_esults in 
the dependence of the resistance on temperature even when the mam cause of the resistance IS electron 
scattering by impurities. 

1. INTRODUCTION 

THE kinetic properties of a metal in a magnetic field 
depend significantly on the dynamics of the conduction 
electrons, which in turn is determined by the topology 
of the Fermi surface. [1• 21 In the case of a closed Fer­
mi surface, a sufficiently strong magnetic field (rH/l 
= y « 1, rH-Larmor radius, l-mean free path) leads 
to the occurrence of a localized state (the electron 
moves on a closed orbit). Therefore a nonzero current 
(j * 0) along an electric field perpendicular to the mag­
netic field can occur only as result of electron scatter­
ing. If the Fermi surface is open, then a nonlocalized 
state is produced at certain directions of the magnetic 
field H (the electron moves on an open trajectory). 
Therefore a finite value of the current ( j * oo) along the 
electric field can be ensured only by some dissipation 
mechanism. 

For a qualitative estimate of the electric conductiv­
ity it is possible to use the diffusion terminology. The 
conductivity is determined by the well known formula 
a= ne2 u, where n is the number of carriers, u the mo­
bility, which is obtained from the Einstein equation 
modified for the case of degenerate electron gas, 
u = D/EF (EF-Fermi energy, D-diffusion coefficient). 
As is well known, the mean-square displacement r 2 of 
a diffusing particle in a time t is determined by the 
expression r 2 = Dt. In the case of a closed Fermi sur­
face, the electron is displaced as a result of collisions 
through a distance rH within the relaxation time T, and 
therefore rH: = DT, that is, D = rfl/T. In the case of an 
open Fermi surface, the electron is displaced during 
the relaxation time T a distance equal to the mean free 
path l, i.e., l 2 = DT or D = lvF (vF-Fermi velocity). 
Thus, for closed trajectories we have in order of mag­
nitude a~ ne 2 rf£/EFZ ~ a 0 y 2 (a0 -conductivity of the 
metal without the magnetic field), and for open trajec­
tories a= ne2 lVF /EF ~ a0• 

The electron mean free path is determined by colli­
sions with the impurities and the phonons. For rough 
estimates we can use the Matthies sen rule l - 1 = l ixitp 
+ zp-fi (limp-electron-impurity mean free path, Zph-

electron-phonon mean free path). From the expression 
for the transverse conductivity in the magnetic field it 

follows that when lph « limp (ultrapure samples) the 
conductivity for closed trajectories is proportional to 
(T/8)5 (8-Debye temperature), and for open ones to 
(8/T)5 (the phonon mean free path in the magnetic field 
without allowance for quantization effects, as usual, is 
proportional to (8/T)5 (see, for example [31 '). 

If the Fermi surface is open, some of the trajecto­
ries are closed and some are open. Under ordinary 
conditions the closed trajectories make an utterly in­
significant contribution to the transverse conductivity. 
However, if the layer of the open trajectory is suffi­
ciently narrow (the thickness of the "bridge" is Op 
« PF, where PF is the characteristic momentum, of 
the order of the Fermi momentum), then allowance for 
the closed trajectories is essential and the transverse 
conductivity takes the form[2 1 

Op Vpl ) 
Ciyy ~ -ne2-+y2cro (1 

PP Bp 

(p is the direction of the openness, H 11 z; in r-space 
inf~nite motion takes place along the y axis). The mean 
free path which enters in the first term of (1) is in fact 
the distance which the electron has time to cover before 
either one of two events takes place: either it loses its 
momentum on the order of PF, or else it "jumps out" 
of the layer of the open trajectories. If Op ~ PF, then, 
naturally, this is the ordinary mean free path l. But if 
Op « PF, then the "jumping out" will take place in a 
length Zeff much earlier than the momentum loss PF 
{leff :5 l). 

In estimating the effective mean free path Zeff it is 
also necessary to take into account the relation between 
lip and the characteristic change of the momentum Ap 
in one collision. If the principal role is played by col­
lisions with impurities, then Ap ~ PF and Zeff = l. But 
if the main mechanism of the dissipation is scattering 
by phonons, then Ap ~~ = T/s, where T is the tem­
perature and s is the speed of sound (pFs ~e). When 
lip»~ then, as can be readily seen, Zeff = (lip/pF) l, 
and l as usual, is proportional to (8/T) 5• Let us recall 
(using diffusion terminology) the origin of the fifth 
power of the temperature. The mean free path is 
l = vF T and T is the time of diffusion of the electron 
in p-sp~ce over a "distance" PF, that is, DpT = PF, 
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FIG. I. 

where Dp = (D.p) 2 ~'ph· The collision frequency per unit 

time ~'ph is proportional to the number of phonons, that 

is, ~'ph oo (T/E>)\ and (D.p) 2 = qg oo (T/s) 2 • Hence 
l = Z(E>)(E>/T) 5• 

But if op « q0 = T/s, then each collision knocks the 
electron t out from the layer of infinite motion, and 
this again leads to a sharp decrease in the effective 
mean free path. In this case the temperature depend­
ence of leff changes. It is proportional to (E>/T)3 , and 
not to (E>/T) 5 as usual, since the frequency of collisions 
per unit time, as already mentioned, is proportional to 
T3. 

A small group of infinite-motion electrons can occur 
in the following cases. 

A. The Fermi energy f:F is close to the critical en­
ergy f:c at which the open equal-energy surfaces be­
come closed. In this case there are near the Fermi 
surface (which can be either closed or open) open 
equal-energy surfaces, representing a set of almost 
closed cavities joined by narrow "bridges" (see Fig. 1). 
The thickness of the "bridge" depends on the energy f: 
and its order of magnitude is PFv' I Of: 1/f:F, where O£ 
=£-£c. 

It follows from the foregoing estimate that the width 
of the layer of open trajectories op can depend on the 
temperature. For open Fermi surfaces we have 

flp ~ PF[(IIIeFI + kT) I BF]'". I lieF I= leF- eKI ~EF. 

On the other hand, if the Fermi surface is closed, then 
the smallness of the quantity I O£F I can lead to a unique 
phenomenon -to "temperature breakdown," which con­
sists in the following. When kT « I Of:F I, the main con­
tribution to the current is made by the electrons on the 
closed equal-energy surfaces, so that transverse com­
ponents of the electric conductivity axx ::::: ayy ::::: y 2 a0 • 

With increasing T, the value of kT becomes ;:, I 1i£F 1. 
At these temperatures, the relative number of electrons 
on the open trajectories is of the order of v'kT/£F, 
which corresponds to a value op::::: pFv'kT/f:F. Accord­
ing to the estimates made above, the contribution of 
this layer of open trajectories to the transverse cur­
rent can become predominant, and this changes appre­
ciably the dependence of O'yy on H. 

B. A narrow layer of open trajectories can occur also 
as a result of magnetic breakdown. l 41 To this end it is 
necessary that there exist in p-space a line of points of 
intersection of two energy bands (line of conical points), 
passing through the Fermi surface. (On such a surface 
there is a unique open self-intersecting trajectory pass­
ing through the conical point (see Fig. 2; 1 and 2 are 
the numbers of the energy bands).) It can be shown that 
in this case the effective width of the layer of open tra­
jectories is op::::: PFY1U1/£F (Q-Larmor frequency). 

In the next section we shall investigate the kinetic 
equation for the electrons in a magnetic field, in the 
case when the metal contains a small group of electrons 
executing infinite motion. In Sec. 3 we shall estimate 

FIG. 2. 

with the aid of the obtained formulas the different elec­
tron scattering mechanisms, and will consider in detail 
the influence of the magnetic breakdown and "tempera­
ture breakdown" on the transverse resistance of 
metals. 

2. INVESTIGATION OF THE KINETIC EQUATION 

The Boltzmann equation linearized over the electric 
field has, for electrons in constant magnetic and elec­
tric fields, the form 

af,l at- Of, I at~ol= -eEvafo I ae, (2) 

where f0 is the Fermi electron distribution function, 
t the time of motion of the electron on the frajectory 
£(p) = const, Pz =canst, and of 1 /tc01 -collision inte­
gral. 

If we introduce the vector function 1/Ji with the aid 
of the relation 

afo /!= -eT-tiJ;E;, ae 

then Eq. (2) is transformed into 

at!J, 1 at+ Wp{t!J,} = v, 1 r, 

where 

- ( afo )-' a ( afo ) Wp {ljJ;} =- T- - T-t!J; 
ae ate, ae . 

(3) 

( at )-' r = T aeo J Kp,p•-p{ljJ;(p')-ljJ;(p)}dp'; (3a) 

Kp, p' -p determines the number of transitions from 
the state p into the state p' in a unit time. The quan­
tity Kp, p' -p as a function of the difference between 
momenta of the initial and final states differs signifi­
cantly from zero in the interval D.p (D.p is the charac­
teristic momentum transferred to the electron during 
the scattering time). 

The boundary condition for (3) is obtained by aver­
aging this equation over the period of motion of the 
electron in the magnetic field: [1, 21 

Wp{IJl;} = v;/ T. (4) 

In the system of coordinates chosen above vx = 0 in the 
entire interval of variation of pz, while vy::::: vF on the 
interval (-op, +Op) and vy = 0 outside this interval. It 
follows therefore that the presence of a narrow layer of 
infinite motion does not affect the x-component of the 
distribution function 1/Jx· The dependence of 1/Jx on the 
field and on the temperature is exactly the same as in 
the case of a closed Fermi surface. The other compo­
nent of the distribution function, 1/Jy, experiences ap­
preciable changes, owing to the exlstence of the narrow 
layer of open trajectories. To determine the zeroth 
term of the expansion of 1/Jy in the reciprocal magnetic 
field, it is necessary to solve the following integral 
equation: 
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( Z" rl ~ K,,p,; ,., Pz' {'IJ/0) (e', pz')- 'llv(O) (e, p,)} de' dpz' = Vy (e, p,). (.5) 

(5) 
It is easy to see that the characteristic interval of vari­
ation of 1/!~> (£F, Pz) with respect to Pz is op. This 
integral equation makes it possible to obtain in general 
form the temperature dependence of 1/!~J in two limiting 
cases: op « Ap and op » p. 

In the case op « Ap, the velocity vy, and conse­
quently also 1/!~> (£, pz) has a sharp maximum in the 
interval (-op, +Op), which is much smaller than the 
interval of integration in (5). Consequently, inside the 
indicated interval, the main contribution to 1/!~t(£, Pz) 
is made by the integral terms of (5). It is therefore 
perfectly natural to represent the general expression 
for 1/!~0 >(£, pz) in the form 

fJfo 1111 6p 
'I'Y= -----=+·-;t:y(e,p,), {6,'1 

fJe Vo !J.p 

where 

and Xy is defined by the equation 

~K'·"z''',v,·x,(e', pz')de'dpz' = vo(e, Pz)X.1(B, Pz) 

!J.p \ K at. 1 - ( ' ')a 'a ' + 7Ji).) ,,p,; ,•,p; 7f8' iio (e', pz') V11 B , Pz B Pz · (7) 

v0 (p) is the number of electron collisions per unit time. 
For example, in the case of electron-phonon interac­
tion v0 = T 3 , that is, it is proportional to the number of 
phonons at the given temperature. 

Usually the frequency of the collision between the 
electron and different lattice defects or phonons de­
pends little on the region of the Fermi surface in which 
the electron is situated during the time of the collision. 
Therefore we can assume for estimates that v0 (p) is a 
continuous function of its argument in the interval (- op, 
+ op). It is then easy to see that 

(' K- fJ/o - -l ( ' ') - ( ' ') d 'd ' 
,) E,pz; t.',pz' 7f8' Vo B ' Pz Vy e ' Pz 8 Pz 
5p .6p 

~ Vp ~ K,,.,; ,•,p,· de'dpz' j ~ K,,v,; ,·,v,· de'dpz' < Vp ~ 
~p -~p 

and consequently Eq. (7) contains neither small nor 
large parameters. Therefore the function Xy, which is 
a solution of (7), is of the same order of magnitude as 
the first term in (6). Thus, in the zeroth approximation 
in the conductivity y is determined only by the elec­
trons that execute infinite motion. 

In order to take into account the contribution made 
to the conductivity by the electrons on the closed cross 
sections, it is necessary to calculate the higher terms 
of the expansion {up to second-order terms, since the 
terms of the diagonal part of the matrix a that are odd 
in the field vanish. (2 l). Finally, in the zeroth approxi­
mation with respect to the parameter 6p/ Ap « 1 we ob­
tain 

c 1 (f) ( c )' m ( r - r ) 
'l'x""' eH T(Cx - py)+ eH r\ J Wp {py}dq/- .I Wp{C~'J}drp' , 

0 0 

Here cp = t(eH/mc)-\ and the functions C~1 > and C~l 
which enter into these expressions are determined 
from the integral equations (accurate to op/ Ap) 

w.{Cx(ll) = Wp(p,,), w.{C}'l) =-Wp{Px). 

These equations have the same structure as in the 
case of a closed Fermi surface. This is explained by 
the fact that in the first approximation in y the main 
contribution to the conductivity is made by the elec­
trons on the closed trajectories (the ratio of the num­
ber of electrons on the open trajectories to the number 
of electrons on the closed trajectories is proportional 
to op/pF « 1). Consequently, the entire system of 
electrons can be broken up into two weakly interacting 
subsystems: the electrons of the open trajectories and 
the electrons on the closed ones. As seen from (8), 
each of these subsystems makes an additive contribu­
tion to the conductivity. Accordingly, the conductivity 
tensor can be represented in the form 

open _closed 
fJyy = fJyy + fJyy , (9) 

where a~~en is determined by the first term of the ex­

pression for IJ!y in (8). Owing to the average electron 

velocity which is contained in this term, it differs from 
zero only in the interval (-op, +Op), that is, a~~en 

~ opfPF· We call attention to the fact that the quantity 
v0 which. enters in a~~en is the sum ol' the collision 
frequencies. 

The inequality PF » Ap can be satisfied when the 
electron scattering is due mainly to collisions with the 
phonons. Owing to the condition op » Ap =~.the ve­
locity vy, and consequently also the function 1/!y, varies 
little over the interval ~. making it possible to reduce 
(5) to a second-order differential equation with respect 
to the variable Pz (leaving it integral with respect to £). 
Since the function 1/!y changes appreciably over the in­
terval (-op, +Op), we get 1/!y~ (op/pF) 2 (e/T) 5• The 
conductivity ayy is proportional to the quantity 

hence 

i fJ/o 
T J Vy'l'y-dp, 

fJe 

(10) 

Here a0 ( e ) is the conductivity of the metal in the ab­
sence of a magnetic field at T = e. 

3. INVESTIGATION OF THE GENERAL FORMULAS 

The electric conductivity of a metal is determined 
usually by the electron-phonon and electron-impurity 
collisions, that is, 110 = llph + vimp• where vph is the 
electron-phonon collision frequency and vimp is the 

electron-impurity collision frequency. At sufficiently 
high temperatures (in pure samples) vph » vimp• that 
is, the presence of the impurities can be neglected. Us­
in~ (8) and {9), as well as the results of (2 , 3 J for 
a fk osed, we can readily write the dependence of the 
components of the electric conductivity tensor on the 
magnetic field and on the temperature (T « e, the num­
ber of electrons n1 is not equal to the number of holes 
n2): 
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a _ open + closed~ op ( 8 \ 3 , ( T )' ayy" 
yy - Oyy Oyy ~ ~I - ) ayy + ~ --

PF \ T' ' e (~he)' ' 
3aMKH ( T )' axx ce ( n, - llz} 

Oxx=Oxx ~ ,B (QTe)'' Oxy=-ayx=---H--, (11) 

Here TE> is the relaxation time at T = E> and aik are 
quantities which do not depend on the magnetic field due 
to coincide in order of magnitude with the conductivity 
without the magnetic field at T = E>. 

The magneto resistance tensor Pik is obtained by in­
verting the conductivity matrix & • The most interesting 
is the dependence of the component Pxx of the resist­
ance tensor on the magnetic field and on the tempera­
ture. The dependence of this component on the magnetic 
field is shown in Fig. 3. 

If the magnetic field satisfies the condition (UTe) - 2 

» (op/pF)(E>/T)8, then the presence of a narrow bridge 
of the Fermi surface does not affect the resistance, and 
therefore Pxx tends to saturate with respect to the field 
and tends to a temperature dependence (T/E>) 5• If 
(OTe)-2 « (opfpF)(E>/T)8 , then the electrons on the open 
trajectories begin to contribute, and Pxx increases 
quadratically with increasing H, and in this case 

_, 6p ( e \3 1 
Pxx ~ (QTe)" PF T) ~08) , (12) 

With decreasing temperature, the electron-phonon 
frequency decreases and becomes comparable with, and 
subsequently even much lower than the electron-impur­
ity frequency. In the latter case the resistance (as well 
as the mobility) tends to a constant value with respect 
to temperature. In the intermediate region, in which 
the inequality 

~(!'___)'~~~~( !'_)3 
le e limp la e 

is satisfied, the electrons on the closed cross sections 
collide effectively only with impurities ( l »limp), 
whereas for the electrons on the open trajectories the 
effective collisions remain as before those with the 
phonons ( leff ~ (E>/T)3 le « limp). Therefore a[~osed 
does not depend on the temperature, and a~~en 
~ (E>/T)3 (opfpF)· At these temperatures in magnetic 
fields satisfying the condition (OTimp)-2 » (op/pF)(E>/T)3 

(Timp-electron-impurity free-path time) the presence 
of electrons moving in infinite fashion does not have 
any effect, and therefore Pxx does not depend _on T. 
With increasing field ((OTimp)- 2 .S (opfpF)(E>/T)3 ), a 
narrow layer appears, and Pxx begins to increase. 
When (OTimp)-2 « (opfpF)(E>/T)3 the resistance com­
ponent coincides with (12). 

The component Pyy in the entire interval of the mag-

netic fields is determined by the electrons on the closed 

Prz 

;!( 
I I 

I (-T) 5 I f.T)"• (fl; Q 
'r. 8 'fe \i' V1P 

FIG. 3, 

Pu 

FIG. 4. 

cross sections and therefore does not depend on the 
temperature. 

The "temperature breakdown" (see Sec. 1) leads to 
a dependence of the resistance on the temperature even 
in the case when the phonons have already completely 
"frozen out" and the electrons are scattered electri­
cally by the impurities. The cross section of the equal­
energy surfaces that correspond to three different en­
ergies £. < f.c, £. = f.c, and £. > £c are shown in Fig. 4. 
We recall that £c is that energy at which the closed 
equal-energy surfaces change into open ones. The fact 
that the temperature spreading of the Fermi step gives 
rise to a small group of infinitely moving electrons 
makes it possible to use formulas (8) to estimate the 
components of the conductivity tensor: 

ao 
Ox:r;:::;-----

, (QTimp) 2 ' 

ce(n1 - n2) 
r1xy= -Uyx= H 

1/ T { I Be- BF I } Oo 
Oyy~ -;;exp T · ao+ (QTiniP)' (13) 

From this we readily get for the resitance component 
Pxx the expression 

Pxx~~[1+(fhimv)'V:exr{- lec;epi}J. (14) 

In fields satisfying the condition 

1 v-r { lec-epl} -----~ ~ exp - -'----'-
(QTimp)2 £F T ' 

the resistance, as usual, does not depend on the tem­
perature and tends to saturate with respect to the field. 
If 

then Pxx begins to depend on T and increases with the 
increasing magnetic field: 

Pxx ~ (QTimp )'v !'_exp{- I ec-~ )_1_ 
eF T fu0 ' 

1 v T { lee - BF I } -(-n---)-2 ~ ~ exp - ---- , 
,,T,mp flF T 

If the Fermi amrface is made up of periodically re­
peating cavities belonging to two different energy bands 
and interconnected by conical points (Fig. 2), then the 
narrow layer of open trajectories is the result of mag­
n§)tic breakdown. To this end it is necessary that the 
line of conical points (see Sec. 1) be straight and that 
the magnetic field be perpendicular to it. The thickness 
of the layer op now depends on the magnitude of the 
magnetic field:l 41 (op/pF) ~ v'tm;r.F. This leads, on the 
one hand, to a somewhat different than usual dependence 
of the magnetoresistance on the magnetic field, l 41 and 
on the other hand to a unique temperature variation of 
the magnetoresistance as a function of H. If the mag­
netic field is such that the existence of the electrons 
moving in infinite fashion does not affect the magneto-
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resistance, then the transverse component Pxx oo (T ;e)5 

(we neglect the scattering by the impurities). In the 
same temperature interval, but in fields satisfying the 
condition (T /6) » v'tin/Ep » (T /e)8 (UTe )-a, the trans­
verse magnetoresistance is 

Pxx ::::::< (8 I T)""J'IiQ I 8F(Q-re)2cro-1 (8). 

This is connected with the fact that the narrow layer of 
open trajectories is already significant in such fields, 
but the thickness of the layer is equal to ppv'tiU/Ep 
« <Io = PF (T /e), and therefore the formulas (8) and 
(11) are valid. 

In even stronger fields .,ltiU/Ep » T/e) the thick­
ness of the layer becomes much larger than the charac­
teristic phonon momentum <Io and 

Pxx ::::::< (8/T)"(IiQieF)'I•(Q-re) 2cr0- 1(8). 

In the derivation of the latter estimate we used formula 
(10). 

One of the symptoms whereby a narrow layer of open 
trajectory can be observed experimentally is the in­
crease of the resistance with increasing H aiter the 
Pxx(H) dependence saturates (Fig. 3). Such a behavior 
of the resistance was observed by Borovik and Volot­
skaya, [51 who measured the Pxx(H) dependence of pure 
aluminum at helium and hydrogen temperatures. The 

deviation from Kohler rule observed in [51 agrees with 
the results given above. However, for a complete com­
parison of theory with experiment it is necessary to 
measure the temperature dependence of Pxx(T) at dif­
ferent values of the magnetic field. 
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